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Abst ract  

The induced field distribution in materials, which inherently possess large internal magnetic fields, or in materials which get 
magnetized when placed in large external Magnetic Fields, is of importance to material scientists to adequately categorize the 
material for its possible uses. It addresses to the questions pertaining to the structure of the material in the given state of matter 
by inquiring into the details of the mechanisms by which the materials acquire the property of magnetism. To arrive at the 
required structural information ultimately, the beginning is made by studying the distribution of the magnetic field distributions 
within the material (essentially magnetization characteristics) so that the field distribution in the neighborhood of the 
magnetized (magnetic) material becomes tractable. The consequences external to the material due the internal magnetization is 
the prime concern in finding the utilization priorities for that material. In the materials known conventionally as the magnetic 
materials, the internal fields are of large magnitude. To know the magnetic field inducing mechanisms to a greater detail it may 
be advantageous to study the trends and patterns with a more sensitive situation of the smaller variations in the already small 
values of induced fields can be studied and the Nuclear Magnetic Resonance Technique turns out to be a technique, which 
seems suitable for such studies. When the magnetization is homogeneous through out the specimen, it is a simple matter to 
associate a demagnetization factor for that specimen with a given shape-determining factor. When the magnetized (magnetic) 
material is in-homogeneously magnetized, then a single demagnetization factor for the entire specimen would not be 
attributable but only point wise values. Then can an average demagnetization factor be of any avail and how can such average 
demagnetization factor be defined and calculated .It is a tedious task to evaluate the demagnetization factor for homogeneously 
magnetized, spherical (ellipsoidal) shapes. An alternative simpler mathematical procedure could be evolved which reproduces 
the already available tables of values with good accuracy. With this method the questions pertaining to induced field 
calculations and the inferences become more relevant because of the feasibility of approaches to find answers.  
 
KEY Words: Magnetic materials, Bulk susceptibility, Induced fields, Nuclear shielding, Demagnetization factors 
 
 
 
 
1. Introduction: 
The Nuclear Magnetic Resonance Technique can measure 
the Nuclear Shielding parameters. This Nuclear Shielding, 
particularly in solid single crystalline samples, arises due 
to the induced fields at the nuclear site in the molecules 
when these molecules themselves are placed in the crystal 
lattice points as determined by the symmetry elements of 
the Crystallographic Space Groups. As depicted in Fig.1, 
even though it is the prime concern in NMR experiments 
to detect the changes in the intra molecular electron-charge 
circulations by measuring the Nuclear Shielding, in order 
to obtain this specific molecular contributions, it becomes 
necessary to estimate the intermolecular [from the near 
neighbors and the far away bulk] contributions to induced 
fields at the nuclear site and appropriately take into 
account quantitatively to retrieve reliably, the intra 
molecular contributions only(1).  
As illustrated in Fig.2, the NMR spectra typically consist 
of one spectral line from one equivalent set of nuclei. The  
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Fig.1 Induced fields relevant in NMR Measurements 
 
line positions change when the intra molecular 
contributions vary from one molecule to another molecule. 



If the diamagnetic sample is homogeneously magnetized, 
then the intermolecular contributions to the induced fields 
at the nucleus would cause an additional shift of the line. 
But, if the sample is inhomogeneous magnetized, then the 
induced field contributions at the nuclear sites over the 
extent of the sample would very and this can cause a line 
width and line shape variations. This aspect of the NMR 
technique is borne out by the considerations in Ref.(2) and 
the references cited there in. 
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Fig.2 Defining the terms relevant for induced field 
calculations in magnetized materials and the possible way 
line shape and width changes can arise in NMR spectra 
due to variations in induced field distributions. 
 
 
An effort to interpret the results of High Resolution Proton 

Magnetic Resonance studies in organic molecular single 
crystals made evident the various contributions to the 
induced field as described. Further it led to the devising of 
a simple summation procedure for calculating 
demagnetization factors for specimens with shapes 
describable, as the ellipsoids of revolution and this seem to 
be simplifying the matters with regard to estimating the 
trends of the induced field contributions in such 
diamagnetic samples. It is the target set in this paper to 
bring out this point of view to the material scientists and to 
make it obvious as to how this can be useful for the 
understanding of field distribution patterns inside magnetic 
materials. At this stand point, it would be worthwhile to 
note also that trying to pin point the origin of the field at a 
point within a magnetized material raises the issues of 
whether it has to be a microscopic average or a 
macroscopic average which is relevant (3). 
 
