| NTROCDUCTI ON TO PROGRAMM NG

Probl em Sol vi ng Concepts, Flowcharting, and Progranm ng
Languages

It is the intent of this manual to provide an introduction to
conput er programm ng, and to the programm ng | anguage, BASIC
(Begi nners All-Purpose Synbolic Instruction Code). BASICis a
popul ar programm ng | anguage, especially for new programers and
casual conputer users. Its conversational nature nakes

communi cating with conputers natural, sinple, and
straightforward. Its use of near English words and mat hemati ca
expressions gives the coding a famliar appearance. Also, its
original design, to teach the casual user how to program nakes
it a good | anguage to learn first. For those of you with
conput er operations experience, this course is intended to
provide a transition fromoperations into programmng. It wll

i ntroduce concepts of programmi ng that apply to other |anguages
as well as BASIC. For those of you wth progranm ng experience,
it wll provide a review of progranm ng concepts and introduce
the capabilities of BASIC and its syntax. For those not in data
processi ng, who have a conputer available, it will pro-vide an
i ntroduction to a programm ng | anguage avail abl e on nost
conputers. \Wen you conpl ete the course, you should understand
the capabilities and syntax of the BASIC | anguage and be able to
wite a program

OVERVI EW OF PROGRAMM NG

Before learning to programin the |anguage, BASIC, it is hel pful
to establish sonme context for the productive part of the entire
programm ng effort. This context conprises the understandi ng and
agreenent that there are four fundanental and discrete steps

involved in solving a problemon a conputer. The four steps are:

1. State, analyze, and define the problem

2. Develop the program | ogic and prepare a program flowchart or
deci sion table.

3. Code the program prepare the code in nmachine readable form
prepare test data, and perform debug and test runs.

4. Conpl ete the docunentation and prepare operator procedures
for inplenmentation and production.

Figure 1-1 depicts the evolution of a program

Progranm ng can be conplicated, and advance preparation is
required before you can actually start to wite or code the
program The first two steps, probl em understandi ng/definition
and flowharting, fall into the advance pl anni ng phase of
programming. It is inportant at this point to devel op

- | 1
e —— P || ———
PROBLEM CODED
DEFINITION FROGRA M
FLOWCHART
TEARMINAL
FOR KEYING

PROGRAMS

<> e
—_ - isnm==c]
COdis
< >l — |
] |+ COMPUTER FOR
OBJECT PROGRAM ASSEMBLY / COMPILATION,
DEBUGGING AND TESTING

OUTPUT
PROGRAM LISTING

Figure 1-1. Evolution of a Program

correct habits and procedures, since this will prevent |ater
difficulties in pro-gram preparation.

Whet her you are working with a systens anal yst, a custoner, or
solving a problemof your own, it is extrenely inportant that
you have a thorough understandi ng of the problem
Every aspect of the problem nust be defi ned:

VWhat is the problenf

VWhat information (or data) is needed?

Where and how w Il the informati on be obtained?

What is the desired output?
Starting with only a portion of the information, or an
inconpl ete definition, will result in having to constantly alter
what has been done to acconmodate the additional facts as they

becone available. It is easier and nore efficient to begin
programm ng after all of the necessary information is

under st ood. Once you have a thorough understandi ng of the
problem the next step is flowcharting.

FLONCHARTI NG

Fl owmcharting is one nethod of pictorially representing a
procedural (step-by- step) solution to a problem before you
actually start to wite the conputer instructions required to
produce the desired results. Flowharts use different shaped
synbol s connected by one-way arrows to represent operations,
data, flow, equipnent, and so forth.

