Course Code

:
MCS-023

Course Title

:
Introduction to Database Management Systems

Assignment Number

:
MCA(2)/023/Assign /07
Maximum Marks

:
100

Weightage

:
25%

Last Date of Submission
:
15th October, 2007

This assignment has four questions. Answer all questions of total 80 marks. Rest 20 marks are for viva voce. You may use illustrations and diagrams to enhance explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation. Answer to each part of the question should be confined to about 300 words.

Question 1:

 20 Marks

(i)
What is DBMS? How is it different from RDBMS?

Ans 1 (i)
DBMS

Short for relational database management system and pronounced as separate letters, a type of database management system (DBMS) that stores data in the form of related tables. Relational databases are powerful because they require few assumptions about how data is related or how it will be extracted from the database. As a result, the same database can be viewed in many different ways.

An important feature of relational systems is that a single database can be spread across several tables. This differs from flat-file databases, in which each database is self-contained in a single table.

Almost all full-scale database systems are RDBMS's. Small database systems, however, use other designs that provide less flexibility in posing queries.

RDMBS
Relational Database Management System. A type of DBMS in which the database is organized and accessed according to the relationships between data values. The RDBMS was invented by a team lead by Dr. Edmund F. Codd and funded by IBM in the early 1970's. The Relational Model is based on the principles of relational algebra. Example RDBMS Systems: Oracle, SQL Server, DB2, Sybase, etc

(ii) Is DBMS usage always advisable or some times we may depend on file base systems? Comment on the statement by describing the situation where DBMS is not a better option & file base systems is better.

Ans: 1 (ii)

Database management system (DBMS) that stores data in the form of related tables. Relational databases are powerful because they require few assumptions about how data is related or how it will be extracted from the database. As a result, the same database can be viewed in many different ways.

File Base System:-
=>Analogue of manual file system

=> Direct replacement for manual files

=>Weak handling of cross-references
=? May be text-based, or binary format
Files example: estate agent

File: Properties for rent

 Data: property id. number, address, area, city,

postcode, type of property, rooms, rent per

month, owner

File: Property owners

Data: owner id. number, first name, last name,

address, phone number

File: Potential renters

 Data: renter id. number, first name, last name,

address, phone, type wanted, maximum rent
Applications and files

Each file is created by an application program

 e.g. a forminterface, to input each data item

 Each may be used by a different person or department

 e.g. Properties for rent, owners, and renters entries by sales department; lease, property for rent, and renter by contracts department

File-based disadvantages

Separation of data

Information needed for a particular task

may be in different files – or even different departments’ files Duplication of data

Information is stored redundantly Wastes space, processing overhead

 Data may lose integrity; different versions become inconsistence.
 (iii Describe ANSI SPARC 3-level architecture of DBMS with details of languages associated at different levels plus the level of data independence.

Ans 1(iii)
ANSI SPARC is an acronym for the American National Standard Institute Standard Planning and Requirements Committee. A standard three level approach to database design has been agreed.

- External level
- Conceptual level
- Internal level (includes physical data storage)

The 3 Level Architecture has the aim of enabling users to access the same data but with a personalised view of it. The distancing of the internal level from the external level means that users do not need to know how the data is physically stored in the database. This level separation also allows the Database Administrator (DBA) to change the database storage structures without affecting the users' views.

[image: image1.png]

[image: image2.png]

External Level (User Views)

A user's view of the database describes a part of the database that is relevant to a particular user. It excludes irrelevant data as well as data which the user is not authorised to access.

Conceptual Level

The conceptual level is a way of describing what data is stored within the whole database and how the data is inter-related. The conceptual level does not specify how the data is physically stored.

Internal Level

The internal level involves how the database is physically represented on the computer system. It describes how the data is actually stored in the database and on the computer hardware.

Database Schema

The database schema provide an overall description of the database structure (not actual data). There are three types of schema which relate to the 3 Level Database Architecture.

External Schemas or subschemas relate to the user views. The Conceptual Schema describes all the types of data that appear in the database and the relationships between data items. Integrity constraints are also specified in the conceptual schema. The Internal Schema provides definitions for stored records, methods of representation, data fields, indexes, and hashing schemes etc...
(iv) How logical architecture of DBMS differs from physical architecture?

Ans : 1(iv)

The Logical Architecture defines the Processes (the activities and functions) that are required to provide the required User Services. Many different Processes must work together and share information to provide a User Service. The Processes can be implemented via software, hardware, or firmware. The Logical Architecture is independent of technologies and implementations.

[image: image3.png]Logical Architecture

The Logical Architecture consists of Processes (defined above), Data Flows, Terminators, and data stores. Data Flows identify the information that is shared by the Processes. The entry and exit points for the Logical Architecture are the sensors, computers, human operators of the ITS systems (called Terminators). These Terminators appear in the Physical Architecture as well. Data stores are repositories of information maintained by the Processes.

The Logical Architecture is presented to the reader via Data Flow Diagrams* (DFDs) or bubble charts and Process Specifications (PSpecs).

The Physical Architecture forms a high-level structure around the processes and data flows in the Logical Architecture. The physical architecture defines the Physical Entities (Subsystems and Terminators) that make up an intelligent transportation system. It defines the Architecture Flows that connect the various Subsystems and Terminators into an integrated system.

[image: image4.png]Physical Architecture

>
S

Architecture || Equipment
Flows Packages

The subsystems generally provide a rich set of capabilities, more than would be implemented at any one place or time. Equipment Packages break up the subsystems into deployment-sized pieces. The complete definition of the Physical Architecture is behind these entry points. By following the links, you can traverse between the physical architecture structure and the related process and data flow requirements in the logical architecture.

(v) Create an E R diagram and relational schema to hold information about the situation in many institutions affiliated to some University, many teachers of different disciplines are teaching to many students enrolled in many courses offered by the university to the students through the institutions. Use concept of keys, aggregation, generalisation, cardinality etc. in a proper way.