2. Magnetic Dipole Model for the Calculation 
of Induced Fields: 
Fig.2 illustrates the various demarcations, in a Single 
Crystalline Spherical specimen, for the calculation of the 
induced field at the specific site. By definition, the Lorentz 
Sphere is a semi micro volume element surrounding the 
specified site. The intermolecular contributions from 
within this Lorentz Sphere at the central point has to be 
calculated as a discrete sum over the molecular 
contributions from every one of the molecules occurring 
within this spherical volume element. The contribution 
form the outer region is the macroscopic bulk 
demagnetization, which depends on the specimen shape 
factors. The required discrete summation of the 
contributions from each of the molecule 'i' is accomplished 
using the Equation 1. 
 
The Fig.3 depicts how at each individual lattice point; a 
spherical element can be placed with the consequence that 
due the susceptibility of the material in this spherical 
volume a magnetic moment is induced which is a dipole 
originating at the center of the sphere. This magnetic 
moment results in a Shielding at a distant point as per the 
Equation 1 and this shielding is proportinal to the induced 
filed at the distant point. When the radius of this spherical 
element is very small compared to the distance where its 
induced field is being calculated, then the point dipole 
approximation may be a valid approximation for the 
reliability of the induced filed values thus obtained. Fig.4 
gives the equation with all the 3 x 3 matrices are written 
out in the expanded form so that the required matrix 
multiplications are obvious. Thus the discrete summation 
within the sphere appears to be obviously simple to 
program on the computer. 
 
Even though, in all the efforts to calculate induced fields, 
ascertaining the magnitude of the induced magnetic dipole 
moment, which causes the induced field distribution 
around it, makes the beginning. Since the induced field 



distribution around a point magnetic dipole is simpler to 
envisage and amenable by simpler equations, if one can 
ensure that the point dipole approximation would be 
applicable then the corresponding calculation of the 
induced field would become simpler. The discrete 
summation within the Lorentz Sphere has this possibility 
inherently because it is possible to assess the magnetic 
susceptibility values for the molecules and let this give rise 
to the magnetic dipole moment at the appropriate central 
point in the molecule and try to calculate the induced field 
by Equation 1 at the site of the nucleus. It is usually 
possible that the distances are much larger than the 
corresponding molecular dimensions (where the magnetic 
moment originates) and hence point dipole approximation 
would be valid and the summation over all the molecular 
point dipole sources can be computed. 
 

σi=Σiχi /R3
i [1-(3.RRi /R5

i)]

Induced field Calculations using these equations 
and the magnetic dipole model have been simple 
enough when the summation procedures were 
applied as described in the previous 
presentations and expositions.  
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Fig.3. Equation for calculation of Shielding (induced field) 
by discrete summation of the contributions from within the 
Lorentz sphere. Explicit expression in terms of the matrix 
indicating the required matrix multiplication steps for such 
calculation. 
 
While handling a continuum situation, it is necessary to 
exercise discretion and hypothetically carve out small 
volume elements and associate the magnetic moment due 
to that volume susceptibility with that element and place it 
at the center. This hypothetical division should extend over 
the entire sample extent and from all these subdivided 
elements the contribution to induced field at a particular 
site can be calculated by an appropriate summation. But 
this concept in the case of a continuum essentially leads to 
an evaluation of an Integral for the effective summing. 
And it is well known in this case that the resulting integral 
thus set up becomes complicated even for the simpler case 
and evaluating it also is tedious. However for the case of 
the sample shapes which are regular ellipsoids of 
revolution evaluations of such integrals have been possible 
and for the various shape determining factors (the ratio of 
the polar / axial lengths for the shape) the Demagnetizing 
factors have been tabulated (4). In spite of this success, at 
the stages of the evolution the corresponding equations do 
not any longer retain the conceptualized simple physical 
picture of the point dipoles and hence at the end when one 
has a convenient table in the hand to use, this does not 
provide a convenient physical insight for interpreting the 
shape dependences for the other variety of shapes of 
specimen which occur and within which it is required to 
envisage the induced field distribution. This is more so 
because, for other shapes than the specific shape referred 
to above (that of ellipsoids) the materials have 
inhomogeneous magnetization over the extent of the 
specimen and it may not be possible to associate a single 
number as the shape dependent demagnetization factor 
applicable at any point within the specimen. 
 
