
INTRODUCTION TO PROGRAMMING 

Problem Solving Concepts, Flowcharting, and Programming 
Languages 

It is the intent of this manual to provide an introduction to 
computer programming, and to the programming language, BASIC 
(Beginners All-Purpose Symbolic Instruction Code). BASIC is a 
popular programming language, especially for new programmers and 
casual computer users. Its conversational nature makes 
communicating with computers natural, simple, and 
straightforward. Its use of near English words and mathematical 
expressions gives the coding a familiar appearance. Also, its 
original design, to teach the casual user how to program, makes 
it a good language to learn first. For those of you with 
computer operations experience, this course is intended to 
provide a transition from operations into programming. It will 
introduce concepts of programming that apply to other languages 
as well as BASIC. For those of you with programming experience, 
it will provide a review of programming concepts and introduce 
the capabilities of BASIC and its syntax. For those not in data 
processing, who have a computer available, it will pro-vide an 
introduction to a programming language available on most 
computers. When you complete the course, you should understand 
the capabilities and syntax of the BASIC language and be able to 
write a program. 

OVERVIEW OF PROGRAMMING 

Before learning to program in the language, BASIC, it is helpful 
to establish some context for the productive part of the entire 
programming effort. This context comprises the understanding and 
agreement that there are four fundamental and discrete steps 
involved in solving a problem on a computer. The four steps are: 

1. State, analyze, and define the problem. 

2. Develop the program logic and prepare a program flowchart or 
decision table. 

3. Code the program, prepare the code in machine readable form, 
prepare test data, and perform debug and test runs. 

4. Complete the documentation and prepare operator procedures 
for implementation and production. 

Figure 1-1 depicts the evolution of a program. 

Programming can be complicated, and advance preparation is 
required before you can actually start to write or code the 
program. The first two steps, problem understanding/definition 
and flowcharting, fall into the advance planning phase of 
programming. It is important at this point to develop 



 
Figure 1-1. Evolution of a Program. 

correct habits and procedures, since this will prevent later 
difficulties in pro-gram preparation. 

Whether you are working with a systems analyst, a customer, or 
solving a problem of your own, it is extremely important that 
you have a thorough understanding of the problem. 

Every aspect of the problem must be defined: 

   What is the problem? 

   What information (or data) is needed? 

   Where and how will the information be obtained? 

   What is the desired output? 

Starting with only a portion of the information, or an 
incomplete definition, will result in having to constantly alter 
what has been done to accommodate the additional facts as they 
become available. It is easier and more efficient to begin 
programming after all of the necessary information is 



understood. Once you have a thorough understanding of the 
problem, the next step is flowcharting. 

FLOWCHARTING 

Flowcharting is one method of pictorially representing a 
procedural (step-by- step) solution to a problem before you 
actually start to write the computer instructions required to 
produce the desired results. Flowcharts use different shaped 
symbols connected by one-way arrows to represent operations, 
data, flow, equipment, and so forth. 

There are two types of flowcharts, system (data) flowcharts and 
programming flowcharts. A system (data) flowchart defines the 
major phases of the processing, as well as the various data 
media used. It shows the relationship of numerous jobs that 
makeup an entire system. In the system (data) flowchart, an 
entire program run or phase is always represented by a single 
processing symbol, together with the input/output symbols 
showing the path of data through a problem solution. For 
example: 

 
System Flowchart 

The second type of flowchart and the one we’ll use in this 
manual is the programming flowchart. It is constructed by the 
programmer to represent the sequence of operations the computer 
is to perform to solve a specific problem. It graphically 
describes what is to take place in the program. It displays 
specific operations and decisions, and their sequence within the 
pro-gram. For example: 



 
Programming Flowchart 

 

Tools of Flowcharting 

Flowcharting has been defined, and two different types of 
flowcharts discussed. We will now take a look at the tools used 
in flowcharting. These tools are the fundamental symbols, 
graphic symbols, flowcharting template, and the flowcharting 
worksheet. 

FUNDAMENTAL SYMBOLS. To construct a flowchart, it is first 
necessary to know the symbols and their related meanings. They 
are standard for the military, as directed by Department of the 
Navy Automated Data Systems Documentation Standards, SECNAVINST 
5233.1 (Series). Symbols are used to represent functions. These 
fundamental functions are processing, decision, input/output, 
terminal, flow lines and connector symbol. All flowcharts may be 
initially constructed using only these fundamental symbols as a 
rough outline to work from. Each symbol corresponds to one of 
the functions of a computer and specifies the instruction(s) to 
be performed by the computer. The contents of these symbols are 
called statements. Samples of these fundamental symbols, 
definitions, examples, and explanations of their uses are shown 
in figure 1-2. 