Ans : 1(v)

(vi) Say the schema of respective entities is:
Teacher(T#, Tname, Tqual, Tsubject, Tcourse, Prog)

Student(Roll#., Sname, Sage, Saddress, Scourse.Prog , Smarks)

Teaches(T#, Roll# , Scourse, Prog ,University)

Performa following queries in SQL using the given schema:

a) Find details of Teachers who taught DBMS.

Ans.
SELECT
*

FROM
Teacher

WHERE
Tsubject=’DBMS’

b) Find details of students who did MCA from IGNOU.

Ans.
SELECT
*

FROM
Student

WHERE
Prog = ‘MCA’

c) Find courses taught by T# 5078.

Ans.
SELECT
Scourse

FROM
Teaches

WHERE
T# = 5078

d) Find address of students whose marks are less than 50.

Ans.
SELECT
Saddress

FROM
Student

WHERE
Smarks<50

Question 2:

 20 Marks

(i) What is the utility of relational algebra & relational calculus? Name some software’s based on these concepts?

Ans : 2(i)
Relational algebras received little attention until the publication of E.F. Codd's relational model of data in 1970. Codd proposed such an algebra as a basis for database query languages. The first query language to be based on Codd's algebra was ISBL, and this pioneering work has been acclaimed by many authorities as having shown the way to make Codd's idea into a useful language. Business System 12 was a short-lived industry-strength relational DBMS that followed the ISBL example. In 1998 Chris Date and Hugh Darwen proposed a language called Tutorial D intended for use in teaching relational database theory, and its query language also draws on ISBL's ideas. Rel is an implementation of Tutorial D. Even the query language of SQL is loosely based on a relational algebra, though the operands in SQL (tables) are not exactly relations and several useful theorems about the relational algebra do not hold in the SQL counterpart (arguably to the detriment of optimisers and/or users).

Because a relation is interpreted as the extension of some predicate, each operator of a relational algebra has a counterpart in predicate calculus. For example, the natural join is a counterpart of logical AND ([image: image5.png]

). If relations R and S represent the extensions of predicates p1 and p2, respectively, then the natural join of R and S (R [image: image6.png]

S) is a relation representing the extension of the predicate p1 [image: image7.png]

p2.

The exact set of operators may differ per definition and also depends on whether the unlabeled relational model (that uses mathematical relations) or the labeled relational model (that uses the labeled generalization of mathematical relations) is used. We will assume the labeled case here as this was the kind that Codd proposed and is thought by some to have been his most important innovation, as it eliminates dependence on an ordering to the attributes of a relation. Under this model we assume that tuples are partial functions from attribute names to values. The attribute a of a tuple t is denoted in this article as t(a).

It is important to realise that Codd's algebra is not in fact complete with respect to first-order logic. Had it been so, certain insurmountable computational difficulties would have arisen for any implementation of it. To overcome these difficulties, he restricted the operands to finite relations only and also proposed restricted support for negation (NOT) and disjunction (OR). Analogous restrictions are found in many other logic-based computer languages. Codd defined the term relational completeness to refer to a language that is complete with respect to first-order predicate calculus apart from the restrictions he proposed. In practice the restrictions have no adverse effect on the applicability of his relational algebra for database purposes.

 Primitive operations
As in any algebra, some operators are primitive and the others, being definable in terms of the primitive ones, are derived. It is useful if the choice of primitive operators parallels the usual choice of primitive logical operators. Although it is well known that the usual choice in logic of AND, OR and NOT is somewhat arbitrary, Codd made a similar arbitrary choice for his algebra.

The six primitive operators of Codd's algebra are the selection, the projection, the Cartesian product (also called the cross product or cross join), the set union, the set difference, and the rename. (Actually, Codd omitted the rename, but the compelling case for its inclusion was shown by the inventors of ISBL.) These six operators are fundamental in the sense that none of them can be omitted without losing expressive power. Many other operators have been defined in terms of these six. Among the most important are set intersection, division, and the natural join. In fact ISBL made a compelling case for replacing the Cartesian product by the natural join, of which the Cartesian product is a degenerate case.

Altogether, the operators of relational algebra have identical expressive power to that of domain relational calculus or tuple relational calculus. However, for the reasons given in the Introduction above, relational algebra has strictly less expressive power than that of first-order predicate calculus without function symbols. Relational algebra actually corresponds to a subset of first-order logic that is Horn clauses without recursion and negation.

 Set operators
Although three of the six basic operators are taken from set theory, there are additional constraints that are present in their relational algebra counterparts: For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes. As set intersection can be defined in terms of set difference, the two relations involved in set intersection must also be union-compatible.

The Cartesian product is defined differently from the one defined in set theory in the sense that tuples are considered to be 'shallow' for the purposes of the operation. That is, unlike in set theory, where the Cartesian product of a n-tuple by an m-tuple is a set of 2-tuples, the Cartesian product in relational algebra has the 2-tuple "flattened" into an n+m-tuple. More formally, R × S is defined as follows:

R [image: image8.png]

S = {r [image: image9.png]

s| r [image: image10.png]

R, s [image: image11.png]

S}

In addition, for the Cartesian product to be defined, the two relations involved must have disjoint headers — that is, they must not have a common attribute name.

 Projection
A projection is a unary operation written as [image: image12.png]Ta1, an(R)

where a1,...,an is a set of attribute names. The result of such projection is defined as the set that is obtained when all tuples in R are restricted to the set {a1,...,an}.

 Selection
A generalized selection is a unary operation written as [image: image13.png]

where [image: image14.png]

is a propositional formula that consists of atoms as allowed in the normal selection and the logical operators [image: image15.png]

(and), [image: image16.png]

(or) and [image: image17.png]

(negation). This selection selects all those tuples in R for which [image: image18.png]

holds.

 Rename
A rename is a unary operation written as ρa / b(R) where the result is identical to R except that the b field in all tuples is renamed to an a field.This simply used to rename the attribute of a relation or the relation itself.