There are two types of flowcharts, system (data) flowharts and
programm ng flowcharts. A system (data) flowchart defines the
maj or phases of the processing, as well as the various data
medi a used. It shows the rel ationship of numerous jobs that
makeup an entire system In the system (data) flowchart, an
entire programrun or phase is always represented by a single
processi ng synbol, together with the input/output synbols
showi ng the path of data through a problem sol ution. For
exanpl e:

P&
RECORDS

FROCESS
PAYROLL

CHECKS

System Fl owchart

The second type of flowchart and the one we’ll use in this
manual is the progranm ng flowhart. It is constructed by the
programmer to represent the sequence of operations the conputer
is to performto solve a specific problem It graphically
describes what is to take place in the program It displays
speci fic operations and decisions, and their sequence within the
pro-gram For exanple

INPUT
EMFLOYEE i
HOLRS

FiY RATE

COMPUTE
OVERTIME
PAY

COWMFPUTE
REGULAR
AT

PRINT
PAYCHECK

Programm ng Fl owchart

Tool s of Flowcharting

Fl owcharti ng has been defined, and two different types of
flowcharts discussed. W will now take a | ook at the tools used
in flowmcharting. These tools are the fundanental synbol s,
graphic synbols, flowharting tenplate, and the flowharting
wor ksheet .

FUNDAMENTAL SYMBOLS. To construct a flowchart, it is first
necessary to know the synbols and their rel ated nmeani ngs. They
are standard for the mlitary, as directed by Departnent of the
Navy Automated Data Systens Docunentation Standards, SECNAVI NST
5233.1 (Series). Synbols are used to represent functions. These
fundanental functions are processing, decision, input/output,
termnal, flow lines and connector synbol. Al flowharts may be
initially constructed using only these fundanental synbols as a
rough outline to work from Each synbol corresponds to one of
the functions of a conputer and specifies the instruction(s) to
be performed by the conputer. The contents of these synbols are
call ed statenents. Sanples of these fundanental synbols,
definitions, exanples, and explanations of their uses are shown
in figure 1-2.

GRAPHI C SYMBOLS. Wthin a flowhart, graphic synbols are used to
specify arithnetic operations and relational conditions. The
foll ow ng are commonl y-used arithnmetic and rel ati onal synbol s.

+ plus, add

- minus, subtract
* multiply

! divide

H

plus or minus

= equal to
> greater than
< less than
= greater than or equal to
< less than or equal to
e not equal to
b not greater than
£ not less than
YESor Y Yes
NOor N No
TRUE or T True
FALSE or F False

FLOANCHARTI NG TEMPLATE. To aid in drawing the flowharting
synbol s, you may use a flowcharting tenplate. Figure 1-3 shows a
tenpl ate containing the standard synbol cutouts. A tenplate is
usual |y made of plastic with the synbols cut out to all ow
tracing the outline.

[

PROCESS SYMBOL is used to

represent general processing functions not represented by other
synbols. It depicts the process of operations resulting in a
change of value, form or location of information.

[]

| NPUT/ QUTPUT SYMBQL i s

used to represent any function of an I/O device. Making
informati on avail able for processing is an I nput function;
recordi ng processed information is an Qutput function.

<

DECI SI ON SYMBOL is used to depict a point in a programat which
a branch to one of two or nore alternate paths is possible.

D

TERM NAL, | NTERRUPT SYMBCOL start, stop, halt, delay, or
i nterrupt.

O

CONNECTOR SYMBOL represents a junction in a line of flowto
anot her part of the flowhart. A common identifier, such as an

al phabetic character, nunber, or mmenonic | abel, is placed
within the exit and its associated entry.
«— I

FLOALI NE SYMBOL is used to represent flow direction by |ines
drawn between synbols. Normal direction of flowis left to right
and top to bottom If the direction of flowis other than
normal , arrowheads are required at the point of entry.

EOHPLITE

MONTHLY

| IMTEREST
LE ik

Divide | by 12 assign value to R

IMPUT
88,0

J

Enter these values through the termnal, store in |ocations B

If Ais NOT equal to B, take NO branch.

If Ais equal to B, take YES branch.

STAAT FETOR

START/ STOP flow chart at this point.

E.ll'

5 O

This represents the EXIT point and the ENTRY point in a
fl owchart.

COWPUTE

|l|I Bl ANECE
buE

Initial processing is showmn here. If the NO branch is taken, the
processing bl ock is perfornmed again.

