 Course Code : MCS-024

OBJECT ORIENTED TECHNOLOGIES AND JAVA PROGRAMMING

Question 1:

(i).

what is object oriented paradigm?

The object-oriented paradigm focuses on the behavioral and structural characteristics of entities as complete units.

It is concept-centric (holistic) in that it focuses on all the types of features that constitute any given concept. The paradigm encompasses and supports the following pillars (first principles):

· Abstraction involves the formulation of representations by focusing on similarities and differences among a set of entities to extract intrinsic essential characteristics (relevant common features) and avoid extrinsic incidental characteristics (irrelevant distinguishing features) in order to define a single representation having those characteristics that are relevant to defining every element in the set.

· Encapsulation involves the packaging of representations by focusing on the hiding of details to facilitate abstraction, where specifications are used to describe what an entity is and what an entity does and implementations are used to describe how an entity is realized.

· Inheritance involves the relating and reusing of existing representations to define new representations.

· Polymorphism involves the ability of new representations to be defined as variations of existing representations, where new implementations are introduced but specifications remain the same such that a specification has many implementations.

These pillars are used to facilitates communication, increase productivity and consistency, and enable the management of change and complexity within problem-solving efforts.

(ii).

what is message passing?

A message is a structured piece of information sent from one agent to another over a communication channel. Some messages are requests made to one agent by another, other messages deliver data or notification to another agent. In most applications that we'll discuss, a message consists of a message identifier and, if needed, a set of message arguments. The message identifier tells the receiver the purpose or type of the message. The arguments to the message contain additional information that is interpreted based on the type of message. They may contain the object of an action (e.g., the message "xy" means, "Do x to y and return the result"), or they may contain information used to carry out a request (e.g., "x a b c " means, "Do x, and use a, b, and c to do it").

Message identifiers are usually simple, unique tokens that differentiate one type of message from another. They may even be simple integer values, where the agents on either end use a look-up table of some sort to match the value with its meaning. Message arguments, on the other hand, can be of many types. Some simple message protocols get away with using only basic data types, like integers, strings, and floating-point values, for message arguments. These arguments can be read and written directly using the DataInputStream and DataOutputStream classes. Other protocols need to use more complicated data types and objects as message arguments. These complex data types can be sent as an ordered sequence of simple data types over a DataOutputStream. They can also be transmitted as objects using the Java RMI object serialization support.

In some very well defined and controlled application environments, a message protocol may not need message identifiers at all. The interactions between agents may be so strictly defined that there's no need to specify the type of message being sent because the receiver is already expecting it. Suppose, for example, that we have two chess-playing agents talking to each other. Assuming that they both always make valid moves and that they both continue to play until checkmate results, the only kind of message they need to exchange is one that contains the next move that they want to make, with an optional argument that indicates if the move results in a "check" or a "checkmate." In this case, there's no need for message identifiers--the messages can just contain the chess players' moves.

In a sense, every network standard and protocol can be boiled down to some form of message passing. HTTP, SSL, even low-level network protocols like TCP/IP are protocols built around some form of message passing. When we speak of message passing, however, we are talking about message passing that is done explicitly by the application programmer. While these other protocols are built around some kind of message-passing protocol, that level of the protocol is hidden from the developer by an API of some kind. For example, SSL is utilized by an application programmer through a class library, where method calls on SSL-related objects are automatically broken down into SSL-compliant messages. Likewise, incoming SSL "messages" are processed and mapped into new data objects and method calls on SSL objects. This is what makes these complicated but powerful protocols so useful: the application programmer doesn't need to know the details of the protocol at the lower level. When we speak of message passing in this chapter, we're referring to situations where the message protocol--the generation and the processing of messages--is defined and performed directly at the application level.

Explain the advantages of message passing:

Universality: Message Passing (MP) model fits well on separate processors connected by fast/slow network. Matches the hardware of most of today's parallel supercomputers as well as network of workstations (NOW).
Expressivity: Message Passing (MP) has been found to be a useful and complete model in which to express parallel algorithms. It provides the control missing from data parallel or compiler based models.
Ease of debugging: Debugging of parallel programs remain a challenging research area. Debugging is easier for MPI paradigm than shared memory paradigm.