[Joins and join-like operators
 Natural join
Natural join is a dyadic operator that is written as R[image: image19.png]

S where R and S are relations. The result of the natural join is the set of all combinations of tuples in R and S that are equal on their common attribute names. For an example consider the tables Employee and Dept and their natural join:

	Employee

	Name

	EmpId

	DeptName

	Harry

	3415

	Finance

	Sally

	2241

	Sales

	George

	3401

	Finance

	Harriet

	2202

	Sales

	
	Dept
DeptName

Manager

Finance

George

Sales

Harriet

Production

Charles

	Employee[image: image20.png]

Dept
Name

EmpId

DeptName

Manager

Harry

3415

Finance

George

Sally

2241

Sales

Harriet

George

3401

Finance

George

Harriet

2202

Sales

Harriet

Join is another term for relation composition; in category theory, the join is precisely the fiber product.

The natural join is arguably one of the most important operators since it is the relational counterpart of logical AND. Note carefully that if the same variable appears in each of two predicates that are connected by AND, then that variable stands for the same thing and both appearances must always be substituted by the same value. In particular, natural join allows the combination of relations that are associated by a foreign key. For example, in the above example a foreign key probably holds from Employee.DeptName to Dept.DeptName and then the natural join of Employee and Dept combines all employees with their departments. Note that this works because the foreign key holds between attributes with the same name. If this is not the case such as in the foreign key from Dept.manager to Emp.emp-number then we have to rename these columns before we take the natural join. Such a join is sometimes also referred to as an equijoin (see θ-join).

More formally the semantics of the natural join is defined as follows:

R[image: image21.png]

S = { t [image: image22.png]

s : t [image: image23.png]

R, s [image: image24.png]

S, fun (t [image: image25.png]

s) }

where fun(r) is a predicate that is true for a binary relation r iff r is a functional binary relation. It is usually required that R and S must have at least one common attribute, but if this constraint is omitted then in that special case the natural join becomes exactly the Cartesian product as defined above.

The natural join can be simulated with Codd's primitives as follows. Assume that b1,...,bm are the attribute names common to R, S, a1,...,an are the attribute names unique to R and c1,...,ck are the attribute unique to S. Furthermore assume that the attribute names d1,...,dm are neither in R nor in S. In a first step we can now rename the common attribute names in S: : S' := ρd1/b1(...ρdm/bm(S)...) Then we take the Cartesian product and select the tuples that are to be joined: : T := σb1=d1(...σbm=dm(R × S')...) Finally we take a projection to get rid of the renamed attributes: : U := πa1,...,an,b1,...,bm,c1,...,ck(T)

 θ-join and equijoin
Consider tables Car and Boat which list models of cars and boats and their respective prices. Suppose a customer wants to buy a car and a boat, but she doesn't want to spend more money for the boat than for the car. The θ-join on the relation CarPrice ≥ BoatPrice produces a table with all the possible options.

	Car

	CarModel

	CarPrice

	CarA

	20'000

	CarB

	30'000

	CarC

	50'000

	
	Boat
BoatModel

BoatPrice

Boat1

10'000

Boat2

40'000

Boat3

60'000

	[image: image26.png]Car > Boat
Car Price™ Boat Price

CarModel

CarPrice

BoatModel

BoatPrice

CarA

20'000

Boat1

10'000

CarB

30'000

Boat1

10'000

CarC

50'000

Boat1

10'000

CarC

50'000

Boat2

40'000

Relational Calculation

The relational calculus refers to the two calculi, the tuple relational calculus and the domain relational calculus, that are part of the relational model for databases and that provide a declarative way to specify database queries. This in contrast to the relational algebra which is also part of the relational model but provides a more procedural way for specifying queries.

The relational algebra might suggest these steps to retrieve the phone numbers and names of book stores that supply Some Sample Book:

1. Join books and titles over the BookstoreID.

2. Restrict the result of that join to tuples for the book Some Sample Book.

3. Project the result of that restriction over StoreName and StorePhone.

The relational calculus would formulate a descriptive, declarative way:

Get StoreName and StorePhone for supplies such that there exists a title BK with the same BookstoreID value and with a BookTitle value of Some Sample Book.

The relational algebra and the relational calculus are logically equivalent: for any algebraic expression, there is an equivalent expression in the calculus, and vice versa.

(ii) Comment on the statement “Set theory has contributed a lot to RDBMS” support it with the help of suitable examples.

Ans: 2(ii)

An organization's (computerized) intelligence may be defined to be contained within the dynamics of its three separate yet highly interconnected computer software systems environments, shown at FIG 1:

[image: image27.jpg]| E3 E3 |,
\ \

o | E2 |s
| |

| E1 El |:
\ \

: | EO E0 |s
—_—

[l SEVER

Fig 1: Database Systems Software Environments

E3 - Application Software environment

Examples include all business database applications, all related financial software,etc. This environment is extremely diverse to the extent that two separate organisations running the same application software will use it in a different fashion.

E2 - RDBMS Software environment

This environment is the (Relational) Database Management System software layer. There are only a reasonably small series of active major E2 software systems available. Examples of these include SQL Server (Microsoft), Oracle (Oracle Systems), DB2 (IBM), etc

E1 - Machine (and network) operating systems software environment

The machine operating system and network operating system software layer is also represented in a reasonably small series of providors. Examples include Windows XP,2000,NT,98,97,95,3.1, etc (Microsoft), UNIX, IBM proprietory OS, Apple Mac OS, etc.

E0 - Hardware environment & Physical Link

The machine environment has limited amounts of software burnt into ROM and other instances, however in general it is the physical layer that supports the ones above it.

(iii) “Redundancy of data is many times beneficial” Justify the statement, also describe the situation when redundancy will mess up the current data base status, at that instance of time what actions you will prefer to take.

