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***************************************************************************************

Question 1(a): Define the term array. How are two dimensional arrays represented in memory?

                        Explain how address of an element is calculated in a two dimensional array.

***************************************************************************************
Let Mat be a two-dimensional row x col array. Although Mat is represented as a rectangular array of elements with row rows and col columns, the array will be represented in the memory by a block of Row x Col sequential memory locations. The Mat array may be stored in the memory in one of the following way.

1. Column by column that is in column major order
2. Row by row that is in row major order.
Mat



            

	Row
	Column
	Info

	0
	0
	11

	1
	0
	12

	2
	0
	13

	3
	0
	14

	0
	1
	21

	1
	1
	22

	2
	1
	23

	3
	1
	24

	0
	2
	31

	1
	2
	32

	2
	2
	33

	3
	2
	34

	0
	3
	41

	1
	3
	42

	2
	3
	43

	3
	3
	44

	0
	4
	51

	1
	4
	52

	2
	4
	53

	3
	4
	54

	0
	5
	61

	1
	5
	62

	2
	5
	63

	3
	5
	64


Represent column Number


Column Major Order

Mat

	Row
	Column
	Info

	0
	0
	11

	1
	0
	12

	2
	0
	13

	3
	0
	14

	0
	1
	21

	1
	1
	22

	2
	1
	23

	3
	1
	24

	0
	2
	31

	1
	2
	32

	2
	2
	33

	3
	2
	34

	0
	3
	41

	1
	3
	42

	2
	3
	43

	3
	3
	44

	0
	4
	51

	1
	4
	52

	2
	4
	53

	3
	4
	54

	0
	5
	61

	1
	5
	62

	2
	5
	63

	3
	5
	64

	
	
	


Represent Row Number.

                 Row Major Order

Initializing a 2-dimensional array 

Int stud[4][2] = {

{1234, 56},

{212, 33},

{1434, 80},

{1312, 78},

};

or even we can do like int stud[4][2] = { 1234, 56, 122, 33, 1434, 80, 1312, 78};

It is important to remember that while initializing an array it is necessary to mention the second (column) dimension, whereas the first dimension (row) is optional.

Thus the declaration will be int arr[2][3] = {12, 34, 23, 45, 56, 45};




          Int arr[][3] = { 12, 34, 23, 45, 56, 45};

are perfectly acceptable, where as int arr[2][] = { 12, 34, 23, 45, 56, 45};





       int arr[][] = { 12, 34, 23, 45, 56, 45};




would never work.

#include<stdio.h>

#include,conio.h>


int i, j;


float mat[10] [10];

void traverse (int, int);

void input (int, int);

void traverse (int row, int col)

{


Printf(“\nTraversing in row major order\n”)



for (i=0; i<row; i++)



{




for(j=0; j<col; j++)



 
{




Printf(“\n 0x%x”, &mat[i][j]);





Printf(“  %f”, mat[i][j]);




}




Printf(“\n”)



}



Printf(“\n Traversing in column major order\n”);



for (j=0; j<col;j++)



{




for (i=0;i<row; i++)




{





Printf(“\n 0x%x” & mat [i][j]);





Printf(“  %f”, mat[i][j]);




}




Printf(“\n”)



}



Printf(“\n Traversing in row major order\n”);



For(i=0; i<row; i++)



{




For(j=0;j<col;j++)




{





Printf(“mat[%d][%d] =”, I, j);




Printf(“%f”, mat[i][j]);




}




Printf(“\n”);



}



Printf(“\n Traversing in col major order\n”);



For(j=0; j<row; j++)



{




For(i=0;i<row;i++)




{





Printf(“mat[%d][%d] =”, i j);





Printf(“%f”, mat[i][j]);




}




Printf(“\n”);



}

}

void  input(int row, int col)

{


for(i=0; i<row; i++)


{



For(j=0; j<col; j++)



{




Printf(“\n nput value for : %d;%d”, i+1, j+1);




Scanf(“%f”, &mat[i][j]);



}


}

}

void main {}
{


int r, c:


printf(“\n” Input the number of row:”);


scanf(“%d”, & r);


printf(“\n” Input the number of col”);


scanf{“%d”, &c);


input (r,c);


traverse(r,c);

}

***************************************************************************************

Question 2: What is a sparse matrix? How is it stored in the memory of a computer? Write a function                

                     to find the transpose pf a sparse matrix using this representation

Ans : 2: Sparse Matrix:- Matrix with a relatively high proportion of zero entry are called sparse matrix. 
Two general types of n-square sparse matrices, which occur in various application. The natural method of representing matrices in memory as two-dimensional array may not be suitable for sparse matrix. This is one may save space by storing only those entries, which may be nonzero. 