Performance:
1. This is the most compelling reason why Message Passing will remain a permanent part of parallel computing environment.
2. As modern CPUs become faster, management of their caches and the memory hierarchy is the key to getting most out of them.
3. Message passing allows a way for the programmer to explicitly associate specific data

with processes and allows the compiler and cache management hardware to function fully.
4. memory bound applications can exhibit super linear speedup when run on multiple PEs

 compare to single PE of Message Passing(MP).
question 2:

(i).

Explain the advantages of Platform Independence of Java

Platform independence is one of the most significant advantages that Java has over other programming languages, particularly for systems that need to work on many different platforms. Java is platform-independent at both the source and the binary level. Platform-independence is a program's capability of moving easily from one computer system to another. Java binary files called byte-codes are also platform-independent and can run on multiple platforms without the need to recompile the source. Byte-codes are a set of instructions that look a lot like machine code, but are not specific to any one processor. Because of them, compilation happens just once; interpretation occurs each time the program is executed. Java byte-codes help make "write once, run anywhere" possible

(ii).

what is super in java?

Java defines special variable, named "super", for use in the definitions of instance methods. The variable super is for use in a subclass. Like this, super refers to the object that contains the method. But it's forgetful. It forgets that the object belongs to the class you are writing, and it remembers only that it belongs to the super class of that class. The point is that the class can contain additions and modifications to the super class. super doesn't know about any of those additions and modifications; it can only be used to refer to methods and variables in the super class.

Explain different use of super with the help of Java program

Let's say that the class that you are writing contains an instance method named doSomething(). Consider the subroutine call statement super.doSomething(). Now, super doesn't know anything about the doSomething() method in the subclass. It only knows about things in the superclass, so it tries to execute a method named doSomething() from the superclass. If there is none, if the doSomething() method was an addition rather than a modification , you'll get a syntax error.

The reason super exists is so you can get access to things in the superclass that are hidden by things in the subclass. For example, super. x always refers to an instance variable named x in the superclass. This can be useful for the following reason: If a class contains an instance variable with the same name as an instance variable in its superclass, then an object of that class will actually contain two variables with the same name: one defined as part of the class itself and one defined as part of the superclass. The variable in the subclass does not replace the variable of the same name in the superclass; it merely hides it. The variable from the superclass can still be accessed, using super.

When you write a method in a subclass that has the same signature as a method in its superclass, the method from the superclass is hidden in the same way. We say that the method in the subclass overrides the method from the superclass. Again, however, super can be used to access the method from the superclass.

The major use of super is to override a method with a new method that extends the behavior of the inherited method, instead of replacing that behavior entirely. The new method can use super to call the method from the superclass, and then it can add additional code to provide additional behavior. As an example, suppose you have a PairOfDice class that includes a roll() method. Suppose that you want a subclass, GraphicalDice, to represent a pair of dice drawn on the computer screen. The roll() method in the GraphicalDice class should do everything that the roll() method in the PairOfDice class does. We can express this with a call to super.roll(). But in addition to that, the roll() method for a GraphicalDice object has to redraw the dice to show the new values. The GraphicalDice class might look something like this:
public class GraphicalDice extends PairOfDice {

 public void roll() {

 // Roll the dice, and redraw them.

 super.roll(); // Call the roll method from PairOfDice.

 redraw(); // Call a method to draw the dice.

 }

 .

 . // More stuff, including definition of redraw().

 .

 }

Note that this allows you to extend the behavior of the roll() method even if you don't know how the method is implemented in the superclass!

Here is a more complete example. The applet at the end of Section 4.7 shows a disturbance that moves around in a mosaic of little squares. As it moves, the squares it visits become a brighter red. The result looks interesting, but I think it would be prettier if the pattern were symmetric. A symmetric version of the applet is shown at the bottom of the next section. The symmetric applet can be programmed as an easy extension of the original applet.