Ans: 2(iii)
Data redundancy is a data organization issue that allows the unnecessary duplication of data within your Microsoft Access database. A change or modification, to redundant data, requires that you make changes to multiple fields of a database. While this is the expected behaviour for flat file database designs and spreadsheets, it defeats the purpose of relational database designs. The data relationships, inherent in a relational database, should allow you to maintain a single data field, at one location, and make the database’s relational model responsible to port any changes, to that data field, across the database. Redundant data wastes valuable space and creates troubling database maintenance problems.

To eliminate redundant data from your Microsoft Access database, you must take special care to organize the data in your data tables. Normalization is a method of organizing your data to prevent redundancy. Normalization involves establishing and maintaining the integrity of your data tables as well as eliminating inconsistent data dependencies.

Establishing and maintaining integrity requires that you follow the Access prescribed rules to maintain parent-child, table relationships. Eliminating inconsistent, data dependencies involves ensuring that data is housed in the appropriate Access database table. An appropriate table is a table in which the data has some relation to or dependence on the table.

Normalization requires that you adhere to rules, established by the database community, to ensure that data is organized efficiently. These rules are called normal form rules. Normalization may require that you include additional data tables in your Access database. Normal form rules number from one to three, for most applications. The rules are cumulative such that the rules of the 2nd normal form are inclusive of the rules in the 1st normal form. The rules of the 3rd normal form are inclusive of the rules in the 1st and 2nd normal forms, etc.

The rules are defined as follows:

1st normal form: Avoid storing similar data in multiple table fields.

· Eliminate repeating groups in individual tables.

· Create a separate table for each set of related data.

· Identify each set of related data with a primary key.

2nd normal form: Records should be dependent, only, upon a table’s primary key(s)

· Create separate tables for sets of values that apply to multiple records.

· Relate these tables with a foreign key.

3rd normal form: Record fields should be part of the record’s key

· Eliminate fields that do not depend on the key.

The 3rd normal form suggests that fields, that apply to more than one record, should be placed in a separate table. However, this may not be practical solution, particularly for small databases. The inclusion of additional tables may degrade database performance by opening more files than memory space allows. To overcome this limitation, of the third normal form, you may want to apply the third normal form only to data that is expected to change frequently.

Two, more advanced, normal forms have been established with application that is more complex. The Failure to conform to the established rules of these normal forms results in a less perfectly designed database, but the functionality of your database is not affected by avoiding them.

The advanced normal forms are as follows:

4th normal form: Boyce Codd Normal Form (BCNF)

· Eliminate relations with multi-valued dependencies.

5th normal form:

· Create relations that cannot be further decomposed.

(iv)
In Oracle we are having variety of versions Oracle 8, Oracle 9, etc, what does the associated number mean. Again we are having Oracle 8i, Oracle 9i etc, what does this “i” mean.

Ans: 2(1v)
Associate number is a version and i means internet.
(v)
Describe the various file organization techniques? How a binary tree is different from B-tree and B+ tree? Under which situation we need to use B+ tree or B tree.

Ans 2 (v)

Given that a file consists, generally speaking, of a collection of records, a key element in file management is the way in which the records themselves are organized inside the file, since this heavily affects system performances ad far as record finding and access. Note carefully that by ``organization'' we refer here to the logical arrangement of the records in the file (their ordering or, more generally, the presence of ``closeness'' relations between them based on their content), and not instead to the physical layout of the file as stored on a storage media, To prevent confusion, the latter is referred to by the expression ``record blocking'', and will be treated later on.

Choosing a file organization is a design decision, hence it must be done having in mind the achievement of good performance with respect to the most likely usage of the file. The criteria usually considered important are:

1. Fast access to single record or collection of related recors.

2. Easy record adding/update/removal, without disrupting (1).

3. Storage efficiency.

4. Redundance as a warranty against data corruption.

Needless to say, these requirements are in contrast with each other for all but the most trivial situations, and it's the designer job to find a good compromise among them, yielding and adequate solution to the problem at hand. For example, easiness of adding/etc. is not an issue when defining the data organization of a CD-ROM product, whereas fast access is, given the huge amount of data that this media can store. However, as it will become apparent shortly, fast access techniques are based on the use of additional information about the records, which in turn competes with the high volumes of data to be stored.

Logical data organization is indeed the subject of whole shelves of books, in the ``Database'' section of your library. Here we'll briefly address some of the simpler used techniques, mainly because of their relevance to data management from the lower-level (with respect to a database's) point of view of an OS. Five organization models will be considered:

· Pile.

· Sequential.

· Indexed-sequential.

· Indexed.

· Hashed.
Pile:- It's the simplest possible organization: the data are collected in the file in the order in which they arrive, and it's not even required that the records have a common format across the file (different fields/sizes, same fields in different orders, etc.are possible). This implies that each record/field must be self-describing. Despite the obvious storage efficiency and the easy update, it's quite clear that this ``structure'' is not suited for easy data retireval, since retrieving a datum basically requires detailed analysis of the file content. It makes sense only as temporary storage for data to be later structured in some way
Sequential

This is the most common structure for large files that are typically processed in their entirety, and it's at the heart of the more complex schemes. In this scheme, all the records have the same size and the same field format, with the fields having fixed size as well. The records are sorted in the file according to the content of a field of a scalar type, called ``key''. The key must identify uniquely a records, hence different record have diferent keys. This organization is well suited for batch processing of the entire file, without adding or deleting items: this kind of operation can take advantage of the fixed size of records and file; moreover, this organization is easily stored both on disk and tape. The key ordering, along with the fixed record size, makes this organization amenable to dicotomic search

 However, adding and deleting records to this kind of file is a tricky process: the logical sequence of records tipycally matches their physical layout on the media storage, so to ease file navigation, hence adding a record and maintaining the key order requires a reorganization of the whole file. The usual solution is to make use of a ``log file'' (also called ``transaction file''), structured as a pile, to perform this kind of modification, and periodically perform a batch update on the master file.

