Fundamental Principles of Foundation Design

Anthony M. DiGioia Jr., PhD, PE, President DiGioia, Gray and Associates, LLC

IEEE TP&C Subcommittee Meeting

Orlando, Florida

January 8 – 11, 2007

Foundation Design Requires a Blending of Soil/Foundation Interaction Modeling and Engineering Judgment

Foundation Design Process

SINGLE POLE STRUCTURES

LATTICE TOWER (FOUR-LEGGED) STRUCTURES

H-FRAME STRUCTURES

How should you approach obtaining subsurface information and geotechnical design parameters?

How should you approach obtaining subsurface information and geotechnical design parameters?

Free-Standing Lattice Tower; Concrete Spread Footings;
Frustrum Design Method

- What geotechnical data do we need?
 - All cohesive soil
 - All cohesionless soil
 - Layered soil conditions

 Free-Standing Lattice Tower; Concrete Spread Footings; Side Friction Design Method

- What geotechnical data do we need?
 - All cohesive soil
 - All cohesionless soil
 - Layered soil conditions

 Free-Standing Lattice Tower; Drilled Shaft; Cylindrical Shear Design Method

- What geotechnical data do we need?
 - All cohesive soil
 - All cohesionless soil
 - Layered soil conditions

- Tubular Steel Pole; Drilled Shaft; Hansen Design Method
- What geotechnical data do we need?
 - All cohesive soil
 - All cohesionless soil
 - Layered soil conditions

Foundation Design Process

Foundation Design Process

ASCE Manual 74 Reliability-Based Design (RBD) Method

The ASCE Method allows the designer to:

- Consider the variability of loadings.
- Consider the variability of component strength.
- Vary reliability levels between lines.
- Vary reliability levels between line components.

The Load Resistance Factor Design (LRFD) equation presented in Section 1 of Manual 74 for weather-related (reliability based) loads is as follows:

$$\Phi_{\rm C}R_{\rm e} > \text{effect of } [\text{DL} + \gamma \, \mathbf{Q}_{50}] \tag{1}$$

in which:

- Φ_c = strength (resistance) factor which can be selected to adjust the reliability of the component;
- **R**_e = the e-th % design strength for the component;
- **DL** = dead load effect in the component;
 - γ = load factor applied to the live load effect Q_{50} ;
- Q₅₀ = load effect produced by combinations of wind velocity, ice thickness, and/or temperature, which has a 50-year return period

Load Factors to Adjust Line Reliability by Factor LRF

Line Reliability Factor (LRF)	1	2	4	8
Load Factor, γ	1.0	1.15	1.3	1.4
Load Return Period - RP (years)	50	100	200	400

Strength Factors to Adjust Component Reliability by Factor CRF for Strength Exclusion Limit, e of 5 to 10%

Component Reliability Factor			
(CRF)	1	2	4
CRF, $\Phi_{\rm C}$, for COV _R = 10-20%	1.00	0.85	0.73
CRF, $\Phi_{\rm C}$, for COV _R = 30%	1.05	0.87	0.76
CRF, $\Phi_{\rm C}$, for COV _R = 40%	1.09	0.88	0.77
CRF, $\Phi_{\rm C}$, for COV _R = 50%	1.11	0.90	0.75

NOTE: COV_R = Coefficient of Variation of Resistance

Hansen Design Model

Calibration of Hansen Design Model

TP3 Revised, 4-in criteria – Drilled Shafts Under Drained Moment – 20 Tests – Lognormal PDF

MFAD Design Model

The Schematic Four-Spring Model in MFAD

Calibration of MFAD Design Model

TP3 Revised, 4-in criteria – Drilled Shafts Under Drained Moment – 20 Tests – Lognormal PDF

CAISSON Design Model

Project Tille	SAMPLES PROBLEMESTOM	ASCE HAR	ER
Project Notes	APPENDIX A		ý.
Concrete Stren	gth	[ksi]	4
Steel yield stri	segth	[ksi]	60
Pier Diameter		(h)	7
Distance of tor	of hier shave around	វាប	1