 In the symmetric version, each time a square is brightened, the squares that can be obtained from that one by horizontal and vertical reflection through the center of the mosaic are also brightened. The four red squares in the picture, for example, form a set of such symmetrically placed squares, as do the purple squares and the green squares. (The blue square is at the center of the mosaic, so reflecting it doesn't produce any other squares; it's its own reflection.)

The original applet is defined by the class RandomBrighten. This class uses features of Java that you won't learn about for a while yet, but the actual task of brightening a square is done by a single method called brighten(). If row and col are the row and column numbers of a square, then "brighten(row,col);" increases the brightness of that square. All we need is a subclass of RandomBrighten with a modified brighten() routine. Instead of just brightening one square, the modified routine will also brighten the horizontal and vertical reflections of that square. But how will it brighten each of the four individual squares? By calling the brighten() method from the original class. It can do this by calling super.brighten().

There is still the problem of computing the row and column numbers of the horizontal and vertical reflections. To do this, you need to know the number of rows and the number of columns. The RandomBrighten class has instance variables named ROWS and COLUMNS to represent these quantities. Using these variables, it's possible to come up with formulas for the reflections, as shown in the definition of the brighten() method below.

Here's the complete definition of the new class:

 public class SymmetricBrighten extends RandomBrighten {

 void brighten(int row, int col) {

 // Brighten the specified square and its horizontal

 // and vertical reflections. This overrides the brighten

 // method from the RandomBrighten class, which just

 // brightens one square.

 super.brighten(row, col);

 super.brighten(ROWS - 1 - row, col);

 super.brighten(row, COLUMNS - 1 - col);

 super.brighten(ROWS - 1 - row, COLUMNS - 1 - col);

 }

 } // end class SymmetricBrighten

(iii). explain exception handling in java with the help of a programme.

 Class ExcepDemo {
 Public static void main(String args[]) {

 Try {

 Int n1=Integer.parseInt(args[0]);

 Int n2=Integer.parseInt(args[1]);

 Int n3=n1/n2;

 System.out.println(“Result is “+n3);

 }

Catch(ArrayIndexOutOfBoundsException e1) {

 System.out.println(“enter values from command line ……..”);

}

Catch(NumberFormatException e2) {

 System.out.println(“please enter digits, characters doesn’t accept……..”);

}

Catch(ArithmeticException e3) {

 System.out.println(“Arithmetic error……..”);

}

Finally {

 System.out.println(“Successfully executed………”);
}

 }

 }

question 3:
(i).Write a program in java for matrix multiplication.
class MatMul {

 public static void main(String ar[]) throws Exception {

java.io.DataInputStream dis=new java.io.DataInputStream(System.in);

System.out.println("enter matrix size");

System.out.println("enter rows");

int rows=Integer.parseInt(dis.readLine());

System.out.println("enter cols");

int cols=Integer.parseInt(dis.readLine());

int a[][]=new int[rows][cols];

int b[][]=new int[rows][cols];

int c[][]=new int[rows][cols];

int i,j;

//READ A MATRIX

 for(i=0;i<rows;i++){

 for(j=0;j<cols;j++){

 System.out.println("enter A matrix "+i+" row and "+j+" column");

 a[i][j]=Integer.parseInt(dis.readLine());

 }

 System.out.println();

 }

//READ B MATRIX

 for(i=0;i<rows;i++){

 for(j=0;j<cols;j++){

 System.out.println("enter B matrix "+i+" row and "+j+" column");

 b[i][j]=Integer.parseInt(dis.readLine());

 }

 System.out.println();

 }

//MULTIPLICATION OF A and B

for(i=0;i<rows;i++){

 for(j=0;j<cols;j++){

 c[i][j]=0;

 for(int k=0;k<cols;k++){

c[i][j]=a[i][k]*b[k][j];

 }

 }

}

//PRINTING

 for(i=0;i<rows;i++){

 for(j=0;j<cols;j++){

 System.out.print(c[i][j]+" ");

 }

 System.out.println();

 }

 }

}

class mat {

 public static void main(String ar[])

{

 int a[][]={{1,2,3},{4,5,6},{7,8,9}};

 int b[][]={{1,1,1},{1,1,1},{1,1,1}};

 int c[][]=new int[3][3];

 for(int i=0;i<3;i++)

 {

 for(int j=0;j<3;j++)

 {

 c[i][j] = 0;

 for(int k=0;k<3;k++)

 {

 c[i][j] +=a[i][k]*b[k][j];

 }

 }

 }

 for(int i=0;i<3;i++){

 for(int j=0;j<3;j++){

 System.out.print(c[i][j]);

 }

 System.out.println();

 }

 }

}

out put

 6 6 6

15 15 15

24 24 24

(ii). what is static method?