Indexed sequential

An index file can be used to effectively overcome the above mentioned problem, and to speed up the key search as well. The simplest indexing structure is the single-level one: a file whose records are pairs key-pointer, where the pointer is the position in the data file of the record with the given key. Only a subset of data records, evenly spaced along the data file, are indexed, so to mark intervals of data records.

A key search then proceeds as follows: the search key is compared with the index ones to find the highest index key preceding the search one, and a linear search is performed from the record the index key points onward, until the search key is matched or until the record pointed by the next index entry is reached. In spite of the double file access (index + data) needed by this kind of search, the decrease in access time with respect to a sequential file is significant.

Consider, for example, the case of simple linear search on a file with 1,000 records. With the sequential organization, an average of 500 key comparisons are necessary (assuming uniformly distributed search key among the data ones). However, using and evenly spaced index with 100 entries, the number of comparisons is reduced to 50 in the index file plus 50 in the data file: a 5:1 reduction in the number of operations.

This scheme can obviously be hyerarchically extended: an index is a sequential file in itself, amenable to be indexed in turn by a second-level index, and so on, thus exploiting more and more the hyerarchical decomposition of the searches to decrease the access time. Obviously, if the layering of indexes is pushed too far, a point is reached when the advantages of indexing are hampered by the increased storage costs, and by the index access times as well.
Indexed

Why using a single index for a certain key field of a data record? Indexes can be obviously built for each field that uniquely identifies a record (or set of records within the file), and whose type is amenable to ordering. Multiple indexes hence provide a high degree of flexibility for accessing the data via search on various attributes; this organization also allows the use of variable length records (containing different fields).

It should be noted that when multiple indexes are are used the concept of sequentiality of the records within the file is useless: each attribute (field) used to construct an index typically imposes an ordering of its own. For this very reason is typicaly not possible to use the ``sparse'' (or ``spaced'') type of indexing previously described. Two types of indexes are usually found in the applications: the exhaustive type, which contains an entry for each record in the main file, in the order given by the indexed key, and the partial type, which contain an entry for all those records that contain the chosen key field (for variable records only).

Hashed

As with sequential or indexed files, a key field is required for this organization, as well as fixed record length. However, no explicit ordering in the keys is used for the hash search, other than the one implicitly determined by a hash function.
Differences between B-Tree and B+ tree:

· B-Trees: multi-level indexes to data files that are entry-sequenced. Strengths: simplicity of implementation. Weaknesses: excessive seeking necessary for sequential access.

· B-Trees with Associated Information: These are B-Trees that contain record contents at every level of the B-Tree. Strengths: can save up space. Weaknesses: Works only when the record information is located within the B-Tree. Otherwise, too much seeking is involved in retrieving the record information

· B+ Trees: In a B+ Tree all the key and record info is contained in a linked set of blocks known as the sequence set. Indexed access is provided through the Index Set. Advantages over B-Trees: 1) The sequence set can be processed in a truly linear, sequential way; 2) The index is built with a single key or separator per block of data records rather than with one key per data record. ==> index is smaller and hence shallower.

· Simple Prefix B+ Trees: The separators in the index set are smaller than the keys in the sequence set ==> Tree is even smaller.

Question 3:

 20 marks

(i)
Prove “Any relation which is in BCNF is in 3NF,but converse is not true”

Consider the schema and functional dependency set of Empdept given below:

Empdept (emp# , Dept#, Manager#, Dept_Name , Dept_Loc)

 Emp# Dept# (manager#
manager# (Dept #

Viewing the given functional dependency set prove that the relation is in 3NF but not in BCNF.

(ii)
Which functional dependencies are to be removed to achieve respective normal form? Discuss all the normal forms up to 4NF?

(iii)
What is the mathematical basis of SQL? The SQL statement: select * from student will perform like projection or selection? Give details in support of your answer.

(iv)
 Describe ‘ACID’ properties of transaction violation of which properly leads to lost up date problem & suitable example.

(v)
How 2-phase locking differs from 2-phase commit?

Ans 3(i)
Normalisation:

1st normal form: the relion is already in 1nf as each cell is single valued.

2nd Normal form: A relation is in second normal form if it is 1NF and every non key attribute is fully dependent on each candidate key of the relation. Thus R is also in 2NF.

3rd Normal form: A relation is in second normal form if it is 2NF and every non key attribute is non-transitively dependent on each candidate key of the relation. This above relation is in 3NF as every non key attribute is non-transitively dependent on each candidate key of the relation.

Here primary key is emp# and candidate key is (emp# , Dept#, Manager#)

BCNF Normal form: A relation is in second normal form if it is 3NF and if X->A in R and A is not in X, then X is a candidate key. The above relations satisfy this condition.

The above relation is not in BCNF as in Fd manager# (Dept # , dept# is dependent on manager# but manager#is not in candidate key.
Ans: 3(ii)

Ans.
manager# (Dept # is to b removed to achieve BCNF.
Ans: 3 (iii)

There is lots of literature and discussion of relational theory and its application in product and software design. Authors like Chris Date, Hugh Darwen and Fabian Pascal write extensively on the topic at http://www.dbdebunk.com/index.html, they are hard core relational theorists that advocate strict standards in design and implementation. They also have written lots of books on relational databases and design.

This article is just an introduction to relational databases and some of the gyrations that SQL has done to implement some of the operations possible under this theory, not a detailed critique or explanation of relational database theory and its application to project design. But familiarity with the concepts of relational theory is needed by anyone who uses a database in the design of a product or software project.

Relational algebra and relational calculus are the mathematical basis for "relational databases" developed by E.F. Codd. I would describe it as a kind of set theory that gives a solid provable framework for software design that involves lots of data that must be managed. If the project you are looking at uses a database then these ideas should be looked at and considered carefully for the design.

The application of relational theory usually contains the point of view that the data is used by more than one application. As a result, architecture and design decisions are made that optimize the organization of the data for use by many applications, not a specific physical optimization of a data element for one application.