3. The Simple Summation Procedure in Place 
of the Integration Over the Bulk of Sample: 
Fig.4 to Fig.6 illustrate in steps the alternative simple 
summation procedure, which evolved while being 
concerned with the interpreting the results of HR PMR 



studies on organic molecular single crystals for the 
determination of the shielding tensor of protons in 
molecules. This procedure seems to be capable of 
reproducing with good accuracy the tables of 
Demagnetization factors referred to earlier, which were 
calculated evaluating the complicated integrals which were 
set up for the case of shapes attributable with a single 
demagnetization factor for any point within the specimen. 
Fig.4 explains the essential principle used for working out 
such a summation procedure.  
At the outset what was sought for, was a possibility to 
divide the entire continuum bulk part of the specimen 
(excluding the Lorentz Cavity Fig.2) into small, closely 
packed elemental spherical volume elements each of which 
can be assigned a susceptibility value proportional to the 
volume of that spherical element  (to be multiplied with 
the uniform Volume Susceptibility of the specimen). By 
the close packing criteria it is to be ensured that the entire 
volume of the material is considered for the calculation. 
When placed in a magnetic field, these elemental spherical 
elements would be considered as giving rise to a magnetic 
moment due to its inherent susceptibility assigned as above 
and thus induced Magnetic Dipole Moment is placed at the 
center of that sphere for its origin.  
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Fig.4. The basic principle of the summation procedure 
illustrated. 
 
Thus this subdivision ensures that the total magnetic 
susceptibility of the entire specimen has been localized 
into closely packed elements with proportionate 
susceptibility values and the sum of all the elemental 
susceptibility values would yield the total susceptibility of 
the entire specimen. The main purpose of this subdivision 
is to ensure that, when, at any given point the induced field 
contribution is to be calculated, the distance from the 
center of the respective small volume element to that point 
would be much larger than the radius of the spherical 
element and hence the point dipole approximation would 
be valid. Setting up such an inherent criterion for the 
subdivision was the key to open up the possibility of this 
simple summation procedure, so that the resulting radius to 

distance ratio is small enough for all spherical elements 
when a particular point is specified where the induced field 
is to be calculated and for this particular case the point 
dipole approximation becomes automatically the valid 
approximation. As can be seen in Fig.4, this first step for 
the basic criterion is to ensure not only that the point 
dipole approximation is inherently valid but also that from 
every one of the elemental spheres along the length of a 
vector the subdivision ensures the contribution is the same. 
Which means if one knows the number of subdivided 
elements along the line, it is only required to know the 
number of such spheres to multiply with the contribution 
form any one spherical element. Fig.5 explains the 
equation used for evaluating the number 'n' of such point 
dipoles along the length of the vector. And the equation for 
'n' was the result of a simple derivation. The Fig.6 
illustrates the comprehensive situation for a macroscopic 
spherical sample, which will have to be considered with 
the subdivision criteria as above for arriving at the  
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Fig.5. An illustration of the equation required for the 
calculation of the number of close-packed spheres and the 
simultaneous criterion for the validity of point dipole 
approximation  
 
Demagnetization factor and induced fields at a central 
point in the sphere. This approach for evaluating the 
induced fields retained the simple physical basis of a 
dipole field distribution all through and at every stage and 
made it possible to think out such unconventional 
combination of outer specimen shapes with the inner 
Lorentz cavity shapes and deduce also the induced field 
variation trends by simple arguments. as depicted in Fig.7. 
In Fig.7 there is also a part, which explains the trends of 
discrete summations within the Lorentz Sphere. 
 
 
 
 
 

 



 
 
Fig.6. A figure indicating the summation required over all 
the radial vectors with different pola and azimuthal 
angular coordinates. 
 
