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ABSTRACT
The goal of this work is to separately control individual secure
sessions between unlimited pairs of multicast receivers and
senders while preserving the scalabilit y of receiver initiated
Internet multicast for the data transfer itself. Unlike other secure
multicast solutions, there are absolutely no side-effects on other
receivers when a single receiver joins or leaves a session. Each
individual receiver can also reliably prove whether any fragment
of the data hasn't been delivered or wasn't delivered on time (e.g.
late video frames). Further, each receiver's data can be subject to
an individual, watermarked audit trail . The cost per receiver-
session is typically just one set-up message exchange with a key
manager. Key managers can be replicated without limit because
they are only loosely coupled to the senders who can remain
oblivious to members being added or removed. The solution
requires a tamper-resistant processor such as a smartcard at each
receiver. However, generic cards supplied by a trusted third party
are used rather than cards specific to each information provider.
The technique can be applied to other bulk data distribution
channels instead of multicast, such as DVD.
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Watermark, Audit trail , Internet.

1. INTRODUCTION
This paper explores techniques to maintain an individual security
relationship between multicast senders and each receiver without
compromising the eff iciency and scalabilit y of IP multicast's data
distribution. We focus on issues that are foremost if the multicast
information is being sold commercially. Of prime concern is how
to individually restrict each receiver to extract only the data for
which it has paid. Secondly, commercial information delivery
systems should preferably include the capabilit y for individual
proof of delivery. Where both non-repudiation and transport
reliabilit y aren't intrinsic to the delivery system, the cost of

providing customer support to handle billi ng complaints is li kely
to overshadow all other costs. However, where streamed
information is concerned, simple proof of reception is not enough.
Timely reception must also be provable. Thirdly, of particular
concern with multicast information products is prevention or at
least detection of unlicensed re-distribution of received
information.

We adopt an approach where the key used to encrypt sent data is
systematically changed for each new unit of application data. The
keys are taken from a pseudo-random sequence seeded with a
value initially known only to the senders. When a receiver wishes
to join, it requires a trusted third party smartcard. At the end of
each receiver's set-up phase, its card is running a key generator
seeded with the same value as that of the senders and it contains a
policy defining which keys the receiver is entitled to. The
smartcard does no decryption; it merely hands out a key whenever
a request conforms to the policy. The smartcard can record a
summary of which keys it has given out that can be used as a non-
repudiable 'delivery note' in the case of delivery disputes.

Thus, whenever a receiver is added or removed, there is zero side-
effect on other receivers. A special group key change doesn't have
to be initiated because systematic changes occur all the time
anyway. No keys need sending over the multicast, therefore
reliable multicast isn't required. If key managers are delegated to
handle requests to set-up receiver sessions, the senders can be
completely oblivious of any receiver addition or removal. Thus,
there is absolutely no coupling back to the senders. For stateless
key manager scenarios (e.g. pre-payment with no credit) any
amount of key manager replication can be introduced. The key
managers just give out session seeds and policies in return for pre-
payments. Thus performance is linear with key manager
replication and system resili ence is independent of key manager
resili ence.

Thus we focus on a pragmatic scenario where evictions from the
multicast group are typically planned at session set-up, but still
might occur at arbitrary times. Nonetheless, we do cater for the
occasional unplanned eviction, although the scheme doesn't scale
if the level of its use becomes high. Our thesis is that there are
many applications that only rarely require premature eviction, e.g.
pay-TV or pay-per-view. Consequently, our scheme typically
requires just one set-up message per receiver session. All further
security messaging proceeds between the receiver and its
smartcard, which acts as a proxy of the key manager. If the
receiver wishes to dispute delivery of certain parts of the stream,
another message is required at the end of the session to present the
'delivery note'.



In section 2, we discuss requirements and describe related work
on multicast key management, non-repudiable receipting and
detection of re-multicast. In section 3 we describe the underlying
composition of the systems we have implemented to meet all our
requirements. Then, in section 4, we describe the design of
specialisations we have implemented to achieve each requirement.
Section 5 describes how secure sessions are set up, torn down or
modified (e.g. for an unplanned eviction). Section 6 briefly
describes our implementation. Finally limitations of the approach
are discussed followed by conclusions.