Example:-
M [6][7] =

	0
	0
	6
	0
	9
	0
	0

	2
	0
	0
	7
	8
	0
	4

	10
	0
	0
	0
	0
	0
	0

	0
	0
	12
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0
	0

	0
	0
	0
	3
	0
	0
	5


Of the 42 elements in this 6x7 matrix only 10 are nonzero. These are 

M[1][3]= 6, M[1][5]=9,M[2][1]=2, M[2][4]=7, M[2][5] = 8, M[2][7] = 4

M[3][1] = 10, M[4][3] = 12 , M[6][4] = 3, M[6][7] = 5

One of the basic methods for storing such a sparse matrices is to store nonzero elements in a one-dimensional array and to identify each array element with row and column includes as:-


Index


Row 

Col

V

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	1

	1

	2

	2

	2

	2

	3

	4

	6

	6

	

	3

	5

	1

	4

	5

	7

	1

	3

	4

	7

	6

	9

	2

	7

	8

	4

	10

	12

	3

	5


Fig: Sequential representation of Sparse Matrices.
***************************************************************************************

Question 3: What is the smallest value of n such that an algorithm whose running time is 100m2 runs faster than an algorithm whose running time is 2n on the same machine.

Ans : 3
Algorithms

Informally, an algorithm is any well-defined computational procedure that takes some value, or set of values, 

as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output. We can also view an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific computational procedure

for achieving that input/output relationship. For example, one might need to sort a sequence of numbers into nondecreasing order. This problem arises frequently in practice and provides fertile ground for

introducing many standard design techniques and analysis tools. Here is how we formally define the sorting problem: Input: A sequence of n numbers _a1, a2, . . . , an_.

Output: A permutation (reordering) _a_1 , a_2 , . . . , a_n _ of the input sequence such

that a_1 ≤ a_2 ≤ ???≤ a_n .

For example, given the input sequence _31, 41, 59, 26, 41, 58_, a sorting algorithm

returns as output the sequence _26, 31, 41, 41, 58, 59_. Such an input sequence is called an instance of the sorting problem. In general, an instance of a problem consists of the input (satisfying whatever constraints are imposed in the problem statement) needed to compute a solution to the problem.

Sorting is a fundamental operation in computer science (many programs use it as an intermediate step), and as a result a large number of good sorting algorithms .  The Role of Algorithms in Computing

have been developed. Which algorithm is best for a given application depends on—among other factors—the number of items to be sorted, the extent to which the items are already somewhat sorted, possible restrictions on the item values, and the kind of storage device to be used: main memory, disks, or tapes. An algorithm is said to be correct if, for every input instance, it halts with the correct output. We say that a correct algorithm solves the given computational problem. An incorrect algorithm might not halt at all on some input instances, or it might halt with an answer other than the desired one. Contrary to what one might

expect, incorrect algorithms can sometimes be useful, if their error rate can be controlled. We shall see an example of this in Chapter 31 when we study algorithms for finding large prime numbers. Ordinarily, however, we shall be concerned only with correct algorithms. An algorithm can be specified in English, as a computer program, or even as a hardware design. The only requirement is that the specification must provide a precise description of the computational procedure to be followed. What kinds of problems are solved by algorithms? Sorting is by no means the only computational problem for which algorithms have

been developed. (You probably suspected as much when you saw the size of this book.) Practical applications of algorithms are ubiquitous and include the following examples:

• The Human Genome Project has the goals of identifying all the 100,000 genes in human DNA, determining the sequences of the 3 billion chemical base pairs that make up human DNA, storing this information in databases, and developing tools for data analysis. Each of these steps requires sophisticated algorithms.

While the solutions to the various problems involved are beyond the scope of this book, ideas from many of the chapters in this book are used in the solution of these biological problems, thereby enabling scientists to accomplish tasks while using resources efficiently. The savings are in time, both human and

machine, and in money, as more information can be extracted from laboratory

techniques.