 
 

a

b

Outer a/b=1                         outer a/b=0.25
Demagf=0.33 Demagf=0.708

inner a/b=1                          inner a/b=1
Demagf=-0.33 Demagf=-0.33 
0.33-0.33=0 0.708-0.33=0.378

conventional combinations of shapes
Fig.5[a]

Conventional cases

Current propositions of combinations
Outer a/b=1                outer a/b=0.25
Demagf=0.33 Demagf=0.708      

inner a/b=0.25            inner a/b=0.25
Demagf=-0.708 Demagf=-0.708
0.33-0.708=-0.378 0.708-0.708=0

Fig.5[b]

 
 
Fig.7. The summation procedure in the case of 
homogeneously magnetized sample;leading to the 
consideration of the unconventional combination of outer 
and inner shapes and the simplicity of handling such 
combinations to infer on the induced fields within the 
sample 
 
 

4. The Case of Homogeneous Magnetization 
and Inhomogeneous Magnetization: 
Fig.8 illustrates the advantages of this summation 
procedure, which is the direct consequence of the 
possibility to retain the physical picture in view at every 
stage during the calculation. Besides this qualitative 
advantage which is to be emphasized as the most important 
achievement now, quantitative aspects also stand to gain 
for the possibility of handling a spindle like shape or a 
cylindrical shape and use these basic criterion for 
subdividing the magnetized sample to arrive at the induced 
filed values at any point and at every point even if the 
induced filed values would not be the same at all points as 
ensured for the special shapes of the regular ellipsoids of 
revolution. It is no consolation for such shapes that the 
sample is made up of the same material with the same 
susceptibility value uniformly through out the spindle-
shaped specimen. The magnetization attributable to the 
susceptibility of a small volume element would be 
proportional to its volume. But, due to these induced 
magnetic moments the induced fields at various points 
within the specimen would sum up to the same value 
because of the resulting geometrical considerations for that 
shape. Thus if one can account for the fact that the 
ellipsoids result in the same value for the demagnetizing 
factor at every point within the specimen, then an account 
can be made also for the fact that for a spindle shaped 
specimen of the same material, the point by point values 
for the demagnetization factor within the specimen are not 
the same. In fact, by tabulating the values of the induced 
fields as a function of the spatial coordinate within the 
specimen for a given shape it is possible to compare the 
trends of the contributions as specific sums for comparable 
polar coordinates for different shapes and gain much 
greater insights than what was possible with the earlier 
method. These details would not be part of this paper since 
it would add to the length of this publication to such an 
extent as to become a distraction from the understanding of 
essential principles. 
 
5. Further Advantages and the NMR as a 
Sensitive Tool: 

1. First and Foremost, it was a very simple effort to 
reproduce the demagnetization factor values, 
which were obtained and tabulated in very early 
works on magnetic materials. Those Calculations 
which could yield such Tables of demagnetization 
factor values were rather complicated and 
required setting up elliptic integrals which had to 
be evaluated. 

2. Secondly, the principle involved is simply the 
convenient point dipole approximation of the 
magnetic dipole. And, the method requires 
hypothetically dividing the sample to be 
consisting of closely spaced spheres and the radii 
of these magnetized spheres are made to hold a 



convenient fixed ratio with their respective 
distances from the specified site at which point 
the induced fields are calculated. This fixed ratio 
is chosen such that for all the spheres the point 
dipole approximation would be valid while 
calculating the magnetic dipole field distribution. 

3. The demagnetization factors have been tabulated 
only for such shapes and shape factors for which 
the magnetization of the sample in the external 
magnetic field is uniform when the magnetic 
susceptibility of the material is the same 
homogeneously through out the sample. This 
restricts the tabulation to only to the shapes, 
which are ellipsoids of rotation. Where as, if the 
magnetization is not homogeneous through out 
the sample, then, there were no such methods 
possible for getting the induced field values at a 
point or the field distribution pattern over the 
entire specimen. The present method provides a 
greatly simplified approach to obtain such 
distributions. 

4. It seems it is also a simple matter, because of the 
present method, to calculate the contributions at a 
given site only from a part of the sample and 
account for this portion as an independent part 
from the remaining part without having to 
physically cause any such demarcations. This also 
makes it possible to calculate the field 
contribution from one part of the sample, which is 
within itself a part with homogeneously, 
magnetized part and the remaining part being 
another homogeneously magnetized part with 
different magnetization values. Hence a single 
specimen which is inherently in two 
distinguishable part can each be considered 
independently and their independent contribution 
can be added. 

 
For the point 1 mentioned above view the web 
page URL: 
http://saravamudhan.tripod.com/  
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