I f the YES branch is taken, the | NPUT/ QUTPUT operation is

per f or med.
INPUT
AUXILIARY
Akl 5]
OPERATION nu-[: ;ﬁT CONFORWE TO
Uik ETANDLRDE
INATITTE

MANUEL PROCESSING AND
FREDEFINED
CRERATION PROCESS
H3. 3 - dE

DOCUMENT

C: > \ToE
MANUAL INPUT O ﬁ E?I':;:'EFE
FLOW

IR

Figure 1-3. Flowhart Tenpl ate.

FLOAMCHART WORKSHEET. The Fl owchart Worksheet is a nmeans of
standar di zi ng docunentation. It provides space for draw ng
programm ng flowcharts and contains an area for identification
of the job, including application, procedure, date and page
nunbers (fig. 1-4). You may find it hel pful when you devel op
flowcharts. If you don’'t have this formavail able, a plain piece
of paper w |l do.

Constructing a Fl onchart

There is no "best way" to construct a flowhart. There is no way
to standardi ze probl em solution. Flowharting and progranm ng
techni ques are often unique and conformto the individual’s own
nmet hods or direction of problem sol ution.

This manual w |
flowchart. It
rather, it is one way to do it.

show an exanpl e of devel opi ng a progranm ng
is not the intent to say this is the best way;

By followng this text exanple

you should grasp the idea of solving problens through flowhart

constructi on.
t hese ideas wil|

serve as a foundati on.

As you gain experience and famliarity with a

In

conput er system
order to develop a flowchart,
you are to solve. It

definition and develop a flowhart to show the | ogic,

sequence of steps the conputer
t he probl em

As an exanpl e,

you nust first know what problem

is then your job to study the problem

steps, and
is to execute in order to sol ve

suppose you have taken a short-term second
nort gage on a new hone, and you want to determ ne what your

r eal

costs wll

be:

t he anount of

i nterest;

the anount to be applied

and the final

paynment at the end of the three year

to principal;
| oan peri od.

Frograseer: Fregeam Fo. Dot |
Chsr 100 sy Mlesa P igrams. Pl Fage:
o= A - —— —al - - At — — = A = ——
} 1 !] i i
| | - - : | | ; i '
T #* + E + a - & - 4
'] 1 i] 1 1 1]
i ' ' ! 1 1 ' ¥ b
S — = | — L — | P —
i e —— Ol o =AY e mmy [l L rE—+——q
i 1 i 1 i d 1 T
i] 1 1 ' 1 I I : :
+ 4 + i + . & i 4 4
' i ' ' ' v ' i
i] 1 1 [[l [1
...... = I —— | S ——— [N | I —
e e —— - ——— e — ——— e - ! s
H ' ¥ ' 1 ' '
i | ' | i I i
% * + ¥ - & l & 1 a
[| v i ' \ i H
1 J I ! ! 1 1 i |
[O —— S - [— [E - | |
.—nl—i-—-ul rl:l!—q-———' '—I::!—i-u-——».l l.-|:|_.-—.| rn’._.___1
[} ¥ '] i i 1 [}
] i [} i] 1 1 [} : i
t T L] 1 * 1 . - F F
[1 i 1 [i ¥ L |
i V ' I i b 1 . [
[T s mwk [I | I T - | I p——
PR [———— 1 I === Edm - —— rEs—+———
' ' i ' 1
i : 1 i 1 : I i :
+ * ¥ . q A + + H
I ' i ' i ' ' i '
i 1 i i i 1 i i {
e B Crmpmm [—— T —— |
Pl oo -y e —Fl - ——— e ey P ——
i 1] 1 1 i
i 1] 1 1 i : ' : '
+ ¥ i & i i W e " &
i i ! . i H L] i 1 i
i I ! 1 [' i ! 1
T | P e | I T | R — | I |
R o ——— = == el — = e ——y [-
H i ' [1
! J i ! I 1 | 1 1 i
v 4 - +
i : i : i - i i t 1
] L 1 1 ¥ i I 1 I
| I —— | I - | S e ——) I —
e ety | HE = —— mE—- —— - M = = ——y
F 1 i ' |] r i
I i I i | I 1 I i
t ¥ L + + . ¥] * +
' i 1 ' ' '
I | i i I " i]
| S —— [p— [R | | - -
= . - -y AT e =y Fal— - — Fdd - —-— I
! ! i | '
' ! 1 ' 1 i i 1
* + - + + . 4 + . "
i ' P 1 P | '
H | " 1 1 1 i []
R o= e ————— [—— ——— i = I ——
:—'I—--—-\ —Ei— == RN - = = =y el == ——
¥ ¥ I
1 1 L] 1
[! i] i] 1 ; [
- - - - - + - + -+ -
[} " ! i i 1 1 1 L] -
H [} ! i i 1 i i |4
L —mem = D e - = = = e ——] [T .