GRAPHIC SYMBOLS. Within a flowchart, graphic symbols are used to 
specify arithmetic operations and relational conditions. The 
following are commonly-used arithmetic and relational symbols. 



 
 

FLOWCHARTING TEMPLATE. To aid in drawing the flowcharting 
symbols, you may use a flowcharting template. Figure 1-3 shows a 
template containing the standard symbol cutouts. A template is 
usually made of plastic with the symbols cut out to allow 
tracing the outline. 

 
PROCESS SYMBOL is used to 

represent general processing functions not represented by other 
symbols. It depicts the process of operations resulting in a 
change of value, form, or location of information. 

 
INPUT/OUTPUT SYMBOL is 

used to represent any function of an I/O device. Making 
information available for processing is an Input function; 
recording processed information is an Output function. 

 



 
DECISION SYMBOL is used to depict a point in a program at which 
a branch to one of two or more alternate paths is possible. 

 
TERMINAL, INTERRUPT SYMBOL start, stop, halt, delay, or 
interrupt. 

 
CONNECTOR SYMBOL represents a junction in a line of flow to 
another part of the flowchart. A common identifier, such as an 
alphabetic character, number, or mnemonic label, is placed 
within the exit and its associated entry. 

 
FLOWLINE SYMBOL is used to represent flow direction by lines 
drawn between symbols. Normal direction of flow is left to right 
and top to bottom. If the direction of flow is other than 
normal, arrowheads are required at the point of entry. 

 
Divide I by 12 assign value to R. 

 
Enter these values through the terminal, store in locations B, 
D, I. 

 
If A is NOT equal to B, take NO branch. 

If A is equal to B, take YES branch. 

 
START/STOP flow chart at this point. 

 



 
This represents the EXIT point and the ENTRY point in a 
flowchart. 

 
Initial processing is shown here. If the NO branch is taken, the 
processing block is performed again. 

If the YES branch is taken, the INPUT/OUTPUT operation is 
performed. 

 
Figure 1-3. Flowchart Template. 

FLOWCHART WORKSHEET. The Flowchart Worksheet is a means of 
standardizing documentation. It provides space for drawing 
programming flowcharts and contains an area for identification 
of the job, including application, procedure, date and page 
numbers (fig. 1-4). You may find it helpful when you develop 
flowcharts. If you don’t have this form available, a plain piece 
of paper will do. 

Constructing a Flowchart 

There is no "best way" to construct a flowchart. There is no way 
to standardize problem solution. Flowcharting and programming 
techniques are often unique and conform to the individual’s own 
methods or direction of problem solution. 



This manual will show an example of developing a programming 
flowchart. It is not the intent to say this is the best way; 
rather, it is one way to do it. By following this text example 
you should grasp the idea of solving problems through flowchart 
construction. As you gain experience and familiarity with a 
computer system, these ideas will serve as a foundation. In 
order to develop a flowchart, you must first know what problem 
you are to solve. It is then your job to study the problem 
definition and develop a flowchart to show the logic, steps, and 
sequence of steps the computer is to execute in order to solve 
the problem. 

As an example, suppose you have taken a short-term second 
mortgage on a new home, and you want to determine what your real 
costs will be: the amount of interest; the amount to be applied 
to principal; and the final payment at the end of the three year 
loan period. 

 
Figure 1-4. Flowchart Worksheet. 



The first step is to be sure you understand the problem 
completely. What are the inputs and the outputs and what steps 
are needed to answer the questions? Even when you are specifying 
a problem of your own, you’ll find we don’t usually think in 
small detailed sequential steps. But, that is exactly how a 
computer operates; one step after another in a specified order. 
Therefore, it is necessary for you to think the problem solution 
through step-by- step. You might clarify the problem as shown by 
the Problem Definition in figure 1-5. 

After you have this level of narrative problem definition, you 
are ready to develop a flowchart showing the logic, steps, and 
sequence of steps you want the computer to execute in order to 
solve the problem. A programming flowchart of this problem is 
also shown in figure 1-5. 

You now have a plan of what you want the computer to do. The 
next step is to code a program that can be translated by a 
computer into a set of instructions it can execute. This step is 
called program coding. 