An example could be a company that manufactures and sells something is a collection of applications organized around the data that the organization needs to run itself. Customer data, employee data, inventory data, manufacturing process data, shipping data, invoice data, general ledger data, supplier data, etc., are all related in a logical design, implemented in a physical design using the RDBMS and then used by many applications such as a web store, a point of sale application, an inventory application, tracking employee hours and projects, accounts, payroll, etc.

As I mentioned at the beginning, the SQL standards that exist, such as SQL-92 or SQL-99 are not followed exactly in any RDBMS software. Well, here we are, an imperfect implementation of relational theory is set in a language standard that is not followed. Since SQL is the common tool that is the interface to most databases, we must try to use it.

Here are some examples of that imperfect language, SQL, trying to do the relational algebra operations of difference, simple division and partition in MySql and Postgresql.

Difference:

Exclude rows common to both tables.

Which records in TABLE_A do not share A_KEY in TABLE_B?

select *

 from TABLE_A

 where A_KEY not in (select A_KEY from TABLE_B)

With the SQL-92 Standards keyword 'EXCEPT' Follow the same rules as the keyword 'UNION'

select * from TABLE_A

EXCEPT

select * from TABLE_B

also seen as:

select * from TABLE_A

MINUS

select * from TABLE_B

Division:

Find items in one set that are related to all of the items in another set.

In a many-to-many relationship there are three tables, A, B, C with C as the table representing the many-to-many key pairs of A and B.

For simple division: What are the 'A_KEY's to which all 'B_KEY's belong?

select distinct A_KEY

from TABLE_C C

where not exists (

 select B_KEY

 from TABLE_B B

 where not exists (

 select *

 from TABLE_C CC

 where A.A_KEY = CC.A_KEY

 and B.B_KEY = CC.B_KEY))

Ans: 3(iv)

A transaction should enjoy the following guarantees:

Atomicity: The “ all or nothing” property

Programmer needn’t worry about partial states persisting

Consistency:- The database should start out “ consistent” and at the end of transaction remain “ consistent” definition of “consistent is given by integrity constraints.

Isolation:- A transaction should not see the effect of other uncommitted transactions.

Durability: Once committed, the transactions effects should not disappear (though they may be overwritten by subsequent committed transaction)
ACID is a mnemonic

· not a perfect factoring of the issues

· There is ovelap of concerns among the four.

Implementation

· A and D are guaranteed by recover (usually implemented via logging)

· C and I are guaranteed by concurrency control (usually implemented via locking)

NO help with side-effects

· actions that are visible outside the “system”
· print to screen, send a web page, output money, communicate with web service.

Ans: 3(v)

Two Phase Locking:-

The basic Two-Phase Locking protocol is the most common locking protocol in conventional database systems. With 2PL, a transaction execution consists of two phases. In the first phase, locks are acquired but may not be released. In the second phase, locks are released but new locks may not be acquired. In case a transaction TR requests a lock that is being held by another transaction, TH, TR waits.

As we have just demonstrated, one basic problem of 2PL is the possibility of priority inversions. One solution to this problem is to restart the low-priority lock holder and let the high-priority lock requester proceed. This variant of 2PL is called Two-Phase Locking (High Priority (2PL-HP) [1]. Conflicts are thus resolved by a combination of blocking and restarts under 2PL-HP.

Two Phase Commit:

A technique for ensuring that a transaction successfully updates all appropriate files in a distributed database environment. All DBMSs involved in the transaction first confirm that the transaction has been received and is recoverable (stored on disk). Then each DBMS is told to commit the transaction (do the actual updating).

Traditionally, two-phase-commit meant updating databases in two or more servers, but the term is also applied to updating two or more different databases within the same server
Question 4:

 20 marks
(i)
How serial schedule differs from serializable schedule? How can you defect that the schedule is serializable?”A positively interleaved system can not be serialized“, Comment on the statement and prove it with suitable example? In which type of scheduling the problem of deadlock is prominent and in which type the problem of starvation is prominent. Justify your answer?

(ii)
Number of users in a concurrent system continuously grows and we find that respectively one strategy of concurrency management flops and other is invoked. Describe various strategies of concurrency management in this scenario of development and handling of a concurrent Data base environment.

(iii)
How centralized DBMS differs from distributed DBMS? Can the network of any DBMS afford to have bridges?

(iv)
What is fragmentation? What are the various types of fragmentation? How you implement respective fragmentation schemes.

V
Compare MS-ACCESS and ORACLE (give at least 4 comparisons).
Ans : 4(i)
Correct results from interleaving of transactions. Given an interleaved execution of a set of n transactions; the following conditions hold for each transaction in the set:
· all transaction are correct in the sense that if any one of the transactions is executed by itself on a consistent database, the resulting database will be consistent.
· Any serial execution of the transactions is also correct and preserved the consistency of the database; the results obtained are correct. (This implies that the transaction are logically correct and that no two transaction are interdependent)
The given interleaved execution of these transactions is said to be serializable. If it produces the same result as some serial execution of the transaction.
Since a serializable schedule gives the same result as some serial schedule and since that serial schedule is correct, the serializable schedule is also correct. Thus, given schedule , we can say it is correct if we can show that it is serialiazable.
In order for the system to detect a deadlock, it must have the following informations:-

· The current set of transactions

· The current allocations of data-items to each of the transactions.

· The current set of data-items for which each of the transaction is waiting.
Ans : 4 (ii)

In concurrent operation where a number of operations/transactions are running we not have to hide the changes made by transactions from other transactions but we also have to make sure that only one transaction has exclusive access to these date-items for at least duration of the original transactions usage of the date-items. This requires appropriate locking mechanism.

e.g.- Salary : - = (Salary * 1.1) + 1000

Now if we break it in two transactions and execute them,

T1

T2

Read Salary

Read Salary

Salary: = salary * 1.1

Salary:= Salary + 1000

Write Salary

write Salary

Then to make sure that we get intended results in all cases 9i.e T1 be executed 1’st then T20 would be to code the operations in a single transaction & not divide it in 2 parts. If T1 & T2 are executed concurrently then we are not sure of getting proper result.