2. BACKGROUND AND REQUIREMENTS
When using Internet multicast, senders send to a multicast group
address while receivers 'join' the multicast group through a
message to their local router. For scalabilit y, the designers of IP
multicast deliberately ensured that any one router in a multicast
tree would hide all downstream join and leave activity from all
upstream routers and senders [11]. Thus a multicast sender is
oblivious to the identities of its receivers. Clearly any security
relationship with individual receivers is impossible if they can't be
uniquely distinguished. Conversely, if receivers have to be
distinguished from each other, the scalabilit y benefits start to be
eroded.

2.1 Multicast key management
If a multicast sender wishes to restrict its data to a set of receivers,
it will t ypically encrypt the data at the application level. End-to-
end access is then controlled by limiting the circulation of the key.
A new receiver could have been storing away the encrypted
stream before it joined the secure session. Therefore, every time a
receiver is allowed in, the key needs to be changed (termed
backward security [19]). Similarly, after a receiver is thrown out
or requests to leave, it will still be able to decrypt the stream
unless the key is changed again (forward security). Most
approaches work on the basis that when the key needs to be
changed, every receiver will have to be given a new key.
Continually changing keys clearly has messaging side-effects on
other receivers than the one joining or leaving.

We define a 'secure multicast session' as the set of data that a
receiver could understand, having passed one access control test.
If one key is used for many related multicast groups, they all form
one secure session. If a particular receiver leaves a multicast
group then re-joins but she could have decrypted the information
she missed, the whole transmission is still a single secure session.
We envisage very large receiver communities, e.g. ten milli on
viewers for a popular Internet pay-TV channel. Even if just 10%
of the audience tuned in or out within a fifteen minute period, this
would potentially cause thousands of secure joins or leaves per
second.

We use the term 'application data unit' (ADU) as a more general
term for the minimum useful atom of data from a security or
commercial point of view (one second in the above example).
ADU size is application dependent. It may be an initialisation
frame and its set of associated 'P-frames' in a video sequence or it
may be ten minutes of access to a network game. For
performance, an ADU may be only partially encrypted with the
remainder in the clear [18]. ADU size can vary throughout the
duration of a stream dependent on the content. ADU size is a
primary determinant of system scalabilit y. If a milli on receivers

were to join within fifteen minutes, but the ADU size was also
fifteen minutes, this would only require one re-key event.

However, reduction in re-keying requirements isn't the only
scalabilit y issue. In the above example, a system that can handle a
milli on requests in fifteen minutes still has to be provided, even if
its output is just one re-key request to the senders. With just such
scalabilit y problems in mind, many multicast key management
architectures introduce a key manager role as a separate concern
from the senders. This deals with policy concerns over
membership and isolates the senders from much of the messaging
traff ic needed for access requests.

We now describe the most scalable of the group key management
proposals. Ballardie suggested exploiting the same scalabilit y
technique used for the underlying multicast tree, by delegating
key distribution along the chain of routers in a core based
multicast routing tree [4]. However, this suffers from a lack of
end-to-end security, requiring edge customers to entrust their keys
to many intermediate network providers. The Iolus system [20]
sets up a similar distribution hierarchy, but only involving trusted
end-systems. However, gateway nodes in the hierarchy decrypt
and re-encrypt the stream to isolate sub-group members from key-
changes in other sub-groups. This increases latency and set-up
complexity and reduces resili ence.

An alternative class of approaches involves a single key for the
multicast data, but a hierarchy of keys under which to send out a
new key over the same multicast channel as the data. These
approaches involve a degree of redundant re-keying traff ic
arriving at every receiver in order for the occasional message to
arrive that is decipherable by that receiver. The logical key
hierarchy (LKH) [25] gives each receiver its own key then creates
the same number of extra keys, one for each node of a binary tree
of keys with each member's key at the leaves. The root of the tree
is the group key under which data is encrypted. When a member
joins or leaves, all the keys on their branch to the root are replaced
in one long message multicast to the whole tree. Perlman has
suggested an improvement, termed LKH+, where a one way
function could be used to compute the next key from the existing
one [22]. Only the new key would be revealed to the joining
member. The one-way function tree (OFT) technique is in the
same class of approaches [19]. Like LKH, all members have their
own key, and a binary tree of keys is built over them with the root
also being the group key. Because the keys at each intermediate
node are a combination of the hashes of the two keys below,
rather than being freely generated, Perlman's suggestion cannot be
applied. LKH+ is therefore more eff icient than OFT in most
scenarios. The standardised approach to pay-TV key management
also falls into this class [17]. A set of secondary keys is created
and each receiver holds a sub-set of these in tamper-resistant
storage. The group key is also unknown outside the tamper-
resistant part of the receiver. In case the group key becomes
compromised, a new one is regularly generated and broadcast
multiple times under different secondary keys to ensure the
appropriate receivers can re-key. All the key hierarchy approaches
send new keys over the multicast itself. As 'reliable multicast' is
still t o some extent a contradiction in terms, either eff iciency is
reduced through adding redundant messaging or complexity is
increased to cope with losses.