 

PROGRAM CODING 

It is important to remember program coding is not the first step 
of programming. Too often we have a tendency to start coding too 
soon. As we discussed earlier, there is a great deal of planning 
and preparation to be done prior to sitting down to code the 
computer instructions to solve a problem. For the example 
amortization problem (fig. 1-5), we have analyzed the 
specifications in terms of (1) the output desired; (2) the 
operations and procedures required to produce the output; and 
(3) the input data needed. In conjunction with this analysis, we 
have developed a programming flowchart which outlines the 
procedures for taking the input data and processing it into 
usable output. You are now ready to code the instructions that 
will control the computer during processing. This requires that 
you know a programming language. 

Before getting into the specific programming language called 
BASIC, it may be helpful to have a greater understanding of 
programming languages in general. 

All programming languages are composed of instructions that 
enable the computer to process a particular application, or 
perform a particular function. 

Instructions 

The instruction is the fundamental element in program 
preparation. Like a sentence, an instruction consists of a 
subject and a predicate. However, the subject is usually not 
specifically mentioned; rather it is some implied part of the 
computer system directed to execute the command that is given. 
For example, the chief tells a sailor to "dump the trash." The 
sailor will interpret this instruction correctly even though the 



subject "you" is omitted. Similarly, if the computer is told to, 
"ADD 1234," the control unit may interpret this to mean that the 
arithmetic-logic unit is to add the contents of address 1234 to 
the contents of the accumulator. 

In addition to an implied subject, every computer instruction 
has an explicit predicate consisting of at least two parts. The 
first part is referred to as the command, or operation; it 
answers the question "what?. " It tells the 

PROBLEM DEFINITION MORTGAGE AMORTIZATION  This program 
is to determine the monthly amount of interest (A) and 
amount applied to the principal (P) of the mortgage 
giving the balance (B) at the end of a thirty-six 
month period.  

INPUT: The monthly payment is to be entered as 
variable D, the beginning balance of the mortgage is 
to be entered as variable B, and the annual interest 
rate is to be entered as variable I. This input is to 
be entered into the system via the terminal. 

OUTPUT: The end result is to be a listing displaying 
the amount applied to principal and interest and the 
current loan balance each month, with one final entry 
showing the final payment on the mortgage. 

  

Figure 1-5. Problem Definition and Programming Flowchart.  

computer what operation it is to perform; i.e., read, print, 
input. Each machine has a limited number of built-in operations 
that it is capable of executing. An operation code is used to 
communicate the programmer’s intent to the computer. 

The second specific part of the predicate, known as the operand 
names the object of the operation. In general, the operand 
answers the question "where?." Operands may indicate the 
following: 



1. The location where data to be processed is found. 

2. The location where the result of processing is to be stored. 

3. The location where the next instruction to be executed is 
found.  

(When this type of operand is not specified, the instructions 
are executed in sequence.) The number of operands and the 
structure or format of the instructions vary from one computer 
to another. However, the operation always comes first in the 
instruction and is followed by the operand(s). The programmer 
must prepare instructions according to the format required by 
the language and the computer to be used. 

Instruction Set 

The number of instructions in a computer’s instruction set may 
range from less than 30 to more than 100. These instructions may 
be classified into categories such as input/output (I/O), data 
movement, arithmetic, logic, and transfer of control. 
Input/output instructions are used to communicate between I/O 
devices and the central processor. Data movement instructions 
are used for copying data from one storage location to another 
and for rearranging and changing of data elements in some 
prescribed manner. Arithmetic instructions permit addition, 
subtraction, multiplication, and division. They are common in 
all digital computers. Logic instructions allow comparison 
between variables, or between variables and constants. Transfer 
of control instructions are of two types, conditional or 
unconditional. Conditional transfer instructions are used to 
branch or change the sequence of program control, depending on 
the outcome of the comparison. If the out-come of a comparison 
is true, control is transferred to a specific statement number; 
if it proves false, processing continues sequentially through 
the program. Unconditional transfer instructions are used to 
change the sequence of program control to a specified program 
statement regardless of any condition. 