Static methods use no instance variables of any object of the class they are defined in. If you define a method to be static, you will be given a rude message by the compiler if you try to access any instance variables. You can access static variables, but except for constants, this is unusual. Static methods typically take all they data from parameters and compute something from those parameters, with no reference to variables. This is typical of methods which do some kind of generic calculation.

Explain why main method in java is always static:

The keyword static indicates that the method is a class method, which can be called without the requirement to instantiate an object of the class. This is used by the Java interpreter to launch the program by invoking the main method of the class identified in the command to start the program.

(iii). What is garbage collection?

The JVM's heap stores all objects created by an executing java program. objects are created by Java's "new" operator, and memory for new objects is allocated on the heap at run time. garbage collection is the process of automatically freeing objects that are no longer referenced by the program. this frees the programmer from having to keep track of when to free allocated memory, thereby preventing many potential bugs and headaches.

Explain the use of finalize method in java programming with example

Java finalize methods provide a mechanism for performing resource management operations, and so are superficially similar to C++ destructor methods. This similarity is due to the fact that both C++ destructors and Java finalize methods are invoked as part of the process of deallocating memory. The difference lies in how the invocation of the methods come about.

C++ requires programs to explicitly deallocate objects. Consequently, the invocation of C++ destructors is synchronous to a programs thread of execution. Java, however, does not require explicit deallocation of objects. Rather, it uses an independent garbage collection thread which is responsible for finding objects which are candidates for garbage collection, invoking their finalize methods and deallocating their memory. In effect, the invocation of a Java finalize method is asynchronous to the execution of the user code.

The strongest statement that can be made about the timing of finalize method invokations is that, at some stage after an object becomes a candidate for garbage collection, and prior to it being collected, the finalize method will be invoked. This unpredictable invocation time and order, means that the authors of finalize methods must take great care to ensure correct program behavior. Ill-considered use of finalize can lead to unpredictable results, such as race conditions.

/* Example shows garbage collector in action Note that the finalize() method of object GC1 runs without being specifically called and that the id's of garbage collected objects are not always sequential.

*/

class TestGC {

 public static void main(String[] args) {

 Runtime rt = Runtime.getRuntime();

 System.out.println("Available Free Memory: " + rt.freeMemory());

 for(int i=0; i<10000; i++) {

 GC1 x = new GC1(i);

 }

 System.out.println("Free Memory before call to gc(): " +

 rt.freeMemory());

 System.runFinalization();

 System.gc();

 System.out.println(" Free Memory after call to gc(): " +

 rt.freeMemory());

 }

}

class GC1 {

 String str;

 int id;

 GC1(int i) {

 this.str = new String("abcdefghijklmnopqrstuvwxyz");

 this.id = i;

 }

 protected void finalize() {

 System.out.println("GC1 object " + id + " has been finalized.");

 }

}

question 4:

(i). What is abstract class?

A class that is missing definitions for one or more methods. You can't thus create an object of that class. You must first create a subclass and provide definitions for the abstract methods. Unlike interfaces, abstract classes may implement some of the methods. Though you can't instantiate an abstract class, you can invoke its static methods.
A class that has no direct instances, but whose descendants may have direct instances.

A class that should never be instantiated; only its subclasses should be instantiated. Abstract classes are defined so that other classes can inherit from them.

A class that provides common behavior across a set of subclasses, but is not itself designed to have instances that work.