Dill on [12] falls into the same class of approaches to key
management as the current work. Each broadcast document is



encrypted using a different key rather than the key only being
changed in synchrony with the addition or removal of receiver
interest. In the interests of full disclosure, we note that the present
work is the subject of a European patent fili ng [6].

2.2 Multicast non-repudiation
The need for proof of delivery is recognised in two taxonomies of
multicast security requirements [3, 8], but solutions are rarely
discussed in the academic literature. Proof of delivery is a very
different problem to acknowledgement of delivery. It has to be
possible to prove the receiver did indeed receive data when they
might deny reception. Pay-TV and pay-per-view systems
invariably use the tamper-resistant processing and storage
capabiliti es of the local receiver to record which products or
programmes have been requested in order to form a bill at a later
time (e.g. [17, 11] as already cited).

The novel aspect of the present work is the abilit y to prove that
individual fragments of an isochronous stream (e.g. video) not
only arrived, but arrived in time to be played out, giving suitable
perceived quality for a real-time application. Our approach is for
the receiving system to only request a key to decrypt the stream if
there is suff icient time remaining to decrypt it and still achieve
smooth play-out. This is possible because the link between the
receiving computer and the smartcard has predictable latency and
minimal risk of packet drop unlike the Internet connection
between sender and receiver.

2.3 Multicast audit trail
Re-multicast of received data requires very low resources on the
part of any receiver. Even if the value of the information received
is relatively low there is always a profit to be made by re-
multicasting data and undercutting the original price, as proved in
Herzog et al [15].

In general, prevention of information copying is considered
infeasible; instead most attention focuses on the more tractable
problem of copy detection. It is possible to 'watermark' different
copies of a copyrighted digital work. If a watermarked copy is
later discovered, it can be traced back to its source, thus deterring
the holders of original copies from passing on further, illi cit
copies. Watermarks are typically applied to the least significant
bits of a medium to avoid significantly degrading the quality.
Such bits are in different locations with different regularity in
different media, therefore there is never li kely to be a generic
approach [23]. The most generic scheme discussed to date is
Chameleon [2]. In Chameleon a stream is ciphered by combining
a regular stream cipher with a large block of bits. Each receiver is
given a long-term copy of the block to decipher the stream. In the
concrete example given, four 64b words in the 512kB block are
chosen by indexing the block with the output of the regular stream
cipher. Then all four are XORed together with each 64b word of
the stream. The block given to each receiver is watermarked in a
way specific to the medium. For instance, the least significant bit
of every 16b word of an audio stream might be the only place
where a watermark can be stored without degrading the content
significantly. Because the block is only used for the XOR
operation, the position of any watermarked bits is preserved in the
output.

Naor et al [21] formalises a pragmatic approach to 'traitor tracing'
by proposing a parameter that represents the minimum number of
group members that need to collude to eliminate a watermark. The

elimination criteria are that none of the conspirators are
identifiable, and it is assumed that the copyright owner will want
to avoid accusing innocent members. For instance, changing at
least the square root of the total number of bits that could hold a
watermark in the Chameleon scheme would protect against
conspiracies of four or less members.

Watercasting [8] is a novel, if rather convoluted way to embed an
individual watermark in each receiver's copy of multicast data.
Multicast forwarding is modified by including active networking
elements at strategic branch points. These elements drop
redundant data inserted into the original stream in order to
produce a different drop pattern on each forwarded branch. A
chain of trusted network providers is required for watercasting,
each of which has to be willi ng to reveal their authenticated tree
topology to each sender.