Programming Languages 

Programmers must use a language that can be understood by the 
computer. There are several methods that can achieve human-
computer communication. For example, let us assume the computer 
only understands French and the programmer speaks English. The 
question arises: How are we to communicate with the computer? 
One approach is for the programmer to code the instructions with 
the help of a translating dictionary prior to giving them to the 
processor. This would be fine so far as the computer is 
concerned; however, it would be very awkward for the programmer. 
Another approach is a compromise between the programmer and 
computer. The programmer first writes instructions in a code 
that is easier to relate to English. This code is not the 
computer’s language; therefore, it does not understand the 
orders. The programmer solves this problem by giving the 
computer another program, one that enables it to translate the 
instruction code into its own language. This translation 
program, for example, would be equivalent to an English-to-



French dictionary, leaving the translating job to be done by the 
computer. 

The third and most desirable approach from an individual’s 
standpoint, is for the computer to accept and interpret 
instructions written in everyday English terms. Each of these 
approaches has its place in the evolution of programming 
languages and is used in computers today. The first approach is 
known as machine language, the second as symbolic, and the third 
as procedure-oriented. 

MACHINE LANGUAGES. With early computers, the programmer had to 
translate instructions into the machine language form that the 
computers understood. This language was a string of numbers that 
represented the instruction code and operand address(es). 

In addition to remembering dozens of code numbers for the 
instructions in the computer’s instruction set, the programmer 
also had to keep track of the storage locations of data and 
instructions. This process was very time consuming, quite 
expensive and often resulted in errors. Correcting errors or 
making modifications to these programs was a very tedious 
process. 

SYMBOLIC LANGUAGES. In the early 1950s, mnemonic instruction 
codes and symbolic addresses were developed. This improved the 
program preparation process by substituting letter symbols 
(mnemonic codes) for basic machine language instruction codes. 
Each computer has mnemonic code, although the symbols vary among 
the different makes and models of computers. The computer still 
uses machine language in actual processing, but it translates 
the symbolic language into machine language equivalent. Symbolic 
languages have many advantages over machine language coding in 
that less time is required to write a program, detail is 
reduced, and fewer errors are made. Errors which are made are 
easier to find, and programs are easier to modify. 

PROCEDURE-ORIENTED LANGUAGES. The development of mnemonic 
techniques and macroinstructions led to the development of 
procedure-oriented languages. These languages are oriented 
toward a specific class of processing problems. A class of 
similar problems is isolated, and a language is developed to 
process these types of applications. Several languages have been 
designed to process problems of a scientific-mathematical nature 
and others that emphasize file processing. The most familiar of 
these are BASIC and FORTRAN for scientific or mathematical 
problems, and COBOL for file processing. 

Programs written in procedure-oriented languages, unlike those 
in symbolic languages, may be used with a number of different 
computer makes and models. This feature greatly reduces 
reprogramming expenses when changing from one computer system to 
another. Other advantages to procedure-oriented languages are: 
(1) they are easier to learn than symbolic languages; (2) they 
require less time to write; (3) they provide better 
documentation; and (4) they are easier to maintain. However, 
there are some disadvantages of procedure-oriented languages. 



They require more space in memory and they process data at a 
slower rate than symbolic languages. 

 

Coding a Program 

Regardless of the language used, there are strict rules the 
programmer must adhere to with regard to punctuation and 
statement structure when coding any program. Using the 
programming flowchart introduced earlier, we have now added a 
program coded in BASIC to show the relationship of the flowchart 
to the actual coded instructions (fig. 1-6). Don’t worry about 
complete understanding, just look at the instructions with the 
flowchart to get an idea of what coded instructions look like. 

You will have to have specific information about the computer 
you are to use and how the language is implemented on that 
particular computer. The computer manufacturers provide these 
specifics in their user’s manual. Get a copy and study it before 
you begin to code. To you, but they may prevent your program 
from running. 

Once coding is completed, the program must be debugged and 
tested prior to implementation. 

Debugging 

Errors caused by faulty logic and coding mistakes are referred 
to as "bugs." Finding and correcting these mistakes and errors 
that prevent the program from running and producing correct 
output is called "debugging." Rarely do complex programs run to 
completion on the first attempt. Often, time spent debugging and 
testing equals or exceeds the time spent in program coding. This 
is particularly true if insufficient time was spent on problem 
definition and logic development. Some common mistakes which 
cause program bugs are: mistakes in coding punctuation, 
incorrect operation codes, transposed characters, keying errors 
and failure to provide a sequence of instructions (a program 
path) needed to process certain conditions. To reduce the number 
of errors, you will want to carefully check the coding sheets 
before they are turned in for keying. This process is known as 
"desk-checking" and should include an examination for program 
completeness. 

