Exercise 1

Christie Chan ID:20216612 UserID:c45chan

Part 1: Instance/Class Diagrams

1. Instance Diagram

January 17, 2007

; : ?Tjed
. French Onion Soup
Special

Olga
gender = female
Ordered
Garden Salad
Ordered Williams Dinner Special
| Chicken Breast Sandwich [P o0
2. Class Diagram
Customer
Store gender
1 State
) 1
«|Special Appetizer
Plan |1 1 ,lOrdered
price Entreg rooq
1]
Dessert

Part 2: C4+ Basics

1. #include <iostream>

int main() {
int **array;

lvan

gender = male
state = hungry

Dessertl yipje Chocolate Mousset 2dered

/* declare array */

int sizex, sizey; /* size of array */
int 1, j; /* counters */

/* suppose a 10x10 matrix */
sizex = 10;
sizey = 10;

/* allocate storage for array of pointers */
array = (int **)malloc(sizex * sizeof(int *));
/* allocate storage for array of ints for each pointer */
for (i = 0; i < sizex; i++) {
array[i] = (int *)malloc(sizey * sizeof(int));

3

/* forming an Identity Matrix */
for (i = 0; i < sizex; i++) {
for (j = 0; j < sizey; j++)
if (i == j) arrayl[il[j]
else array[i][j] = 0;

{
=1,

3

/* prints contents of matrix to standard output */
for (i = 0; i < sizex; i++) {
for (j = 0; j < sizey; j++) {
std::cerr << array[il[j];
}
std::cerr << std::endl;

3

/* free array of ints for each pointer */

for (i = 0; 1 < sizey; i++) {
free(arrayl[il);

}

/* free array of pointers */

free(array);

return O;

3

2. The output is ” All Conditions Fail”.
?if((int)a == b)” fails because a is a pointer, and ”int* a = new int(100);”
gives the value 100 at pointer a, so *a = b, (int)a does not.
?if((int)&b == c¢)” fails because (int)&b = the address of b, and c is the
reference of b, which ¢=100, so (int)&b = (int)&c and b=c.
7if((int)a = b && (int)&b != ¢)” passes since (int)a not = b and (int)&b

not = ¢ as mentioned above.

. Pass by reference passes the locations of the original values, and so changes
to the variables passed by reference will affect the originals. On the other
hand, pass by value passes the copies of the original values, and so changes
made to these variables don’t affect the originals. Java parameter passing
mechanism doesn’t allow programmers to specify passes by value or passes
by reference, they are internally set. Java passes the copies of the values
when parameters are type int, char, string, etc. Thou, it’s different from
passes by reference in C++. Parameters may passes by reference in some
other object types, so it’s not the same as passes by value neither.

. #include <iostream>

int original = 10; // initialize original value
int byVal = original; // pass by value
int& byRef = original; // pass by reference

void output() {

std::cout << "Original value: " << original << std::endl;
std::cout << "Variable passed by value: " << byVal <<std::endl;
std::cout << "Variable passed by reference: " << byRef << std::endl;

std::cout << std::endl;
1

int main() {
std::cout << "Initially," << std::endl;

output();

original = 5; // change original value

std::cout << "When original value is changed to 5," << std::endl;

output();

original = 10; // reset back to initial value

byVal = 5; // change value of the variable passed by value
std::cout << "When the variable passed by value is changed to 5," << std::endl;
output();

byVal = 10; // reset back to initial value

byRef = 5; // change value of the variable passed by reference
std::cout << "When the variable passed by reference is changed to 5," << std::endl;
output();

return O;

Output:

Initially,

Original value: 10

Variable passed by value: 10
Variable passed by reference: 10

When original value is changed to 5,
Original value: b

Variable passed by value: 10
Variable passed by reference: 5

When the variable passed by value is changed to 5,
Original value: 10

Variable passed by value: b

Variable passed by reference: 10

When the variable passed by reference is changed to 5,
Original value: b

Variable passed by value: 10

Variable passed by reference: 5

. The code is incorrect because the ”return &myObject;” doesn’t necessary
return the address of myObject. When MakeSomeObject() is executed,
myObject is created in the stack and address of it is returned; however,
if any other codes are executed that changes the stack, then the address
may no longer points to myObject. Therefore, the code needs allocation
and deallocation to be correct.