So divide of transaction into interdependent transactions run serially in wrong order would give erroneous result.

So we must ensure that concurrent transactions are semantically correct otherwise improper result will be obtained.

Ans: 4(iii)

Centralized DBMS:-
A system that improves performance of a centralized DBMS is provided. The improved performance is realized by distributing part of the DBMS's functionality across multiple computers in a client/server environment. The distribution of the DBMS's functionality is performed by a mechanism known as the navigational agent, which is detached from the DBMS. The navigational agent integrates the centralized DBMS into a client/server environment so that performance improvements can be achieved by distributing a portion of the functionality of the centralized DBMS and some of its database objects to client computers. A database object is a unit of data in the database such as one or more fields of a record, one or more records, or one or more tables. By distributing part of the DBMS's functionality and some of the database objects to client computers, transactions can be performed on the client computers without having to access the server computer on which the database resides. Since these transactions are performed by the client computer instead of the server computer, the bottleneck created by the DBMS on the server computer is reduced, which improves performance of both the DBMS and programs interacting with the DBMS.
Distributed DBMS:-
It can be defined as consisting of a collection of data with different parts under the control of separate DBMS, running on independent computer systems. All the computers are interconnected and each system has autonomous processing capability, serving local applications. Each system participates, as well, in the execution of one or more global applications. Such applications require data from more than one site.
Yes, the network of any DBMS afford to have bridges

Ans: 4(iv)

Fragmentation is a database server feature that allows you to control where data is stored at the table level. Fragmentation enables you to define groups of rows or index keys within a table according to some algorithm or scheme. You can store each group or fragment (also referred to as a partition) in a separate dbspace associated with a specific physical disk. You use SQL statements to create the fragments and assign them to dbspaces.

The scheme that you use to group rows or index keys into fragments is called the distribution scheme. The distribution scheme and the set of dbspaces in which you locate the fragments together make up the fragmentation strategy
There are various type of Fragmentation such as:-

· Vertical fragmentation

· Horizontal fragmentation

· Mixed fragmentation

· Disjoint fragmentation

· Nondisjoint fragmentation

Ans: 4 (v)

1. Display Control

Oracle uses SQL*Plus commands to control the way results are displayed, show the definition of a table, edit commands etc. Microsoft Access uses properties to control the format, give validation etc.

2. SQL commands

SQL commands are used to create, query and maintain a database. A command may be continued over several lines. The buffer can contain only a single SQL command. The command is terminated by a semicolon except in combo box SQL and graphic source SQL (and is executed if using ORACLE).

To see the SQL that is generated when using Access, press the SQL icon, or select SQL from the view menu. SQL can also be typed in if one selects SQL Specific from the Query menu but one must be aware that converting to a Select query later will mean that the SQL is lost. It can not be looked at with the grid. SQL specific is really only used when one wants to use SQL to create tables, send SQL to a non-Access database system or create more complex queries

Retrieving data from the database is the most common SQL operation, and to perform this the select command is used. The basic select command has two parts (clauses):

select some data (column names or expressions)
from a table or some tables (table names)

The select clause is always entered first, and is immediately followed by the from clause. A Full list of SQL clauses is given at the end of this document

Saving commands in a file

The SQL*Plus save command saves the commands in the buffer in a file of type SQL (see example). Microsoft Access holds data, queries, forms, reports and macros in one big .MDB file.

If a file ‘login.sql’ exists, the commands in it are executed automatically whenever SQL*Plus is entered. The Microsoft equivalent is to have a macro called autoexec containing commands which is run on opening the database

Example Database

The database used for the rest of the examples in this document is a simplified version of one that was used to hold information for a study of the victims of assault treated by the Bristol Royal Infirmary.

There are three tables of data, named DISTRICT, VICTIM and FRACTURE.

For more detail about the database and why it was set up in this particular way, see Overview document.

3. Creating and listing tables

Microsoft Access tables are normally built using Table button, but one can create a table using SQL by creating a new query, not adding any tables, and then select 'SQL specific' from the 'Query' menu' Then choose 'data definition'. Note that the datatypes are given differently(text instead of char, number(integer) instead of number(n,0) etc.

The SQL command create table creates a table. For example, to create the example ORACLE database tables:

create table DISTRICT(
district char(15) primary key, /* district of Bristol */
population number(6), /* population of district */
m_unemp number(6), /* no of unemployed males */
f_unemp number(6)) /* no of unemployed females */ ;

create table VICTIM(
vno number(3) primary key, /* reference number of victim */
alcohol_24hr number(3), /* units of alcohol drunk over previous 24 hours */
alcohol_wk number(4), /* units of alcohol drunk in average week */
live_district char(15), /* district where victim lives */
assault_district char(15), /* district where assault occurred */
birth_date date, /* date of birth of victim */
assault_date date check (assault_date between '1-jul-85' and '31-dec-86'), /* date when assault occurred */
sex char(1), check (sex in ('m','f')), /* sex of victim */
weapon char(15), /* weapon used in assault */
income number(6,2)) /* weekly income */ ;

create table FRACTURE(
vno number(3) not null references victim(vno), /* reference number of victim */
fno number(2), /* fracture number (allows >1 fracture per victim) */
side char(1), /* side of body fracture was on */
bone char(15)) /* name of fractured bone */ ;

The maximum length of ORACLE table and column names is 30 characters (Access 64). You are recommended for efficiency to use fewer than 10 characters.

The maximum number of fields in an Oracle table is 240 (Access 255).

not null specifies that every entry in the table must have a value for that column.

In DISTRICT, each ‘district’ is defined to be unique and thus is designate to be the primary key (columns used to uniquely identify a table). In FRACTURE, the combination of ‘vno’ and ‘fno’ is defined to be unique so these two columns form the primary key.