A class that contains the common features of components of several classes, but cannot it be instantiated by itself. It represents an abstract concept for which there is no actual concrete expression. For instance, "mammal" is an abstract class - there is no such real, concrete thing as a generic mammal.

A template class that contains such things as variable declarations and methods, but cannot contain code for creating new instances.

A class that cannot be instantiated, because it has one or more pure virtual functions. See also pure virtual.

A class which is used only as an ancestor and is never instantiated.

Write a program in java to explain the use of an abstract class:

Abstract classes can contain abstract and concrete methods. Abstract classes cannot be instantiated directly ie we cannot call the constructor of an abstract class directly nor we can create an instance of an abstract class by using

“Class.forName().newInstance()”

(Here we get java.lang.InstantiationException).

However, if we create an instance of a class that extends an Abstract class, compilor will initialize both the classes. Here compilor will implicitly call the constructor of the Abstract class.

For eg:

abstract class A {

 public A(){

System.out.println(”Constructor of A”);

}

protected abstract void aMethod();

}

class B extends A{

public B(){

System.out.println(”Constructor of B”);

}

protected void aMethod(){

// Overriding the abstract method in child class.

}

public static void main(String[] args){

new B();

}

};

The result after compilation and execution we get:

Constructor of A

Constructor of B

Any class that contain an abstract method must be declared “abstract” and abstract methods can have definitions only in child classes. By overiding and customizing the abstract methods in more than one subclass makes “Polymorphism” and through Inhertance we define body to the abstract methods.

(ii).
Explain the need of interface:

In Java an interface is similar to an abstract class in that its members are not implemented. In interfaces, none of the methods are implemented. There is no code at all associated with an interface.

All instance methods are implicitly public and abstract. You can mark them as such, but are discouraged from doing so as the marking is considered obsolete practice. The interfaces themselves need not be public and several interfaces in the standard libraries are not public and thus used only internally.

An interface creates a protocol that classes may implement. Note that one can extend an interface (to get a new interface) just as you can extend a class. One can actually extend several interfaces. Interfaces thus enjoy the benefits of multiple Inheritance. There are almost no disadvantages to multiple inheritance of Interface (small name conflict problems are one exception). There are large disadvantages to multiple inheritance of implementation as in C++. These include efficiency considerations as well as the semantic difficulty of determining just what code will be executed in some circumstances.

A class may choose to implement any number of interfaces. A class that implements an interface must provide bodies for all methods of that interface. Also, I expect that an abstract class can choose to implement part of an interface leaving the rest for non-abstract subclasses. I can't find this in the documentation, however. Anyone that needs to know can, of course, construct a simple example and try it to see if the compilers accept it. In Java, with its more complete definition than other languages, this should be an even more valuable technique, since compilers should differ very little.

Explain the advantage of interfaces in Java programming with an example.

When you define a new interface, you are defining a new reference data type. You can use interface names anywhere you can use any other data type name. If you define a reference variable whose type is an interface, any object you assign to it must be an instance of a class that implements the interface.

As an example, here is a method for finding the largest object in a pair of objects, for any objects that are instantiated from a class that implements Relatable:

public Object findLargest(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) > 0)

 return object1;

 else

 return object2;

}

By casting object1 to a Relatable type, it can invoke the isLargerThan method.

If you make a point of implementing Relatable in a wide variety of classes, the objects instantiated from any of those classes can be compared with the findLargest() method provided that both objects are of the same class. Similarly, they can all be compared with the following methods:

public Object findSmallest(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) < 0)

 return object1;

 else

 return object2;

}

public boolean isEqual(Object object1, Object object2) {

 Relatable obj1 = (Relatable)object1;

 Relatable obj2 = (Relatable)object2;

 if ((obj1).isLargerThan(obj2) == 0)

 return true;

 else

 return false;

}

These methods work for any "relatable" objects, no matter what their class inheritance is. When they implement Relatable, they can be of both their own class (or superclass) type and a Relatable type. This gives them some of the advantages of multiple inheritance, where they can have behavior from both a superclass and an interface.