Soll Soll Ente	data are enter type = r undrained st r Rankine Coe	ed from groun C for cohesi S for cohesi lear Strength fficient of ear S	ad level down ve soil (clay) onless soil (s CU for cohesi th pressure Kl bill Layers	and) ve soil. P for cohesion	less soll.
Γ	Type - (C) or (S)	Thickness (ft)	Density (1bs/ft^3)	Strength (psF)	Rankine Coef.
1	_ C	2	150		
2	S	4	50		2.77
3	S	15	50		2.46
4	C	2	55	1000	
5	S	4	55		3
6	S	12	55		2.77
7	2				

Calibration of CAISSON Design Model

TP3 Revised, 4-in criteria – Drilled Shafts Under Drained Moment – 20 Tests – Lognormal PDF

Summary of Calibration Statistics and Strength Factor Data

Design Model	n	m _m	COV _m (%)	φ ₅ (Lognormal PDF)
Hansen	20	1.24	28.9	0.75
MFAD	20	0.93	24.9	0.60
CAISSON	20	1.02	49.9	0.42

Foundation Design Process

Laboratory Testing Program

COHESIVE SOILS

- Total Density
- Moisture Content
- Undrained Shear Strength
- Modulus of Deformation

COHESIONLESS SOILS

- Total Density
- Moisture Content
- Angle of Internal Friction
- Compaction Characteristics
- Modulus of Deformation

Engineering Property Correlations – Cohesionless Soils

Table 1AEmpirical Values for ϕ , D_r , and Unit Weight of Cohesionless SoilsBased on Standard Penetration Resistance					
Description	Very Loose	Loose	Medium	Dense	Very Dense
Relative density, $D_{\rm r}$	0 0.	15 0.	1 35 0.0	65 0.	85 1.00
Standard penetration number, N	4		0 3	0 E	50
Approximate angle ofinternal friction, $\phi^{\circ*}$ 25°	 -30° 27°-	-32° 30°.	 -35° 35°-	-40° 38°	-43°
Approximate range of moist unit weight (γ) pcf	70-100+	90-115	110-130	110-140	130-150
*Use larger value of ϕ for cohesionless soils with 5% or less fine sand or silt, or both.					

Engineering Property Correlations – Cohesive Soils

Cohesive Soils							
Consistency	_	Very Soft	Soft	Medium Stiff	Stiff	Very Stiff	Hard
Standard Penetration Resistance, N (blows pe	r foot)	Ç Ç	2 4	4 8		6 3	2
Total Unit Weight of Saturated Soil (pcf)		100)-120	110-130	120-	140	>130
UNDRA	INED SHEA	R STRENG	ATH OF CO	HESIVE SOILS	S (<u>3</u>)		
	Voint		Madéum		Vonu		
Consistency	Soft	Soft	Stiff	Stiff		Hard	
Unconfined Compressive strength, q _u , (tsf)	6	0.25	0.50	1.00	2.00 4	.00	
Standard Penetration Resistance, N (blows per foot)	0	2	4	8			

Foundation Design Process

Selection of Geotechnical Design Parameters

Selection of Geotechnical Design Parameters

Foundation Design Process

Using the reliability-based design approach, determine D for the Hansen, MFAD and CAISSON design methods.

Foundation Design Process Laterally Loaded Drilled Shaft Lognormal PDF

Design Model	Φ ₅	The Required Nominal Design Moment Capacity (1)
Hansen	0.75	1333
MFAD	0.60	1667
CAISSON	0.42	2381

(1) The nominal design capacity moment required = M_{50}/ϕ_5

Foundation Design Process Nominal Moment Capacity (M_n) Versus Embedment Depth

Foundation Design Process Design Moment Capacity (Φ₅M_n) Versus Embedment Depth

Summary

•FOUNDATION DESIGN REQUIRES A BLENDING \prec

SOIL/FOUNDATION INTERACTION MODELING ENGINEERING JUDGEMENT

•A WELL-PLANNED SUBSURFACE INVESTIGATION IS CRITICAL

•IMPLEMENTATION OF THE RBD METHOD IN ASCE MANUAL 74 IS RECOMMENDED

•CALIBRATING FOUNDATION DESIGN METHODS PROVIDES A RATIONAL DESIGN FRAMEWORK FOR DEVELOPING STRENGTH FACTORS

•FIELD INSPECTION OF CONSTRUCTION AND GEOTECHNICAL PARAMETER CONFIRMATION ARE CRITICAL