In this paper, for completeness, we report how it is possible to add
an audit trail back to the copier of multicast information using
watermarking. Our approach is not novel in this respect, simply
re-using Chameleon. However, we include it to demonstrate our
modular approach to the addition of mechanisms.

2.4 Other requirements
Beyond the three requirements we have focussed on so far, the
taxonomies we have already cited include many other possible
combinations of security requirements for multicast. We have
placed sender authentication outside the scope of this paper, but
its importance merits a brief survey of the literature. A sender may
merely need to prove it is one of the group of valid receivers in
which case use of the group encryption key suff ices. If encryption
isn't required, a MAC based on the group key can be attached to
each packet. If receivers require each sender to authenticate their
messages individually, public key signing leads to an unscalable
solution because of the sheer volume of heavy asymmetric key
operations required. Canetti et al [9] provides an up to date
review of more eff icient approaches to this problem and a group
MAC proposal.

So far we have focussed on the scenario where the data is an
ordered stream and access is given between some start and some
later end point. A more random access approach might be
required for non-sequential application name spaces [13].
However, often we cannot generate a number at position n in the
sequence if we have generated the number at position m where m
> n, unless we store all numbers in the sequence up to the mth
term or regenerate the sequence. Storing numbers in the sequence
or regenerating the sequence is usually impractical for devices that
are as limited as smartcards. For random access to any point in a
sequence, in the longer version of this paper [7] we present a fast
algorithm to generate any key from a seed as an alternative to
keyed hash algorithms.

2.5 Implementations
 Many of the schemes discussed above are theoretical works.
Known exceptions are Iolus and Chameleon. A report on
implementation experience with LKH is provided by Boxall [5]
and Shoup et al report on their implementation of session key
distribution using smart cards [24].



3. BASIC SCHEME
In explaining the basic scheme we will firstly give a concrete
example of how it would be used and then give a description of
the core of the scheme upon which other features can be built .

3.1 A Concrete Example
 Our example is of a content provider who wishes to multicast
streamed video and charge viewers for watching it.

The content provider first divides the video stream into units that
potential viewers can use to select what they want to see. The
obvious unit here is a 'TV channel' or may-be a 'TV programme'.
Each of these units is given an ID termed the session ID. Next the
content-provider sets up a video server which has access to the
video in a streamable form. As part of the set-up process a seed is
generated and a formula chosen. This is used to generate
symmetric encryption keys based on this seed for encrypting and
decrypting the data. The content provider also sets up another key
management server to hand out these seeds in return for payment.
The sender passes on the programme information, including the
seed and formula, to that server. The content provider then
advertises the programmes on the channel, perhaps using a web
site or email , with the session ID and the key management server
being used to uniquely identify the channel to the system. When
the broadcast time arrives the video server starts streaming. Each
frame of video is given it's own ID within the channel and a
corresponding key is generated from this ID, the seed key and the
formula. This new key is used to encrypt each frame before it is
sent.

Now we consider the receiver's side. The user has a computer that
is connected to the network and a smartcard reader. They also
have a smartcard which contains it's own public/private key pair
and has been certified by a trusted third party. The private key is
unavailable to the user. The user finds a programme they want to
watch on a web site and clicks on the "set-up" link for that
programme. The link URL downloads a file containing the
information that is needed to join the session and the browser
passes this on to the user's video player software (which has been
configured as a browser helper application). The video player
passes this information on to a socket factory, the internals of
which are outside the scope of this paper - see Flexinet [14]. The
essential point is that a communications stack is built containing a
decrypter. When the decrypter is set up it in turn sets up a key
generator in the smart card, which in turn needs a seed and a
policy. The decrypter requests these from a key server in return
for a payment. They arrive encrypted with the smartcard's public
key and are passed to the key generator.

The socket factory then passes a socket reference back to the
video application which need not be aware that decryption is
taking place beneath it. The video application simply uses this
socket to join the multicast. When the TV programme starts, the
socket waits until it receives all the data for each frame, then asks
the smartcard for the key for that particular frame, decrypts the
frame and passes the frame on to the video player application for
decompression and display. The smartcard can record the number
of keys that were generated per programme and a summary of
which keys were passed out.

After the programme finishes, there is no need to do anything
further unless reception was poor or incomplete. The receiver can
ask the smartcard to produce a 'delivery note' for the partially

received programme which the smartcard signs with it's private
key. This can be forwarded on to the payment server to prove the
right to a refund.