Figure 1-4. Flowchart Wbrksheet.

The first step is to be sure you understand the problem
conpletely. What are the inputs and the outputs and what steps
are needed to answer the questions? Even when you are specifying
a problemof your own, you' Il find we don’t usually think in
smal | detail ed sequential steps. But, that is exactly how a
conput er operates; one step after another in a specified order.
Therefore, it is necessary for you to think the problem solution
t hrough step-by- step. You mght clarify the problemas shown by
the ProblemDefinition in figure 1-5.

After you have this level of narrative problemdefinition, you
are ready to develop a flowhart showi ng the |logic, steps, and
sequence of steps you want the conputer to execute in order to
solve the problem A progranm ng flowchart of this problemis
al so shown in figure 1-5.

You now have a plan of what you want the conputer to do. The
next step is to code a programthat can be translated by a
conputer into a set of instructions it can execute. This step is
cal | ed program codi ng.

PROGRAM CODI NG

It is inportant to remenber programcoding is not the first step
of programm ng. Too often we have a tendency to start coding too
soon. As we discussed earlier, there is a great deal of planning
and preparation to be done prior to sitting dowmn to code the
conputer instructions to solve a problem For the exanple
anortization problem (fig. 1-5), we have anal yzed the
specifications in terns of (1) the output desired; (2) the
operations and procedures required to produce the output; and
(3) the input data needed. In conjunction with this analysis, we
have devel oped a programm ng flowchart which outlines the
procedures for taking the input data and processing it into
usabl e output. You are now ready to code the instructions that
will control the conmputer during processing. This requires that
you know a progranm ng | anguage.

Before getting into the specific progranm ng | anguage call ed
BASIC, it may be hel pful to have a greater understandi ng of
progranm ng | anguages i n general.

Al l programm ng | anguages are conposed of instructions that
enabl e the conputer to process a particular application, or
performa particular function.

| nstructions

The instruction is the fundanental el enent in program
preparation. Like a sentence, an instruction consists of a

subj ect and a predicate. However, the subject is usually not
specifically nmentioned; rather it is sonme inplied part of the
conputer systemdirected to execute the command that is given.
For exanple, the chief tells a sailor to "dunp the trash." The
sailor will interpret this instruction correctly even though the

subject "you" is omtted. Simlarly, if the conputer is told to,
"ADD 1234," the control unit may interpret this to nmean that the
arithmetic-logic unit is to add the contents of address 1234 to
the contents of the accumnul ator.

In addition to an inplied subject, every conmputer instruction
has an explicit predicate consisting of at |least two parts. The
first part is referred to as the command, or operation; it
answers the question "what?. " It tells the

(D INPUT

HOMTHLY PWT,
LCshA AMT.
1HT RETE

@ CALCULATE
WEHTHLY

IMTEREST
RATE

PROBLEM DEFI NI TI ON MORTGAGE AMORTI ZATI ON Thi s program
is to determne the nonthly anount of interest (A) and @[s

anount applied to the principal (P) of the nortgage han
giving the balance (B) at the end of a thirty-six
nmont h peri od. O em

EPBLIES TE
INTEREST

| NPUT: The nonthly paynent is to be entered as
vari abl e D, the beginning bal ance of the nortgage is

to be entered as variable B, and the annual interest ® BT
rate is to be entered as variable I. This input is to PRANCIPAL
be entered into the systemvia the term nal.

@ COMPUTE
QUTPUT: The end result is to be a listing displaying Ny

the anount applied to principal and interest and the
current | oan bal ance each nonth, with one final entry
showi ng the final paynent on the nortgage.