VICTIM and FRACTURE are related by the columns vno. VICTIM and DISTRICT can be linked by district and assault_district or live_district. vno ’in FRACTURE, and assault_district and live_district are the foreign keys (one or more columns whose values are based on the primary key from another table and used to specify the relationship between two tables). The ‘references’ clause shows the relationship betweethe VICTIM and FRACTURE table.

In VICTIM, assault_date has a constraint which ensures that the field can contain only values between 1-jul-85 and 31-dec-86

4. Table Constraints

If you want to add constraints later you can alter the table definition. For example in Oracle:

alter table victim add (primary key(vno) constraint victim_pk)

Access:

alter table victim add constraint victim_pk primary key (vno)
Oracle:

alter table fracture add (foreign key(vno) references victim(vno) constraint victim_fracture_fk)

Access

alter table fracture add constraint victim_fracture_fk foreign key(vno) references victim(vno)
Oracle

alter table victim add (check (sex in ('m','f'’)))
Access

Not possible using SQL. Select the victim table design and add data validation in the validation rule of the sex field in ('m','f') together wth suitable validation text

Referential constraints

Note that referential constraints are normally added by editing the relationships diagram in Access, and validity is added by editing the properties of the table.

Any form built using SQL*FORMS or Access can incorporate these constraints automatically, provided they were defined before the form was built.

The foreign key ensures that records added to the fracture table will relate to a known victim. If you add a foreign key, it must be the same as the primary key of the related table and the primary key clause must have been used on that table definition.

Indexes

Tables can have any number of indexes. There are two reasons for creating an index:

· creating an index based on columns which are to be used in relating one table to another, or a column which is queried frequently, makes accessing the table faster.

· a unique index ensures that the rows can be uniquely identified using the columns specified (you would normally use the ‘primary key’ clause A table must have a primary key if it is to have other tables linked to it.

create unique index VICTIM_IND on VICTIM (vno);

 To drop an index in Oracle:

drop index index_name;
To drop an index in Access (data definition query):

drop index index_name on table_name;

Data Dictionary

The data dictionary is used to find out what tables etc have been created. The data dictionary is populated automatically and can not be updated by the user.

Oracle

To display how a table has been defined, use the SQL*Plus describe command with the name of the table. for example:

describe DISTRICT
	Purpose
	SQL command

	display tables created
	select * from user_tables;

	display column names in the tables
	select * from user_tab_columns;

	what indexes created
	select * from user_indexes;

	what views (access queries) created
	select * from user_views;

	synonyms created
	select * from user_synonyms;

	tables, views, synonyms and sequences
	select * from user_catalog

A synonym is an alternative name for a table (not possible in Access) - mostly used when accessing another person’s tables and you want to avoid prefixing the name of the table with the username.

Access

Note that Access does not provide a proper data dictionary. If Options is selected from the View menu and system objects is set to yes, then several extra tables are listed whose names start with MSys, for example MSysObjects, and these can be examined.

File/Add-in Database Documentor is also very useful

Help

Oracle

The SQL*Plus help command provides internal help about SQL commands and clauses, SQL*Plus commands and other topics (listed by typing help on its own).

Microsoft Access

Press F1 for contextual help or use Help from the menu

Example queries

Simple selection

Q1: Find the district names and population from the DISTRICT table. (The names of tables are given in capitals by convention; in fact, case is ignored except in text strings.)

· The SQL select command specifies the conditions for selecting records.

· An SQL select command can have many clauses. As a minimum, it must specify which columns are to be selected (the columns are separated by commas; * means all columns) and which table(s) they are to be taken from (a from clause).

· SQL commands can continue over more than one line. If they are terminated by a semicolon they are executed immediately.

Oracle SQL

select district, population
from DISTRICT;

Microsoft Access

· Note that DISTINCTROW is added automatically to the SQL, this indicates that data based on duplicate entire records will not be displayed more than once. Data duplicated on selected fields will however still be displayed. Example Q10 shows how to display distinct values on selected fields.

· WITH OWNERACCESS OPTION is also added automatically. This gives the user in a multiuser environment, permission to view the data in a query even if the user is otherwise restricted from viewing the query's underlying tables. (ORACLE handles table security with separate SQL grant commands

	field
	district
	population

	sort
	
	

	show
	X
	X

	criteria
	
	

	or
	
	

·
SELECT DISTINCTROW district.district, district.population
FROM district
WITH OWNERACCESS OPTION;

Q2: Find the district names and population where the population is greater than 15000.

· Normally a where clause is included in the select command after the from clause to choose only records which fit specified criteria.

Oracle SQL

select district, population
from DISTRICT
where population > 15000;

Access

· Note that Access has a habbit of adding large numbers of brackets.

· Square brackets are used to determine field names and table names eg [victim].[assault_district] since including spaces and operators is allowed for names (but not advisable!)

· Round brackets are used around each where condition to determine order of precedence, and around functions eg avg(alcohol_24hr)
· Access added the where clause since a condition was given in the criteria

	field
	district
	population

	sort
	
	

	show
	X
	X

	criteria
	
	>15000

	or
	
	

·
SELECT DISTINCTROW district.district, district.population
FROM district
WHERE ((district.population > 15000))
WITH OWNERACCESS OPTION; ye
Program-code

Title

Program-code

Percentage

Course-code

PROGRAM

Prog_status

PROG_CRS

Enrol-no

Program-code

Course-code

IS_REG_IN

STUDIES

Grade

Title

Semester

Course-code

COURSE

Enrol-no.

Staff#

Staff#

Salary

Enrol-no.

Dob

STUDENT

Is a

DEPENDENT

Has

Full_Time

Administerative

Part_Time

No_Hrs

Pay_rate

Relationship

Name

Age

program

Name

STAFF MEMBER

Address

ph_no

Contact_no

Staff#

Name

Has

Has

Age

Address

UNIVERSITY

http://www.geocities.com/ignoumca/ 1
PAGE
38
http://www.geocities.com/ignoumca/