• The Internet enables people all around the world to quickly access and retrieve large amounts of information. In order to do so, clever algorithms are employed to manage and manipulate this large volume of data. Examples of problems which must be solved include finding good routes on which the data will travel (techniques for solving such problems appear in Chapter 24), and using a search

engine to quickly find pages on which particular information resides (related techniques are in Chapters 11 and 32). 1.1 Algorithms 7

• We are given a road map on which the distance between each pair of adjacent intersections is marked, and our goal is to determine the shortest route from one intersection to another. The number of possible routes can be huge, even if we disallow routes that cross over themselves. How do we choose which of all

possible routes is the shortest? Here, we model the road map (which is itself a model of the actual roads) as a graph (which we will meet in Chapter 10 and Appendix B), and we wish to find the shortest path from one vertex to another in the graph. We shall see how to solve this problem efficiently in Chapter 24.

• We are given a sequence _A1, A2, . . . , An _ of n matrices, and we wish to determine their product A1 A2 ???An . Because matrix multiplication is associative, there are several legal multiplication orders. For example, if n = 4, we could perform the matrix multiplications as if the product were parenthesized in any

of the following orders: (A1(A2(A3 A4))), (A1((A2 A3)A4)), ((A1 A2)(A3 A4)), ((A1(A2 A3))A4), or (((A1A2)A3)A4). If these matrices are all square (and hence the same size), the multiplication order will not affect how long the matrix multiplications take. If, however, these matrices are of differing sizes (yet

their sizes are compatible for matrix multiplication), then the multiplication order can make a very big difference. The number of possible multiplication 8 Chapter 1 The Role of Algorithms in Computing

orders is exponential in n, and so trying all possible orders may take a very

***************************************************************************************

Question 4: Implement a queue using a single link list L. The operations INSERT and DELETE should still take O(1) time.

Ans: 4

Implementaion of Queue using single link list:-
Queue is a list of elements in which insertions are at one end of the list called rear end and the deletions are at the other end of the list called FRONT end. Insertion is also known as Enqueue, deletion is also known as Dequeue.

*/
#include<iostream.h>
class queue
{
 int element;
 queue* next;
public:
 queue* enqueue(queue*,int);
 queue* dequeue(queue*);
 void queue_display(queue*);
}*head,*tail,object;

queue* queue::enqueue(queue* head,int key)
{
 queue* temp;
 temp=new queue;
 temp->element=key;
 temp->next=NULL;
 if(head==NULL)
  head=temp;
 else
  tail->next=temp;
 tail=temp;
 return head;
}
queue* queue::dequeue(queue* head)
{
queue* temp;
if(head==NULL)
{
 cout<<"\nit is impossible to dequeue an element as ";
 return NULL;
}
else if(head->next==NULL)
{
 cout<<"\nthe element dequeued from the queue is: "<<head->element<<endl;
 return NULL;
}
else
{
 cout<<"\nthe element dequeued from the queue is "<<head->element<<endl;
 temp=head->next;
 head=temp;
 cout<<"\nthe elements of queue after dequeueing are \n";
 return head;
}
}
void queue::queue_display(queue* head)
{
 if(head!=NULL)
 {
  while(head->next!=NULL)
  {
   cout<<head->element<<"->";
   head=head->next;
  }
  cout<<head->element;
  cout<<endl;
 }
 else
  cout<<"the queue is empty\n";
}
void choice()
{
 
 int key,ch;
 head=tail=NULL;
 cout<<"\nchoose the operation\n";
 cout<<"\n1.enqueue\t2.dequeue\t3.exit\n\n";
 cin>>ch;
 while(ch!=3)
 {
  switch(ch)
  {
  case 1:
  cout<<"\nenter the key to be inserted\n";
  cin>>key;
  head=object.enqueue(head,key);
  cout<<"\nthe elements of queue after inserting "<<key<<" are\n";
  object.queue_display(head);
  break;
  case 2:
   head=object.dequeue(head);   
   object.queue_display(head);
   break;
  case 3:
   break;
  default:
   cout<<"\nenter correct choice\n";
   break;
  }
  cout<<"\n——————————————————————————\n";
 cout<<"\nchoose the operation\n";
 cout<<"\n1.enqueue\t2.dequeue\t3.exit\n\n";
 cin>>ch;
 
  cout<<"\n——————————————————————————\n";
 }
}
void main()
{
 choice();
}

***************************************************************************************

Question 5: Two Binary Trees are similar if they are both empty or if the are bothnon-empty and left and right sub tree are similar. Write an algorithm to determine if two binary tree are similar.