Another Example :

 Interface sample1 {
 Int no=100;

 String name=”RAM”;

}

Interface sample2 {

 Public void test();

}
Class sample3 {

 Public void imp() {

 System.out.println(“THIS IS METHOD…”);

 }

Class sample4 extends sample3 implements sample1,sample2 {

 Public void test() {

 System.out.println(“THIS IS INTERFACE…”);

 }

}

Class Demo {
 Public static void main(String ar[]) {

 Sample4 s= New sample4();

 System.out.println(“no is “+s.no);.

 System.out.println(“name is “+s.name);.

 s.test();

 s.imp();

 }

}

Question 5:

(i). Write a Java program to create your own exception subclass:

Example1:
public class YourOwnException extends Exception{

 public YourOwnException(String msg){

 super(msg);

 }

}

Example2:
 Public class YourOwnException extends Exception {

Public YourOwnException(){}

 Public String toString() {

 Return “Your Message….”;

}

}
(ii).

String:
The String class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant, their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable they can be shared. For example:

String str = "abc";

 is equivalent to:

 char data[] = {'a', 'b', 'c'};

 String str = new String(data);

 Here are some more examples of how strings can be used:

 System.out.println("abc");

 String cde = "cde";

 System.out.println("abc" + cde);

 String c = "abc".substring(2,3);

 String d = cde.substring(1, 2);

 The class String includes methods for examining individual characters of the sequence, for comparing strings, for searching strings, for extracting substrings, and for creating a copy of a string with all characters translated to uppercase or to lowercase. Case mapping is based on the Unicode Standard version specified by the Character class.

The Java language provides special support for the string concatenation operator (+), and for conversion of other objects to strings. String concatenation is implemented through the StringBuilder(or StringBuffer) class and its append method. String conversions are implemented through the method toString, defined by Object and inherited by all classes in Java. For additional information on string concatenation and conversion, see Gosling, Joy, and Steele, The Java Language Specification.

Unless otherwise noted, passing a null argument to a constructor or method in this class will cause a NullPointerException to be thrown.

A String represents a string in the UTF-16 format in which supplementary characters are represented by surrogate pairs (see the section Unicode Character Representations in the Character class for more information). Index values refer to char code units, so a supplementary character uses two positions in a String.

The String class provides methods for dealing with Unicode code points (i.e., characters), in addition to those for dealing with Unicode code units (i.e., char values).

StringBuffer:

A thread-safe, mutable sequence of characters. A string buffer is like a String, but can be modified. At any point in time it contains some particular sequence of characters, but the length and content of the sequence can be changed through certain method calls.

String buffers are safe for use by multiple threads. The methods are synchronized where necessary so that all the operations on any particular instance behave as if they occur in some serial order that is consistent with the order of the method calls made by each of the individual threads involved.

The principal operations on a StringBuffer are the append and insert methods, which are overloaded so as to accept data of any type. Each effectively converts a given datum to a string and then appends or inserts the characters of that string to the string buffer. The append method always adds these characters at the end of the buffer; the insert method adds the characters at a specified point.

For example, if z refers to a string buffer object whose current contents are "start", then the method call z.append("le") would cause the string buffer to contain "startle", whereas z.insert(4, "le") would alter the string buffer to contain "starlet".

In general, if sb refers to an instance of a StringBuffer, then sb.append(x) has the same effect as sb.insert(sb.length(), x).

Whenever an operation occurs involving a source sequence (such as appending or inserting from a source sequence) this class synchronizes only on the string buffer performing the operation, not on the source.

Every string buffer has a capacity. As long as the length of the character sequence contained in the string buffer does not exceed the capacity, it is not necessary to allocate a new internal buffer array. If the internal buffer overflows, it is automatically made larger. As of release JDK 5, this class has been supplemented with an equivalent class designed for use by a single thread, StringBuilder. The StringBuilder class should generally be used in preference to this one, as it supports all of the same operations but it is faster, as it performs no synchronization.

Write a program to append a given string to another string:

Class StringAppend {

 Public static void main(String args[]) {

 String s1="ABC";

 String s2="DEF";
 String s3=s1+s2;

 System.out.println(s3);

 }

}

Output is ABCDEF
Question 6:
(i). What is Multithreading?