3.2 Core Set-up
The core scheme involves a sender sending data via some
distribution mechanism to zero or more receivers. The sender
divides the data stream into a number of application data units
(ADUs). Each ADU sent in a session has an ADU ID associated
with it. These IDs are typically numeric. For the session there
exists a mapping of IDs to keys and, before it is sent, the data in
an ADU is encrypted using the key associated with the ADU's ID.
Any receiver receiving data in the session must know the ID to
key mapping used for that session and uses it to find the key for
any ADUs it receives and wishes to decrypt.

Figure 1 - Sending Stage - Sender

The process of sending data is as follows:
1. Sending application passes an unencrypted ADU on to the

communications system.
2. The communications system requests the next ID from the ID

generator...
3. which returns a new ID.
4. The communications systems requests the key for that ID

from the key generator...
5. which returns the key.
6. The communication system passes the ADU and the key on

to the encrypter...
7. which returns an encrypted ADU.
8. The communications system passes the encrypted ADU and

the ID on to the send point for distribution.

Note that the scheme is independent of the distribution
mechanism. We use Internet multicast, but it could be DVD or
other media.

The process for receiving data is as follows (note that smartcard
security is only added when we discuss the variations later):
1. The receive point passes on an encrypted ADU and ID it has

received from the distribution mechanism to the
communications system.

2. The communications system requests the key for that ID
from the key generator...



3. which returns the key.
4. The communications system passes the encrypted ADU and

the key on to the decrypter...
5. which returns an unencrypted ADU…
6. which is passed on to the ADU to the application for

processing.

Figure 2 - Sending Stage - Receiver

4. VARIATIONS
4.1 Multicast Key Management
The scenario here is the situation where we have an ongoing
multicast session and where receivers joining the session are only
allowed to receive a portion of the data. An example of this might
be where the multicast was a video broadcast and where a receiver
might pay to receive an hour or a days worth of video.

Figure 3 - Multicast Key Management

In this case we add a key limiter that limits the production of keys,
i.e. to a certain number or perhaps to a particular range of IDs.

The key limiter and the key generator are placed within the
tamper-proof processor. In Figure 3, a key is returned by the key
generator only if the ADU ID passes the key limiter's test. The
limiter will usually also be required to restrict its output to one
response per key. This protects against the same card being shared
around multiple receivers as a relatively convenient way to
decrypt the same data multiple times rather than passing all the
keys around. This would require internal receipting capabiliti es
similar to those described in the next section.

4.2 Non-repudiation
In this scenario we are concerned with being able to confirm how
much data an application received. Sending acknowledgements
for each ADU is impractical, especially as the number of receivers
grow large. Also, this does not prevent the receiver trying to fool
the sender by not sending acknowledgements for ADUs it has
received. What we do in this case is to produce a 'delivery note' of
all the data received in a session. If, at the end of a session, we
need to confirm how much data was received by an application in
a particular session, we can query its secure processing
environment and get the 'delivery note' for that session.

Figure 4 - Non-repudiation

In this case we can create receipts for every ADU decrypted by
intercepting every return of a key and recording the ADU ID in a
file. For ordered streams, the receipting storage format only needs
to be a simple index to the last key given out, plus a list of any
exceptions. If random access to any ADU is envisaged, a block of
bits, one for each ADU, would be required to record which keys
had already been given out. More eff icient tree-based variants are
possible to reduce storage requirements in most realistic
scenarios.

If different types of ADUs in a stream require different treatment
with respect to security it is simplest to create a separate secure
session for them. For instance, high quality transmission costs for
adverts might be refunded only if a delivery note is returned to
prove they were at least decrypted if not watched (e.g. a hash of
the decrypted frames might be required). These would form a sub-
session with a different policy in the smartcard.



4.3 Audit Trails
The problem this variation helps to address is that of a receiver in
the session colluding with other receivers that are not part of the
session by sending them keys or decrypted data. There are two
variants: on-card and off-card watermarking, the latter depicted in
Figure 5. In the first variant only the plaintext data is watermarked
therefore each ADU key is never revealed outside the smart card.
In the second variant, the keys themselves are watermarked so
both the keys and the data can be revealed outside the card. If the
watermarked keys or data are then sent on to other machines and
detected later, it is possible to establish the identity of the source
of the "leak" from the watermark. This variation assumes that the
data is watermarkable, e.g. images.