Ans : 5

A binary tree is an important type of data structure, which is very useful. A tree is binary tree if each node of it can have at the most two branches.  In other word we can say that if every node of a tree can have at most degree two , then this is called a binary tree.
A binary tree T is a finite set of nodes, which is either empty or consists of special node called root R and two disjoint binary tree T1 and T2 (which are called the left sub-tree and right sub-tree, respectively) It T1 is non-empty then the root of T1 is call the left successor of R. If T2 is non-empty then the root of T2 is know as right successor of R.

[image: image9.png]



Algorithm of Binary Tree
Create_Tree {Info, Node}

Info=> Information for which we have to create node.

Node=> Structure type variable to points both left and right child.

Step1: [Check whether the tree is empty]


If Node = NULL


Node= create a Node


Left_Child [Node] = NULL


Right_Child[Node]= NULL

Step2: [Test for the Left Child]

If Info [Node] ≥ Info


Left_Child [Node] = Call Create_Tree

(Info, Left_Child [Node]}


Else


Right_Child[Node]}=Call Create_Tree

(Info, Right_Child[Node]}

Step3: Return [Node]

***************************************************************************************

Question 6:  What is the difference between prims algorithm and Kruskals algorithm for finding the minimum –spaning tree of graph? Execute bot hPrims and Kruskals Algorithm on the following graph.

Ans: 6
Difference between Prism algorithm and Kruskal algorithm.:
Prism Algorithm:-

An algorithm responsible for matching a particular pattern and generating the associated foorprint is called prism algorithm.

Prim's algorithm is an algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized
The algorithm continuously increases the size of a tree starting with a single vertex until it spans all the vertices.

· Input: A connected weighted graph G(V,E) 

· Initialize: V' = {x}, where x is an arbitrary node from V, E'= {} 

· repeat until V'=V: 

· Choose edge (u,v) from E with minimal weight such that u is in V' and v is not in V' (if there are multiple edges with the same weight, choose arbitrarily) 

· Add v to V', add (u,v) to E' 

· Output: G(V',E') is the minimal spanning tree 
Kruskal Algorithm:- 
It is an algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. If the graph is not connected, then it finds a minimum spanning forest (a minimum spanning tree for each connected component). Kruskal's algorithm is an example of a greedy algorithm.

This graph is a single connected component; it is provided as a sample subject for the algorithm.

It works as follows:

· create a forest F (a set of trees), where each vertex in the graph is a separate tree 

· create a set S containing all the edges in the graph 

· while S is nonempty 

· remove an edge with minimum weight from S 

· if that edge connects two different trees, then add it to the forest, combining two trees into a single tree 

· otherwise discard that edge 

At the termination of the algorithm, the forest has only one component and forms a minimum spanning tree of the graph.

Prism Algorithm:- 
Root = an arbitrary node is chosen as a root

  For (each node nd in the graph)

{



Distance[nd]=weight{Root, nd};



Closest[nd] = root;


}

Distance[root] = INFINITY;

Current_node=root;

For (i=1; i<no. of node in graph; ++i)


{



Mndist=distance[nd];


Addson(closest [current_node), current_node);



Distance[current_node]=INFINITY;



For(every node nd adjacent to current_node)




{



If (distance [current_nde]<INFINITY && (weight (current_node, nd)< distance[nd]}




{




Distance[nd]=weight(current_node, nd);




Closest[nd]=current_node;




}



}

}

Algorithm of Kruskal :

/* E Denode Graph*

/* T Denoting Tree*

T=INFINITY

While (T contains less than (n-1) edge && E is not Empty)


{



Choose an edge(v,w ) from E of the lowest cost;



Delete (v,w from E;



If ((v,w) doesnot create a cycle in T)




{





Add(v,w) to T




Else





Discard(v,w);




If (T contains fewer than (n-1) edges)





Printf(“\n No Spanning Tree”);

/* end of algorithm*
***************************************************************************************

Question 7:  Create a AVL Tree for which the deletion of a node require two double rotations. Draw the tree and explain why two rotations are needed?