A thread executes a series of instructions. Every line of code that is executed is done so by a thread. Some threads can run for the entire life of the applet, while others are alive for only a few milliseconds.

Multithreading is the ability to have various parts of program perform program steps seemingly at the same time. Java let programs interleave multiple program steps through the use of threads. For example, one thread controls an animation, while another does a computation. In Java, multithreading is not only powerful, it is also easy to implement.

You can implement threads within a java program in two ways – Creating an object that extends Class Thread or implementing the interface Runnable.

The key difference between the two is that Thread class has a strart() method which your program simple calls whereas the Runnable class does not have a start method and you must create a Thread object and pass your thread to its constructor method. You never call run() method directly; the start method calls it.

 Write program to explain how implementing run able interface in java creates a thread.

class PrintString

{

 public static void main (String args [])

 {

 StringThread t = new StringThread ("Java",50);

 new Thread(t). start ();

 }

}

class StringThread implements Runnable

{

 private String str;

 private int num;

 StringThread(String s, int n)

 {

 str = new String (s);

 num =n;

 }

 public void run ()

 {

 for (int i=1; i<=num; i++)

 System.out.print (str+" ");

 }

}

If you have had created a thread class by extending Thread class, you could have directly called start() method as t.start (), where t is a thread object. This is because thread class created by extending Thread class is a subclass of Thread class, so it has all functionalities of a thread. While creating a thread implementing Runnable, a Thread object will have to be explicitly created which is what PrintString class is doing. It then passes StringThread object as a parameter to this thread and runs it. This causes the run () method of StringThread class to get executed.

(ii).

What are the classes in java available for file handling?

InputStream,OutputStream,FileInputStream,FileOutputStream,DataInputStream,DataOutputStream,BufferedInputStream,BufferedOutputStream,ObjectInputStream,ObjectOutputStream,File,StreamTokenizer,RandomAccessFile,CharArrayReader,CharArrayWriter,InputStreamReader,OutputStreamWriter,FileReader,FileWriter,ByteArrayInputStream,ByteArrayOutputStream,PipedInputStream,PipedOutputStream,PrintWriter,StringWriter,ZipInputStream,ZipOutputStream,GZIPInputStream,GZIPOutputSteam,JarInputSteam,JarOutputSteram etc.
Write a program in java to create file and copy the context of an already existing file into it.

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

class Copy {

 public static void main(String[] args) throws IOException {

 if(args.length < 2){

 System.out.println("Usage: java Copy <from file> <to file>");

 System.exit(0);

 }

 File inputFile = new File(args[0]);

 File outputFile = new File(args[1]);

 FileReader in = new FileReader(inputFile);

 FileWriter out = new FileWriter(outputFile);

 int c,flag=0;

 while ((c = in.read()) != -1){

 out.write(c);

 flag=1;

 }

 if(flag==1)

 System.out.println("File copied successfully........");

 else

 System.out.println("File not copied.........");

 in.close();

 out.close();

 }

}

Question 7:

(i). What is an applet?

A Java Applet is a small program designed to run in browser. Applet doesn’t have main method. Java applets usually consist of at least two parts: a class file, and applet HTML code. The class file is the actual Java program, while the applet code gives the program instructions (parameters) to run the way you've set it up.

Applets are little programs written in Java language. They are designed to run inside a web browser and to perform some tasks such as animated graphics and interactive tools.

Write a program to show how parameters are passed in an applet program.
AppletDemo.java

import java.applet.*;

import java.awt.Graphics;

public class AppletDemo extends Applet {

String name,age;

public void init() {

 name=getParameter("name");

 age=getParameter("age");

}

public void start() {

 repaint();

}

public void paint(Graphics g) {

 g.drawString("Name is "+name,50,100);

 g.drawString("Age is "+age,50,120);

}

}

AppletDemo.html

<html>

<body>

<applet code="AppletDemo" width="340" height="280">

 <param name="name" value="RAM">

 <param name="age" value="30">

</applet>

</body>

</html>

(ii).