Figure 5 Off-card Watermarking

On-card watermarking is only feasible with a fairly highly
powered tamper-resistant cryptographic co-processor. It is
impractical with smartcards due to processing and memory
limitations. Off-card watermarking needs only light card
resources. An approach such as Chameleon [2] as described
earlier is preferred as long as there is suff icient memory on the
receiver to hold the whole watermarked key block (about 512kB
in the concrete example). The following steps for off-card
watermarking assume the sender encrypter unit produces its
stream cipher by combining a standard cipher with an
unwatermarked version of the long-term key-block, as in
Chameleon.
1. The receive point passes the encrypted ADU and ADU ID

into the communications system.
2. The communications system passes a) the ID into the key

generator and b) the encrypted ADU into the decrypter.
3. The generator passes the intermediate key for that ID into the

decrypter.
4. The decrypter passes the intermediate key to the watermarker
5. The watermarker uses the intermediate key as an index into a

long term watermarked key block to return the key to the
decrypter

6. The decrypter uses the key to decrypt the ADU and passes it
to the communications system…

7. which passes the watermarked ADU on to the application.

4.4 Multiple Sender Systems
This variation addresses the issue of having many senders within a
session. For simplicity’s sake we might want to use the same key
generator for information sent from all senders, although this
would require that the key generator would be able to generate
keys for any order of IDs (which would be true in the general case
of senders not being synchronised). If we wished to have key
generators that required IDs in order or we wished to produce
individual delivery notes for each sender (see Non-repudiation)
then we need to maintain a number of key generators, one for each
sender. To identify each sender we would have to generate a
unique ID for each one, i.e. for information sent across the
Internet we could use the IP address and port number which is
sent as part of the packet. To seed the sequences we can then use a
common seed for all senders within a session which is then
combined with the unique ID in some way, i.e. XORed with the
common seed, which is then used as the seed for that sender. The
receiving stack now uses a switch to retrieve the correct key for
the data unit. Of course, the sending stack need only maintain a
single key generator for all data it sends to a session.

Figure 6 - Multiple Sender Systems - Receiver

5. SESSION CONTROL
For any of the above schemes can be used it is necessary to have
some auxili ary functions implemented.

In the follow sections this notation is used:
1. sign(k,d) - d signed with key k (i.e. d and the signature of d

with k)
2. enca(k,d) - d encrypted asymmetrically with key k
3. encs(k,d) - d encrypted symmetrically with key k

5.1 Tamper-proof Processor Confirmation
The object here is to confirm that the tamper-proof processor is
one that the sender can trust. We assume that every secure
processing environment leaves the factory with a securely stored
private key and a public key that has been signed by a trusted
third party (TTP) trusted by the sender.
1. Sender generates a random string r (a nonce)
2. Sender sends r to receiver
3. Receiver sends r to secure space



4. Secure space signs r with private key s to produce sign(s,r)
5. Secure space returns sign(s,r) and public key p signed with

the TTP's private key t (producing sign(t,p)) to receiver
6. Receiver returns [sign(s,r), sign(t,p)] to sender
7. Sender checks TTP is one it trusts
8. Sender checks sign(t,p) with TTP (either by invoking TTP

server or using cached TTP public key)
9. Sender checks sign(s,r) with p.

5.2 Session Set-up
The sender needs to set-up the keying system so that it can
generate a sequence of numbers for decoding each packet. This
sequence will be some chaotic/pseudo-random sequence.
1. Sender generates a seed value v.
2. Sender generates a session key k.
3. Sender encrypts v using secure space's public key p

producing enca(p,v).
4. Sender sends [k,enca(p,v)] to receiver.
5. Receiver sends [k,enca(p,v)] to secure space.
6. Keying system sets packet counter to zero.
7. Keying system deciphers enca(p,v) using secret key s.
8. Keying system initialises sequence generator with v.

For multicast key management the sender will also send some
information to limit the production of keys, such as a limit on the
maximum number of keys.