Figure 1-5. Problem Definition and Programm ng Fl owchart.

conput er what operation it is to perform i.e., read, print,

i nput. Each machine has a limted nunber of built-in operations
that it is capable of executing. An operation code is used to
comuni cate the programmer’s intent to the conputer

The second specific part of the predicate, known as the operand
nanmes the object of the operation. In general, the operand
answers the question "where?." Operands may indicate the
fol | ow ng:

1. The location where data to be processed is found.
2. The |l ocation where the result of processing is to be stored.

3. The location where the next instruction to be executed is
f ound.

(When this type of operand is not specified, the instructions
are executed in sequence.) The nunber of operands and the
structure or format of the instructions vary from one conputer
to anot her. However, the operation always cones first in the
instruction and is foll owed by the operand(s). The programmer
must prepare instructions according to the format required by
t he | anguage and the conputer to be used.

| nstructi on Set

The nunber of instructions in a conputer’s instruction set nmay
range fromless than 30 to nore than 100. These instructions may
be classified into categories such as input/output (1/0, data
nmovenent, arithmetic, logic, and transfer of control.

| nput / out put instructions are used to communi cate between 1/0
devices and the central processor. Data novenent instructions
are used for copying data fromone storage | ocation to another
and for rearranging and changi ng of data elenents in sone
prescri bed manner. Arithmetic instructions permt addition,
subtraction, multiplication, and division. They are common in
all digital conputers. Logic instructions allow conparison

bet ween vari abl es, or between variabl es and constants. Transfer
of control instructions are of two types, conditional or
uncondi tional. Conditional transfer instructions are used to
branch or change the sequence of program control, depending on
t he outconme of the conparison. If the out-conme of a conparison
is true, control is transferred to a specific statenent nunber;
if it proves fal se, processing continues sequentially through
the program Unconditional transfer instructions are used to
change the sequence of programcontrol to a specified program
statenent regardl ess of any condition.

Progranm ng Languages

Progranmers nust use a | anguage that can be understood by the
conputer. There are several nethods that can achi eve hunan-
conput er conmmuni cation. For exanple, let us assune the conputer
only understands French and the programer speaks English. The
guestion arises: How are we to communi cate with the conputer?
One approach is for the programer to code the instructions with
the help of a translating dictionary prior to giving themto the
processor. This would be fine so far as the conputer is
concerned; however, it would be very awkward for the programer.
Anot her approach is a conprom se between the progranmmer and
conputer. The programrer first wites instructions in a code
that is easier to relate to English. This code is not the
conputer’s | anguage; therefore, it does not understand the
orders. The programmer solves this problemby giving the
conput er another program one that enables it to translate the
instruction code into its own |anguage. This translation
program for exanple, would be equivalent to an English-to-

French dictionary, leaving the translating job to be done by the
conput er.

The third and nost desirabl e approach froman individual’s
standpoint, is for the conputer to accept and interpret
instructions witten in everyday English terns. Each of these
approaches has its place in the evolution of progranm ng

| anguages and is used in conputers today. The first approach is
known as machi ne | anguage, the second as synbolic, and the third
as procedure-oriented.

MACHI NE LANGUAGES. Wth early conputers, the programrer had to
translate instructions into the machine | anguage formthat the
conput ers understood. This | anguage was a string of nunbers that
represented the instruction code and operand address(es).

In addition to renenbering dozens of code nunbers for the
instructions in the conputer’s instruction set, the progranmer
al so had to keep track of the storage |ocations of data and
instructions. This process was very tinme consunmng, quite
expensive and often resulted in errors. Correcting errors or
maki ng nodi fications to these prograns was a very tedious
process.

SYMBCOLI C LANGUACES. In the early 1950s, mmenoni c instruction
codes and synbolic addresses were devel oped. This inproved the
program preparati on process by substituting letter synbols
(menoni ¢ codes) for basic nmachi ne | anguage i nstruction codes.
Each conputer has menoni ¢ code, although the synbols vary anong
the different makes and nodel s of conmputers. The conputer stil
uses machi ne | anguage in actual processing, but it translates

t he synbolic | anguage i nto machi ne | anguage equival ent. Synbolic
| anguages have many advant ages over machi ne | anguage coding in
that less time is required to wite a program detail is
reduced, and fewer errors are nmade. Errors which are nade are
easier to find, and prograns are easier to nodify.