Ans: 7
Deletions from an AVL Tree 


Delete the node as in a binary search tree

The node deleted will be either a leaf or have just one subtree

Since this is an AVL tree if the deleted node has one subtree, then that subtree contains only one node

Traverse up the tree from the deleted node checking the balance of each node

Case 1a 

Traversing Up from Left subtreeDeletion reduced the height of the left subtreeNode has equal balance 


Action: 

Change balance of the node and stop 

Have not effected the balance of any higher nodes
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Case 1b 

Traversing Up from Right subtreeDeletion reduced the height of the Right subtreeNode has equal balance 


Action: 

Same as 1a

Case 2a 

Traversing Up from Left subtreeDeletion reduced the height of the left subtreeLeft subtree was greater then the right subtree 


Action: 

Change balance of the node and stop 

May have effected the balance of any higher nodes, so continue up tree
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Case 2b 

Traversing Up from Right subtreeDeletion reduced the height of the Right subtreeRight subtree was greater then the Left subtree 


Action: 

Similar to 2a

Case 3a 

Traversing Up from Left subtreeDeletion reduced the height of the left subtreeRight subtree was greater then the Left subtree Left subtrees has equal subsubtrees 


Action: 

Perform single rotation, Adjust the balance 

Have not effected the balance of any higher nodes 

Stop here

[image: image5.png]Delete

o?

he1 2] |3

Deteted | ||
here





[image: image6.png]



Case 4a 

Traversing Up from Left subtreeDeletion reduced the height of the left subtreeRight subtree was greater then the Left subtree One or both of B subtrees has height h-1 


Action: 

Double rotation at B 

May have effected the balance of any higher nodes, so continue up tree
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AVL trees

Rotations in principle let us rebalance a tree, but we still need to decide when to do them. If we try to keep the tree in perfect balance (all paths nearly the same length), we'll spend so much time rotating that we won't be able to do anything else. 

AVL trees solve this problem by maintaining the invariant that the heights of the two subtrees sitting under each node differ by at most one. This does not guarantee perfect balance, but it does get close. Let S(k) be the size of the smallest AVL tree with height k. This tree will have at least one subtree of height k-1, but its other subtree can be of height k-2 (and should be, to keep it as small as possible). We thus have the recurrence 

· S(k) = 1 + S(k-1) + S(k-2) 

which is very close to the Fibonacci recurrence. 

It is possible to solve this exactly using GeneratingFunctions. But we can get close by guessing that S(k) >= ak for some constant a. This clearly works for S(0) = a0 = 1. For larger k, compute 

· S(k) = 1 + ak-1 + ak-2 = 1 + ak (1/a + 1/a2) > ak (1/a + 1/a2^). 

This last quantity is at least ak provided (1/a) + 1/a2) is at least one. We can solve exactly for the largest a that makes this work, but a very quick calculation shows that a = (3/2) works: 2/3 + 4/9 = 10/9 > 1. It follows that any AVL tree with height k has at least (3/2)k nodes, or conversely that any AVL tree with (3/2)k nodes has height at most k. So the height of an arbitrary AVL tree with n nodes is no greater than log3/2 n = O(log n). 

How do we maintain this invariant? The first thing to do is add extra information to the tree, so that we can tell when the invariant has been violated. AVL trees store in each node the difference between the heights of its left and right subtrees, which will be one of -1, 0, or 1. In an ideal world this would require lg 3 ~= 1.58 bits per node, but since fractional bits are difficult to represent on modern computers a typical implementation uses two bits. Inserting a new node into an AVL tree involves 

1. Doing a standard binary search tree insertion. 

2. Updating the balance fields for every node on the insertion path. 

3. Performing a single or double rotation to restore balance if needed. 

Implementing this correctly is tricky. Intuitively, we can imagine a version of an AVL tree in which we stored the height of each node (using O(log log n) bits). When we insert a new node, only the heights of its ancestors change---so step 2 requires updating O(log n) height fields. Similarly, it is only these ancestors that can be overtall. It turns out that fixing the closest ancestor fixes all the ones above it (because it shortens their longest paths by one as well). So just one single or double rotation restores balance. 