Explain the different layout managers available in java.
 FlowLayout : By default, Flow Layout aligns components at the top, centered horizontally within the container. You can control the horizontal alignment by explicitly setting the horizontal Alignment attribute of a FlowLayout element. The vertical alignment cannot be changed.

 GridLayout : The grid layout to align controls within containers in a tabular fashion. The grid consists of cells that are arranged in rows and columns. Various controls can be added to the cells. You can insert the grid layout into any container control. Especially, use it in groups, tabstrips and trays . You can also nest grid layouts for arranging page elements on different levels.
 BorderLayout: A BorderLayout places objects in the North, South, East, West and Center of an Frame. This Layout is default for Frame and Window.

 GridBagLayout: GridBagLayout is the most flexible and complex layout manager. . A GridBagLayout places components in a grid of rows and columns, allowing specified components to span multiple rows or columns. Not all rows necessarily have the same height. Similarly, not all columns necessarily have the same width. Essentially, GridBagLayout places components in rectangles (cells) in a grid, and then uses the components' preferred sizes to determine how big the cells should be.

 CardLayout: The CardLayout layout manager arranges components in a stack, like a stack of cards. CardLayout treats each component in the container as a card, with only one card visible at a time. The ordering of cards is determined by the container's own internal ordering of its component objects, and the first component added to a CardLayout object is the visible component when the container is first displayed.

CustomLayout: A container component with freely designed layout and style. The container consists of items with textually represented locations. Each item contains one sub-component. The adapter and theme are responsible for rendering the layout with given style by placing the items on the screen in defined locations.

Write a program to show how a layout can be set in an applet.

LayoutDemo.java

import java.applet.*;

import java.awt.*;

public class LayoutDemo extends Applet {

public void init() {

 Label l1=new Label("Name");

 Label l2=new Label("Address");

 Label l3=new Label("Phone");

 TextField tf1=new TextField(20);

 TextField tf2=new TextField(20);

 TextArea ta=new TextArea(5,30);

 Button b1=new Button("OK");

 Button b2=new Button("CANCEL");

 GridLayout gl=new GridLayout(4,2);

 setLayout(gl);

 add(l1);add(tf1);

 add(l2);add(ta);

 add(l3);add(tf2);

 add(b1);add(b2);

}

}

LayoutDemo.html

<html>

<body>

<applet code="LayoutDemo" width="340" height="180">

</applet>

</body>

</html>

Question 8:
(i). What is a TCP/IP Socket? Explain basic Networking features of Java

Most Internet applications use sockets to implement network communication protocols. TCP/IP Sockets in Java,
(ii). Explain how database are connected to java program

import java.sql.*;

 class jdbcdemo {

public static void main(String ar[])

throws SQLException,ClassNotFoundException {

 //Load the Driver(JDBC-ODBC Bridge)

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 //Specify the ODBC Data source URL

 String url="jdbc:odbc:DSN";

 //open connection

 Connection con=DriverManager.getConnection(url,"scott","tiger");

 //Create and Execute a Query

 Statement st=con.createStatement();

 ResultSet rs=st.executeQuery("select * from student");

 //Process Results

 while(rs.next()) {

 //Get Current Row Values

 int rollno=rs.getInt("ROLLNO");

 String name=rs.getString("NAME");

 int marks=rs.getInt("MARKS");

 //Print Values

 System.out.println("Roll No : "+rollno);

 System.out.println("Name : "+name);

 System.out.println("Marks : "+marks);

 }

//Close Statement and Connection

 st.close();

 con.close();

}

 }

(iii). What is a session?
HTTP is a “stateless” protocol, each time a client retrieves a Web page, it

opens a separate connection to the Web server, and the server does not automatically

maintain contextual information about a client. Even with servers

that support persistent (keep-alive) HTTP connections and keep a socket

open for multiple client requests that occur close together in time ,there is no built-in support for maintaining contextual information.
What are the different ways of session tracking in servlet programming

Different ways of session tracking:

1. URL Rewriting

2. Cooke

3. Hidden Form Fields

4. HttpSession

http://www.geocities.com/ignoumca/ 12