PROCEDURE- ORI ENTED LANGUACES. The devel opnment of mmenonic

t echni ques and macroinstructions led to the devel opnent of
procedure-oriented | anguages. These | anguages are oriented
toward a specific class of processing problens. A class of
simlar problens is isolated, and a | anguage is devel oped to
process these types of applications. Several |anguages have been
designed to process problens of a scientific-mathematical nature
and others that enphasize file processing. The nost fam liar of
these are BASI C and FORTRAN for scientific or mathemati cal

probl ens, and COBCL for file processing.

Progranms witten in procedure-oriented | anguages, unlike those
in synbolic | anguages, may be used with a nunber of different
conput er makes and nodels. This feature greatly reduces
reprogranmm ng expenses when changi ng from one conputer systemto
anot her. O her advantages to procedure-oriented | anguages are:
(1) they are easier to learn than synbolic | anguages; (2) they
require less time to wite; (3) they provide better
docunentation; and (4) they are easier to maintain. However,
there are sone di sadvant ages of procedure-oriented | anguages.

They require nore space in nmenory and they process data at a
slower rate than synbolic | anguages.

Codi ng a Program

Regardl ess of the | anguage used, there are strict rules the
programer nust adhere to with regard to punctuation and
statenment structure when coding any program Using the
programm ng flowchart introduced earlier, we have now added a
program coded in BASIC to show the relationship of the flowchart
to the actual coded instructions (fig. 1-6). Don’t worry about
conpl ete understandi ng, just look at the instructions with the
flowhart to get an idea of what coded instructions |ook |ike.

You wi Il have to have specific information about the conputer
you are to use and how the | anguage is inplenented on that
particul ar conputer. The conputer nmanufacturers provide these
specifics in their user’s manual. Get a copy and study it before
you begin to code. To you, but they nay prevent your program
from runni ng.

Once coding is conpleted, the program nust be debugged and
tested prior to inplenentation.

Debuggi ng

Errors caused by faulty logic and coding m stakes are referred
to as "bugs." Finding and correcting these m stakes and errors

t hat prevent the program from runni ng and produci ng correct
output is called "debugging." Rarely do conplex progranms run to
conpletion on the first attenpt. Oten, tinme spent debuggi ng and
testing equals or exceeds the tinme spent in programcoding. This
is particularly true if insufficient time was spent on problem
definition and | ogi c devel opnent. Sone common m st akes which
cause program bugs are: m stakes in coding punctuati on,

i ncorrect operation codes, transposed characters, keying errors
and failure to provide a sequence of instructions (a program
pat h) needed to process certain conditions. To reduce the nunber
of errors, you will want to carefully check the coding sheets
before they are turned in for keying. This process is known as
"desk-checki ng" and shoul d i nclude an exam nati on for program
conpl et eness.

Typi cal input data should be manually traced through the program
processing paths to identify possible errors. In effect, you
will be attenpting to play the role of the conputer. After the
program has been desk-checked for accuracy, the programis ready
to be assenbled or conpiled. Assenbly and conpiler prograns
prepare your program (source program to be executed by the
conputer and they have error diagnostic features which detect
certain types of mstakes in your program These m stakes nust
be corrected. Even when an error-free pass of the program

t hrough the assenbly or conpiler programis acconplished, this
does not nean your programis perfected. However, it usually
means the programis ready for testing.

Testing

Once a programreaches the testing stage, generally, it has
proven it will run and produce output. The purpose of testing is
to determne that all

@ LALLULAIR

g 10 PRINT “ENTER MONTHLY PAYMENT, *;
20 PRINT ""LOAN AMOUNT, INTEREST RATE"’
O e 30 INPUT D,B,I
“ ar
40 LETR=IN2
O 50 FORM=1T0 36
AMOURT
R 60 LETA=B*R
70 LETP-D-A
Oz, 80 LETB-B_p
FRINCIFAL
I 90 PRINT M:D:B,P.A
coumur 100 NEXTM
B EHGE
110 PRINT ““WITH ONE FINAL PAYMENT OF,B
120 END
@ T,
1IIII|‘|H‘.1T

