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Abstract

As quantum low-dimensional structures are of current interest, we tried to study the
basic microscopic behaviour of electron subsystem in superlattices. The microthe-
oretical method of two-time temperature dependent Green's functions was applied
for the calculation of electron energy spectra and spectral weights of electrons in
superlattices (crystalline structures formed by alternating thin �lms with changed
energy transfer between them). These analysis were performed combining the ana-
lytical (using the matrix representation of Chebishev's polynomials) and numerical
(using the programme Mathematica) approach leading to interesting results for the
explanation of some physical properties of these structures.
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1 Introduction

During the last few decades superlattices have been the subject of intensive experimental and

theoretical studies because of potential applications in electronic devices and the large variety

of transport and physical phenomena of these materials [1,2]. Consequently, many e�orts have

been made to determine the electronic structure of these materials using the di�erent methods

of calculation [3-6].

Typical example of superlattices are multi-layered crystalline structures type (AC)m(BC)n,

formed by alternating super-layers of m layers of the �rst two-component compound AC and n

layers of the second compound BC, along the direction of crystal growth [4]. On the basic our

previous paper, related to crystalline thin �lm model [7,8], we perform Green's function method

in order to calculate electron dispersion law and spectral weights of electrons in superlattice.

In
uence of electron energy transfer between and inside super-layers to electron spectra and

states was analyzed.
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2 Dispersion law of electrons

Figure 1 represents model of superlattice, which is formed by alternating super-layers (thin

�lms) of na (thickness d1) layers of constituent A and nb layers (thickness d2) of constituent B

(model of periodically superlattice [3,4,6]) along z direction, while it is in�nite along x and y

directions. Crystal parameters along x and y directions must the be same (aax = abx = ax and

aay = aby = ay), because the structure must not be stressed; while parameters along z direction

may be di�erent (aaz = aa 6= abz = ab and aa�bz = a).

Figure 1: Position of electrons along z-direction in superlattice

We base our analysis of electronic subsystem on the standard tight-binding electron Hamil-

tonian (of modeled structure) in harmonic and nearest-neighbor approximation [5-8]:
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where �a=b denotes the energy of electron localization on crystal sites, while W a=b
x , W a=b

y and

W a=b represent energy transfer between electrons inside super-layers along x, y and z di-

rections, respectively; W is electron energy transfer between super-layers along z direction;

mx=y are site index along x or y direction; mz is super-layer index (along z direction), while

ml 2 [0; na + nb � 1] is site index inside super-layer. Using the cycling conditions for x and y
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coordinates: fmxmymzml+Nx=y
= fmxmymzml

) eiNx=ykx=yax=y = e2��x=yi, we can write cycling

condition for super-layer along z-direction:

fmxmymzml+(na+nb)Nz
= fmxmymzml

;) ei(na+nb)Nzkz~a = e2��zi : (2)

Allowed values of kz can be counted by counter �z 2 0;�1;�2; :::;�Nz=2. On that way, we

can de�ne the limits of the �rst Brillouin zone (BZ) along z direction [9,10]:

kz 2

"
�

�

(na + nb)~a
;+

�

(na + nb)~a

#
; ~a =

(na � 1)aa + (nb � 1)ab + 2a

na + nb
; (3)

where ~a is mean value of interlayer distance along z direction.

In order to �nd electron dispersion law of superlattice we shall calculate single-particle

anti-commutator Green's function, using the Hamiltonian (1):

G~nnl;~mml
= �(t)h

n
anxnynznl; a

+
mxmymzml

o
i : (4)

After time Fourier transform we get equation of motion for Green's function:

�h!G~n;~m =
i�h

2�
Æ~n;~m +�~nG~n;~m � (5)
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where � 2 f�a;�bg, W
~n
x=y 2 fW a

x=y;W
b
x=yg and W~n;nxnynznl�1 2 fW a;W b;Wg, depending on

position in super-layer.