This describes a simple scenario where a single sequence
generator can create an unlimited sequence of numbers and create
a single delivery note type. More realistically the session
information would include:

Sent in plain:
�  Session Key

Sent encrypted:
�  Seed value
�  Sequence generator type
�  Delivery note type (for non-repudiation)
�  Maximum number of keys to generate (for multicast key

management)

In this scenario there are a limited number of sequence generators
and delivery note types that can be used as it is identifiers that are
being sent over as part of the session information. Alternatively a
secure class loader could be implemented that would allow new
sequence generators and delivery note types to be uploaded into
the encryption system. This would offer the most future-proofing.

Another aspect of session set-up is session amendment. The user
may pay to receive a certain amount of data and then later on pay
for some more. This would ideally be handled by updating the
session information (probably just increasing the maximum
number of keys to be generated) while the session is active.

5.3 Session Tear-down
Sessions simply end when the sender stops sending data or the
key generator stops generating keys. In the case of non-
repudiation though there is a need to retrieve the delivery note
from the secure environment. The following steps allow this.
1. Receiver requests delivery note for session key k from keying

system.
2. Keying system generates delivery note for session key k, ck.
3. Keying system signs ck with private key s giving sign(s,ck).
4. Keying system returns sign(s, ck) to receiver.

5. Receiver sends sign(s, ck) to sender.
6. Sender checks sign(s, ck) against public key p of keying

system known to be used by the receiver (database lookup).
7. Sender refunds if necessary.

5.4 Access Revocation - Poison Pill
It may be desirable for a session controller to be able to modify or
revoke a receiver’s membership of a session. The solution detailed
below assumes that each member of the session has an ID (or
several IDs) within the session, although this ID does not have to
be unique to the member (if it is not unique then the ID obviously
represents a group). It also requires that the smartcard will not co-
operate if the required control data is not passed to it with each
key request.

This is a probabili stic approach. Every time an ADU is sent it
contains an encrypted control message and secure space ID which
must be passed into the secure space along with the key ID to
obtain the key. If the secure space ID(s) contained in the
encrypted block refer to this particular space then it checks the
flags. If the stop flag is set then the card 'commits suicide' - no
more keys are passed out. If the contact sender flag is set then the
secure space does a remote procedure call to the sender (or the
sender's representative) and will not give out more keys until it
has a new key generation policy. Alternatively more general
control messages might take the place of these two flags.

If several users need to be thrown out of the session then their
secure space IDs will be rotated through different packets.

ADU format:
1. Signature of Hash (2)
2. Hash of 3, 4, 5, 6
3. ADU ID
4. Stop flag (y/n) (encrypted)
5. Contact sender flag (y/n) (encrypted)
6. secure space IDs (encrypted)
7. ADU data (encrypted)

The stack passes 1, 2, 3, 4, 5 and 6 into the secure space to receive
the key for 7.

If the length of the control message and number of secure space
IDs is variable then there needs to be an unencrypted field before
the flags stating the total length of the control message and secure
space IDs.

6. Implementation
An implementation of this system was created for demonstration
purposes. It was written in Java 1.1 and used the Cryptix 3.0.3
[10] library for cryptography. Aspects of the system can easily be
changed: the formula used to generate keys (one based on the
logistic mapping [16] has been implemented); the policy for
limiting keys (policies for producing fixed numbers of keys and
keys for a range of IDs have been implemented); the
cryptographic system (DES was implemented); the receipt type
(one simple receipt was implemented). The prototype did not use
any smartcards but those aspects of the design are cleanly
separated from the rest of the system. Simple graphical
applications were written to demonstrate the sender and receiver
roles.



7. Limitations and further work
Our approach relies on the tamper-resistance of smartcards.
Products are continually being produced with improved tamper-
resistance features, but there will always be attrition between the
designers of tampering techniques [1] and the designers of
resistance to them. The need to regularly replace the smartcard is
therefore an inherent weakness in our scheme. Indeed, the fact
that a smartcard is needed at all , is in itself a major impediment to
take up of the scheme. We have tried to mitigate this barrier by
designing for a generic trusted third party card (e.g. a Java card),
rather than one tailored to a specific service provider.

The non-repudiation aspect of this work is only useful in a
commercial model where there is an incentive for the receiver to
volunteer the delivery note to the information provider. Such
scenarios are easy to imagine, but this means the capabilit y is not
universally useful. For instance, it would not be possible to give
away the stream of information then ask each receiver to volunteer
their delivery note to calculate how much they should pay. The
beneficial corollary is that it is diff icult to get the smartcard to
give out thousands of keys off-line in order to break the seed. The
smart card won't give out any keys if it doesn't have a key limiter
policy and if it does have a policy, it will only give out keys the
user has paid for.