Deletions are also possible, but are uglier. A deletion in an AVL tree may require as many as O(log n) rotations.

***************************************************************************************

Question 8:  Draw a B-tree of order 3 for the following sequence of keys: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10

***************************************************************************************

Ans: 8












***************************************************************************************

Question 9: Explain the difference between Depth First and Breadth First Traversing techniques of a graph.



Ans: 9
Depth first search: 

1. Depth first is fast if we limit the depth, but short solutions are not necessarily found first
2. Depth first follows a node downward to its 1st adjacent node, then to the 1st adjacent node of that one, until something stops the search.  We'll then backtrack and follow  next adjacent of the predecessor, etc.   This is a naturally recursive operation since for each node we need to perform exactly the same operation each of its adjacents. We'll use a logical stack where retrieval always returns the most recent addition to the list  (called last In, first out, LIFO retrieval). 

3. DFS like depth-first search in a tree, we search as deeply as possible by visiting a node, and then recursively performing depth-first search on each adjacent node.
      4.   DFS follows the following rules: 

i. Select an unvisited node s, visit it, and treat as the current node 

ii. Find an unvisited neighbor of the current node, visit it, and make it the new current node; 

iii. If the current node has no unvisited neighbors, backtrack to the its parent, and make that the new current node; 

Repeat the above two steps until no more nodes can be visited. 

iv. If there are still unvisited nodes, repeat from step 1. 
Breadth First Search
1. Breadth first will always find the minimum length path first, but it's run time can get very long. 
2. The breadth first search uses a queue list structure where each retrieval returns the node that has been on the queue the longest (first in, first out - FIFO retrieval).  The effect of this is to process all nodes adjacent the start node before we process the nodes adjacent to those nodes, etc. 
3. BFS like breadth-first search in a tree, we search as broadly as possible by visiting a node, and then immediately visiting all nodes adjacent to that node.
4. BFS follows the following rules: 

i. Select an unvisited node s, visit it, have it be the root in a BFS tree being formed. Its level is called the current level. 

ii. From each node x in the current level, in the order in which the level nodes were visited, visit all the unvisited neighbors of x. The newly visited nodes from this level form a new level that becomes the next current level. 

iii. Repeat the previous step until no more nodes can be vsisted. 

iv. If there are still unvisited nodes, repeat from Step 1. 
***************************************************************************************

Question10: What are priority queues? How can priority  queues be implemented? Explan.



Ans: 10

Priority Queue:- Priority queues are useful data structures in simulations, particularly for maintaining a set of future events ordered by time so that we can quickly retrieve what the next thing to happen is. They are called ``priority'' queues because they enable you to retrieve items not by the insertion time (as in a stack or queue), nor by a key match (as in a dictionary), but by which item has the highest priority of retrieval
 A queueing discipline in which each member has a priority determined by external factors. The member with the highest priority is the first to be removed. An ADT that defines the operations one might perform on a priority queue

Priority Queue Implementaion
In the implementation of the Priority Queue, every time we specify the type of the items in the queue, we specify the abstract class Comparable. For example, the instance variables are an array of Comparables and an integer:

public class PriorityQueue { 
    private Comparable[] array; 
    private int index; 
} 
As usual, index is the index of the next available location in the array. The instance variables are declared private so that other classes cannot have direct access to them.

The constructor and empty are similar to what we have seen before. I chose the initial size for the array arbitrarily.

    public PriorityQueue () { 
        array = new Comparable [16]; 
        index = 0; 
    } 

    public boolean empty () { 
        return index == 0; 
    } 
insert is similar to push:

    public void insert (Comparable item) { 
        if (index == array.length) { 
            resize (); 
        } 
        array[index] = item; 
        index++; 
    } 
I omitted the implementation of resize. The only substantial method in the class is remove, which has to traverse the array to find and remove the largest item:

    public Comparable remove () { 
        if (index == 0) return null; 

        int maxIndex = 0; 

        // find the index of the item with the highest priority 
        for (int i=1; i<index; i++) { 
            if (array[i].compareTo (array[maxIndex]) > 0) { 
                maxIndex = i; 
            } 
        } 
        Comparable result = array[maxIndex]; 

        // move the last item into the empty slot 
        index--; 
        array[maxIndex] = array[index]; 
        return result; 
   } 
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