Performing partial spatial (xyz) Fourier transform (because translational symmetry is bro-

ken for index l):

f~n;~m =
1

NxNyNz

X
kxkykz

fnl;ml
ei[axkx(nx�mx)+ayky(ny�my)+~a(na+nb)kz(nz�mz)+J] ; (6)

J =

8>>><
>>>:

1: aakz(nl �ml) ; nl �ml < na
2: aakz(na � 1) + akz ; nl �ml = na
3: aakz(na � 1) + akz + abkz(nl �ml � na) ; na < nl �ml < na + nb
4: aakz(na � 1) + abkz(nb � 1) + 2akz ; nl �ml = na + nb

(7)

we obtain the system of na + nb nonhomogenious algebraic-di�erence equations for Green's

functions [6,9,10]:
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There are only na + nb di�erent Green's functions, because super-layers formed of na + nb
nonequivalent crystal layers (count by index l). Therefore, we wrote above system using rela-

tion: Gnxnynznl+(na+nb) = Gnxnynznl .

We simpli�ed model studying simple cubic lattice, where: aa = ab = ~a = a = az and aa=bx =

aa=by = az = a. Introducing the following shortnotes: W a
x=y=W = W a=W = �; W b

x=y=W =

W b=W = �; F = 2 (cos akx + cos aky) we can write determinant of system in form:

2
66666666666664
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0 0 0 j 0 0 � e�iakz %� j 0 0 0

� � � j � � � � j � � �
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3
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(9)

where: %� =
�h! ��

W
+ �F , %� =

�h! � "�

W
+ �F . Unknown na + nb Green's functions

can be found as Gnl;ml
=

Dnl;ml

D
, where Dnl;ml

is variable determinant, while D is system

determinant. The calculation of Green's function poles, which de�ne the spectrum of possible

electron energies, turns into calculation of the roots of the system determinant, i.e.:
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D = �(na+nb)Pna(
%

�
)Pnb(

%

�
)� 2�(na+nb�2)Pna�1(

%

�
)Pnb�1(

%

�
) + (10)

+ �(na+nb�4)Pna�2(
%

�
)Pnb�2(

%

�
) + (�1)(na+nb+1)�(na+nb�2) 2 cos [(na + nb)akz] = 0 ;

where Pn are Chebishev's type polynomials [8]. Condition (10) is written for simple superlattice

formed of super-layers of identical atoms (�a = �b = � and W a = W b = W ), while energy

transfer between the super-layers is di�erent (W 6= ~W ). In general case this condition can

be solved only numerically. Various combinations of super-layers numbers (na and nb) and

electron transfer energies (W and ~W ) were analyzed. The numerical results for kx = ky = 0

are graphically presented on Fig.2 and Fig.3.

Figure 2: Electron dispersion law for W = 0:5 ~W

Figure 3: Electron dispersion law for W = 1:5 ~W
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Due to new periodicity along z-direction electron dispersion curve of superlattice splits into

several (na + nb = d) quasi-continual dispersion branches separated by forbidden bands. If

energy transfer between super-layers is weaker than inside them (W < ~W ) all allowed energy

bands lie inside bulk energy limits (�h!= ~W 2 [0; 4]), i.e. the superlattice energy zone becomes

narrower (Fig.2). In analogy with thin �lm model [7,8], we can say that bottom and top

energy gap appear. That is direct consequence of the decreasing of electron transfer between

super-layers. Superlattice energy zone spreads outside the bulk energy limits when energy

transfer W > ~W . Energy mini-bands of localized electron states appear (Fig.3). In variance to

the crystalline �lm [7], where exist discrete localized states, mini-bands of localized states in

superlattice are quasi-continual, due to in�nity of superlattice.

