Aeolian Vibration Chuck Rawlins

- Single conductors with dampers
- Bundled conductors
- Ground wires
- Insulators
- Davit arms
- Aircraft warning devices
- Etc., etc., etc.

$$P_D = P_w - P_c$$

$$\frac{P_D}{P_{\text{max}}} = \frac{P_w}{P_{\text{max}}} - \frac{P_c}{P_{\text{max}}}$$

$$P_{\text{max}} = \frac{1}{2} Z_0 \omega^2 y_{\text{max}}^2$$

IREQ Va	rennes Test Line	e near Montreal
Conductor	Туре	ACSR Bersfort (48/7)
	Diameter	35.6 mm
	Mass per unit length	2.37 kg/m
	Tension	36 kN
Span length	450 m (suspension)	
Type of terrain	open, flat, no obstruction, with snow cover (farmland)	
Position of the damper	one damper/span located 1.7 m from centre of the suspension clamp	
osition of the damper	one damper/span locate	d 1.7 m from centre of the suspension clamp

Resources:

- 1. Your own experience. If it worked before (or didn't), it will do the same again.
- 2. Experience of others. If it worked for them...

83

$$\frac{P_{w}}{P_{\max}} = St \cdot \frac{V}{\sqrt{H/m}} \cdot \frac{P_{w}}{m} \cdot \delta_{r}$$

$$\frac{P_{w}}{P_{\max}} = St \cdot V \cdot \rho \cdot \underbrace{\frac{D}{\sqrt{H \cdot m}}}_{K - m} \delta_{r}$$

$$T_{\%} = 100 \cdot \frac{H}{RS}$$

$$K = \frac{D}{\sqrt{RS \cdot w}}$$
"Conductor Vibration - A Study of Field Experience," C. B. Rawlins, K. R. Greathouse & R. E. Larson, AIEE Conférence Paper CP-61-1090.

Resources:

- 1. Your own experience. If it worked before (or didn't), it will do the same again.
- 2. Experience of others. If it worked for them...
- 3. Your friendly....

90

Why???!!

All suppliers have some system for making recommendations.

They have the most comprehensive knowledge of their system's performance.

They are well motivated to avoid repetition of any unsatisfactory performance.

They are in the best position to maintain the system to achieve that.

92