Typical input data should be manually traced through the program 
processing paths to identify possible errors. In effect, you 
will be attempting to play the role of the computer. After the 
program has been desk-checked for accuracy, the program is ready 
to be assembled or compiled. Assembly and compiler programs 
prepare your program (source program) to be executed by the 
computer and they have error diagnostic features which detect 
certain types of mistakes in your program. These mistakes must 
be corrected. Even when an error-free pass of the program 
through the assembly or compiler program is accomplished, this 
does not mean your program is perfected. However, it usually 
means the program is ready for testing. 



Testing 

Once a program reaches the testing stage, generally, it has 
proven it will run and produce output. The purpose of testing is 
to determine that all 

 
Figure 1-6. Programming Flowchart and Coded Program. 

data can reprocessed correctly and that the output is correct. 
The testing process involves processing input test data that 
will produce known results. The test data should include: (1) 
typical data, which will test the commonly used program paths; 
(2) unusual but valid data, which will test the program paths 
used to process exceptions; and (3) incorrect, incomplete, or 
inappropriate data, which will test the program’s error 
routines. If the pro-gram does not pass these tests, more 
testing is required. You will have to examine the errors and 
review the coding to make the coding corrections needed. When 
the program passes these tests, it is ready for computer 
implementation. Before computer implementation takes place, 
documentation must be completed. 



Documentation 

Documentation is a continuous process, beginning with the 
problem definition. Documentation involves collecting, 
organizing, storing, and other-wise maintaining a complete 
record of the programs and other documents associated with the 
data processing system. 

The Navy has established documentation standards to ensure 
completeness and uniformity for computer system information 
between commands and between civilian and Navy organizations. 
SECNAVINST 5233.1 (Series) establishes minimum documentation 
requirements. 

Local minimum documentation requirements are usually established 
by the head of the data processing department/division. At most 
commands this function is delegated to the project manager. The 
key to the minimum amount of documentation required by local 
commands should be the amount that is required for replacement 
personnel to understand input, processing, and output for each 
program or system for which they will be responsible. A 
documentation package should include: 

1. A definition of the problem. Why was the program written? 
What were the objectives? Who requested the program, and who 
approved it? These are the types of questions that should be 
answered. 

2. A description of the system. The system environment 
(hardware, software, and organization) in which the program 
functions should be described (including systems flowcharts). 
General systems specifications outlining the scope of the 
problem, the form and type of input data to be used, and the 
form and type of output required should be clearly defined. 

3. A description of the program. Programming flowcharts, program 
listings, program controls, test data and test results, storage 
dumps these and other documents that describe the program and 
give a historical record of problems and/or changes should be 
included. 

4. Operator instructions. Items that should be included are 
computer switch settings, loading and unloading procedures, and 
starting, running, and termination procedures. 

Implementation 

After the documentation has been completed, and the user has 
reviewed and accepted the test output, the project request is 
submitted to upper management, usually the ADP department head, 
for production approval. Once upper management has approved the 
program, it can be put into production. If a program is to 
replace a program in an existing system, it is generally wise to 
have a period of parallel processing; that is, the job 
application is processed both by the old program and by the new 
program. The purpose of this period is to verify processing 
accuracy and completeness. Once the program is in production it 



maybe necessary to make modifications to the program to satisfy 
changing requirements. This is another important duty of the 
programmer, and it is not unusual to find programmers spending 
25 percent of their time on this program maintenance activity. 
In some installations, there are programmers who do nothing but 
maintain production programs. 

SUMMARY 

The first step in the solution of any problem involves a 
fundamental but often overlooked concept a thorough 
understanding of the problem. The second step in successful 
problem solving involves creating a flowchart showing the steps 
required to solve the problem. 

Flowcharting is a pictorial means of representing a procedural 
solution to a problem in which different shaped symbols are used 
to represent operations, data, flow, equipment and so forth. 
There are two types of flowcharts system (data) and programming. 
The tools of flowcharting are: (1) fundamental symbols; (2) 
graphic symbols; (3) flowcharting template; and (4) flowcharting 
worksheet. 

The problem definition and flowchart development steps must be 
done prior to sitting down to code the computer instructions to 
solve a problem. Regardless of the language used, there are 
strict rules you must adhere to with regard to punctuation and 
statement structure when coding a program. Once the program is 
coded, there are several phases that must be done before it can 
be put into production. These are desk-checking, debugging, 
testing, documentation and finally, implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 