Position, as well as distribution of energy mini-bands depends on number of layers and

electron energy transfer. In the case of symmetrical superlattices (na = nb), with identical

atoms (a = b), energy mini-bands join at the end of the �rst Brillouin zone. The change

of electronic transfer between identical symmetrical super-layers does not lead to opening of

forbidden zones for kz = �=(na + nb)~a [6,10]. Superlattice parameter is: (na + nb)=2 = na,

because both of super-layers have the same length. If central mini-bands join at the edge or at

centre of Brillouin zone electron dispersion law has a symmetry trough the line �h!= ~W = 2 (Fig

2b). Symmetry trough the point kz =
�

2~a(na + nb)
;
�h!
~W

= 2 (Fig 3b) appears when mini-bands

are not joined [6].

3 Spectral weights and spatial distribution

Space distribution of electrons can be found by layer's spectral weights of Green's functions

[9,11]. The starting point is the system of equations for Green's functions (8), written in matrix

form: D̂ ~G = ~K, where D̂ is na + nb order system matrix, while ~G and ~K are Green's functions

and "right hand side" vectors [11]. Applying inverse matrix D̂�1 we get: ~G = D̂�1 ~K, i.e:

Gnl;ml
=

1

D

X
q

Dnl;qlKql;ml
=

1

D

i�h

2�W

X
q

Dnl;qlÆql;ml
: (11)

Dnl;ql being co-factors of system matrix. We calculated only diagonal Green's functions Gnl;nl,

due to their importance in equilibrium processes. Factorizing multi-pole functions [9,11] we

obtain:

Gnl;nl =
i�h

2�W

na+nbX
�=1

gnl;nl(%�)

%� %�
: (12)

The spectral weights gnl;nl(%) are given by:

gnl;nl(%) =
Dnl;nl(%�)

d

d%
D(%)j%=%(�)

(13)

Spectral weights represent squared moduli of wave function and enable us to analyze spatial

distribution of �nding electrons along superlattice layers (z direction). By numerically analyzes

we calculate spectral weights of electrons for above mentioned simple superlattices (Fig.4).
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Figure 4: Space distribution of electron in superlattice

If W < ~W all states are bulk (Fig 4a), while for W > ~W localized states can appear (Fig.

4b). Some bulk states are distributed equally in both of material, but states of lowest and

highest energies are distributed only in one of material. Space distribution depends on number

of layers of superlattice. For even number of layers (dispersion law has symmetry trough the

line �h!= ~W = 2) there is the symmetry of space distribution (for lowest and highest energies

etc.) Localized states appear in centre of Brillouin zone if W > ~W , but in edge just for

enough value of W= ~W . For odd number of layers (symmetry of dispersion law trough point

(kz = �=(2a(na + nb)); �h!= ~W = 2)) there is symmetry between centre and edge of Brillouin

zone and localized states appear always when W > ~W [11]. Localized states appear, mostly,

on higher energies. By increasing ratio W= ~W number of these states increase.

4 Conclusion

In this paper we applied Green's function method in order to study electron con�guration

of superlattices. Apart from electron dispersion law and spectral weights, calculated here, this

approach enables the consistent derivation of some other statistical characteristics values of

superlattices (thermodynamics, transport, dielectric and other physical properties). Analyzing

electron spectra and states of electrons in superlattice we obtain the following results:

1. An in�nite superlattice separates free electron continuum onto allowed extended states

and forbidden bands, as a results of new periodicity of superlattice, as well as changed

electron transfer between super-layers.

2. All mini-bands lie inside bulk energy limits when energy transfer of electrons between

super-layers is weaker than inside them, so bottom and top energy gaps appear. These

typical bulk states can be distributed only in one of the �lms, what is shown by analysis

of spatial distribution of electrons.

3. Superlattice energy zone spreads outside bulk energy limits when electron energy transfer

between super-layers stronger than inside them. Energy mini-bands of localized states

appear. Probability of �nding an electron in these states is the maximal in the boundary

layers with sharp decrease inside layers.

The interest to described nanostructures in material science is based on the possibility of

manipulation of the physical properties of materials and devices by changing of mentioned
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characteristic parameters (number of layers and electron energy transfer). On the basic this

model and applied method there is possibility to investigate some other models of superlattice,

such as aperiodic (Fibonacci) superlattice with a novel physical properties [12].
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