Figure 1-6. Programm ng Flowchart and Coded Program

data can reprocessed correctly and that the output is correct.
The testing process involves processing input test data that
w Il produce known results. The test data should include: (1)
typical data, which will test the comonly used program pat hs;
(2) unusual but valid data, which wll test the program paths
used to process exceptions; and (3) incorrect, inconplete, or
I nappropriate data, which will test the program s error
routines. |If the pro-gram does not pass these tests, nore
testing is required. You will have to exam ne the errors and
review the coding to make the coding corrections needed. Wen
t he program passes these tests, it is ready for conputer

i npl enment ati on. Before conputer inplenentation takes place,
docunent ati on nust be conpl et ed.

Docunent ati on

Docunentation is a continuous process, beginning with the
probl em definition. Docunmentation involves collecting,

organi zing, storing, and other-w se maintaining a conplete
record of the progranms and ot her docunents associated with the
data processing system

The Navy has established docunentation standards to ensure
conpl eteness and uniformty for conputer systeminformation
bet ween commands and between civilian and Navy organi zati ons.
SECNAVI NST 5233.1 (Series) establishes m ni num docunent ati on
requi renents.

Local m ni mum docunentati on requirenents are usually established
by the head of the data processing departnent/division. At nost
commands this function is delegated to the project manager. The
key to the m ni mum anmount of docunentation required by | ocal
commands shoul d be the anmount that is required for replacenent
personnel to understand input, processing, and output for each
program or system for which they will be responsible. A
docunent ati on package shoul d incl ude:

1. Adefinition of the problem Wy was the programwitten?
What were the objectives? Wi requested the program and who
approved it? These are the types of questions that should be
answer ed.

2. A description of the system The system environnent
(hardware, software, and organization) in which the program
functions should be described (including systens flowharts).
CGeneral systens specifications outlining the scope of the
problem the formand type of input data to be used, and the
formand type of output required should be clearly defined.

3. A description of the program Programm ng flowcharts, program
listings, programcontrols, test data and test results, storage
dunps these and ot her docunents that describe the program and
give a historical record of problens and/or changes shoul d be

i ncl uded.

4. QOperator instructions. Itens that should be included are
conputer switch settings, |oading and unl oadi ng procedures, and
starting, running, and term nation procedures.

| mpl ement ati on

After the docunentation has been conpl eted, and the user has
reviewed and accepted the test output, the project request is
subm tted to upper nmanagenent, usually the ADP departnent head,
for production approval. Once upper managenent has approved the
program it can be put into production. If a programis to
replace a programin an existing system it is generally wise to
have a period of parallel processing; that is, the job
application is processed both by the old program and by the new
program The purpose of this period is to verify processing
accuracy and conpl eteness. Once the programis in production it

maybe necessary to make nodifications to the programto satisfy
changi ng requirenents. This is another inportant duty of the
programmer, and it is not unusual to find programmers spending
25 percent of their time on this program mai ntenance activity.
In sonme installations, there are progranmers who do not hi ng but
mai nt ai n producti on prograns.

SUMVARY

The first step in the solution of any probleminvol ves a
fundanental but often overl ooked concept a thorough
under st andi ng of the problem The second step in successful
probl em sol ving involves creating a flowhart show ng the steps
required to solve the problem

Flowcharting is a pictorial nmeans of representing a procedural
solution to a problemin which different shaped synbols are used
to represent operations, data, flow, equipnment and so forth.
There are two types of flowcharts system (data) and progranmm ng.
The tools of flowharting are: (1) fundanental synbols; (2)
graphic synbols; (3) flowharting tenplate; and (4) flowharting
wor ksheet .

The problemdefinition and fl owhart devel opnent steps nust be
done prior to sitting down to code the conputer instructions to
sol ve a problem Regardless of the | anguage used, there are
strict rules you nust adhere to with regard to punctuation and
statenment structure when coding a program Once the programis
coded, there are several phases that nust be done before it can
be put into production. These are desk-checking, debuggi ng,
testing, docunentation and finally, inplenentation.