This paper contains no formal security analysis of the strength of
the schemes employed. A number of questions are left
unanswered, such as whether the seed of a pseudo-random
sequence becomes easier to predict, the more values from the
sequence are revealed.

We must also admit to the standard limitations that apply to most
other work on copyright protection. A watermark-based audit trail
is only proof against small numbers in collusion and it only helps
detection not prevention. Also, traitor tracing relies on finding the
watermarked data in the first place; a problem that this paper and
others on the subject invariably leave unresolved.

Regarding further work, we claimed in the abstract that this
approach could be applied to other means of bulk data distribution
than multicast, such as DVD (digital video/versatile disk). We
envisage a scenario where data on the DVD would be encrypted
with a stream cipher such that it would be indistinguishable from
a multicast stream once it was read from the disk. As long as the
initial set up with the smartcard had occurred on-line, the rest of
the DVD could be played off-line, only requiring interaction with
the smartcard, not the network. Any final 'delivery note' of exactly
what had been accessed would then be available to present to the
provider of the DVD. In a similar vein, policies and seeds to load
into the smart card could be supplied on various media other than
over the Internet. All these scenarios and more are introduced in
[7], but we have done no specific design or implementation work
on them.

8. Conclusion
We have presented a number of modular mechanisms to enable
secure sessions tailored to each individual multicast receiver while
at the same time not compromising the inherent scalabilit y of
Internet multicast, achieved through loose coupling between
senders and receivers. Unlike other schemes, we typically require
absolutely no coupling at all from receivers back to senders but
still create a security relationship between each receiver and a key
manager replica. The key managers can be highly replicated as

they require no coupling back to the sender. As long as a stateless
commercial model is required (e.g. pre-payment rather than
credit), key manager replication is limitless. Further, as members
join and leave, there are absolutely no side-effects on other
receivers, unlike traditional multicast key management schemes.

All this loose coupling is made possible by a simple technique
where multicast senders systematically change the group
encryption key rather than only changing it whenever there is a
change to the group membership. This innovation is driven by the
insight that there will always be a minimum application data unit
(ADU) granularity, within which there is no commercial
advantage to changing the group key. The traditional approach
has been to group together membership change events within the
timespan of an ADU and then drive key changes dependent on
whether none or some events have occurred within each timeslot.
Instead, by systematically changing group keys whether or not it
is necessary, the whole system can rely on the key changes and
not require tight coupling back to the senders. A further advantage
of this approach is that there is no need to send control messages
over the multicast channel itself. Thus no reliable multicast
mechanism is assumed or required and no complexity is involved
when messages are dropped. The only exception is the rare need
to send a 'poison pill ', which merely requires statistical delivery.

In order to distribute the load of key management further, we
require each receiver to operate a smartcard, into which the
information provider can install a key generator capable of
mirroring the systematic key generation of the senders. We prefer
generic smartcards certified by trusted third parties, so that any
key generator can be installed at session set-up. This mitigates the
barrier created by the need for each receiver to obtain a card, as it
can be re-used for multiple services. A policy is installed into the
smart card at session set up to control which keys it will give out
to its receiver. The details depend on the specifics of the wider
application.

Further, we have shown by implementation that it is even possible
to prove timely reception of real-time data units using this
arrangement. The smart card records which keys it has been asked
for and if a packet arrives late, the receiver simply refrains from
asking for the key. Thus, the smartcard generates a delivery note
that can later be used by the receiver to prove that only a certain
number of data units were usefully decrypted.

We have also described how it would be possible to combine the
above approach with a key watermarking scheme such as
'Chameleon'. This provides a small but significant deterrent
against a receiver giving away or re-selli ng either the keys or the
decrypted data, because both are watermarked in such a way as to
trace that receiver.

We believe these mechanisms (combined with sender
authentication approaches described elsewhere) provide a soundly
engineered basis for a number of very large scale commercial
applications built over Internet multicast. We have also briefly
described how the same techniques could usefully be applied to
other bulk data distribution mechanisms, such as DVDs. The
techniques also have application where protection of information
security rather than value is required.
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