
ExAnte: Anticipated Data Reduction in
Constrained Patterns Mining

Francesco Bonchi†‡, Fosca Giannotti†, Alessio Mazzanti,‡ and Dino Pedreschi‡

Pisa KDD Laboratory ??

http://www-kdd.cnuce.cnr.it

†ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
e-mail Giannotti@cnuce.cnr.it

‡Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy

e-mail {bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Constraint pushing techniques have been proven to be effec-
tive in reducing the search space in the frequent pattern mining task,
and thus in improving efficiency. But while pushing anti-monotone con-
straints in a level-wise computation of frequent itemsets has been rec-
ognized to be always profitable, the case is different for monotone con-
straints. In fact, monotone constraints have been considered harder to
push in the computation and less effective in pruning the search space.
In this paper, we show that this prejudice is not founded and introduce
ExAnte, a pre-processing data reduction algorithm which reduces dra-
matically both the search space and the input dataset in constrained
frequent patterns mining. Experimental results show a reduction of or-
ders of magnitude, thus enabling a much easier mining task. ExAnte
can be used as a pre-processor with any constrained patterns mining
algorithm.

1 Introduction

Constrained itemsets mining is a hot research theme in data mining [3, 6–12].
The most studied constraint is the frequency constraint, whose anti-monotonicity
is used to reduce the exponential search space of the problem. Exploiting the
anti-monotonicity of the frequency constraint is known as apriori trick [1, 2]:
it dramatically reduces the search space making the computation feasible. Fre-
quency is not only computationally effective, it is also semantically important
since frequency provides ”support” to any discovered knowledge. For these rea-
sons frequency is the base constraint of what is generally referred to as frequent
itemsets mining. However, many other constraints can facilitate user-focussed
?? The present research is founded by ”Fondazione Cassa di Risparmio di Pisa” under

the ”WebDigger Project”. Results from this research have been submitted for pub-
lication to ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’03)

exploration and control, as well as reduce the computation. For instance, a user
could be interested in mining all frequently purchased itemsets having a total
price greater than a given threshold and containing at least two products of
a given brand. Among these constraints, classes have been individuated which
exhibit nice properties. The class of anti-monotone constraints is the most effec-
tive and easy to use in order to prune the search space. Since any conjunction
of anti-monotone constraints is in turn anti-monotone, we can use the apriori
trick to exploit completely the pruning power of the conjunction: the more anti-
monotone constraints, the more selective the apriori trick will be.

The dual class, monotone constraints, has been considered more complicated
to exploit and less effective in pruning the search space. As highlighted by Bouli-
caut and Jeudy in [3], pushing monotone constraints can lead to a reduction of
anti-monotone pruning. Therefore, when dealing with a conjunction of mono-
tone and anti-monotone constraints we face a tradeoff between anti-monotone
and monotone pruning. Our observation is that the above consideration holds
only if we focus completely on the search space of all itemsets, which is the
approach followed by the work done so far.

In this paper we show that the most effective way of attacking the prob-
lem is to reason on both the itemsets search space and the transactions input
database together. In this way, pushing monotone constraints does not reduce
anti-monotone pruning opportunities, on the contrary, such opportunities are
boosted. Dually, pushing anti-monotone constraints boosts monotone pruning
opportunities: the two components strengthen each other recursively. We prove
our previous statement by introducing ExAnte, a pre-processing data reduc-
tion algorithm which reduces dramatically both the search space and the input
dataset in constrained frequent patterns mining.

ExAnte can exploit any constraint which has a monotone component, there-
fore also succinct monotone constraints [9] and convertible monotone constraints
[10, 11] can be used to reduce the mining computation. Being a preprocessing
algorithm, ExAnte can be coupled with any constrained patterns mining algo-
rithm, and it is always profitable to start any constrained patterns computation
with an ExAnte preprocess. The correctness of ExAnte is formally proven in this
paper, by showing that the reduction of items and transaction database does not
affect the set of constrained frequent patterns, which are solutions to the given
problem, as well as their support. We discuss a through experimentation of the
algorithm, which points out how effective the reduction is, and which potential
benefits it offers to subsequent frequent pattern computation.

Our contributions:

Summarizing, the data reduction algorithm proposed in this paper is character-
ized by the following:

– ExAnte uses for the first time, the real synergy of monotone and anti-
monotone constraints to prune the search space and the input dataset: the
total benefit is greater than the sum of the two individual benefits.

– ExAnte can be used with any constraint which has a monotone component:
therefore also succinct monotone constraints and convertible monotone con-
straints can be exploited.

– ExAnte maintains the exact support of each solution itemsets: a necessary
condition if we want to compute Association Rules.

– ExAnte can be used to make feasible the discovery of particular patterns
which can be discovered only at very low support level, for which the com-
putation is unfeasible for traditional algorithms.

– Being a pre-processing algorithm, ExAnte can be coupled with any con-
strained patterns mining algorithm, and it is always profitable to start any
constrained patterns computation with an ExAnte preprocess.

– ExAnte is efficient and effective: even a very large input dataset can be
reduced of an order of magnitude in a small computation.

– A thorough experimental study has been performed with different monotone
constraints on various datasets (both real world and synthetic datasets), and
the results are described in details.

2 Problem Definition

Let Items = {x1, ..., xn} be a set of distinct literals, usually called items. An
itemset X is a non-empty subset of Items. If k = |X| then X is called a
k-itemset. A transaction is a couple 〈tID,X〉 where tID is the transaction
identifier and X is the content of the transaction (an itemset). A transac-
tion database TDB is a set of transactions. An itemset X is contained in a
transaction 〈tID, Y 〉 if X ⊆ Y . Given a transaction database TDB the subset
of transaction which contain an itemset X is named TDB[X]. The support
of an itemset X, written suppTDB(X) is the cardinality of TDB[X]. Given a
user-defined minimum support δ, an itemset X is called frequent in TDB if
suppTDB(X) ≥ δ. This the definition of the frequency constraint Cfreq[TDB]: if
X is frequent we write Cfreq[TDB](X) or simply Cfreq(X) when the dataset is
clear from the context.

Let Th(C) = {X|C(X)} denotes the set all itemsets X that satisfy constraint
C. The frequent itemset mining problem requires to compute the set of all fre-
quent itemsets Th(Cfreq). In general given a conjunction of constraints C the
constrained itemset mining problem requires to compute Th(C); the constrained
frequent itemsets mining problem requires to compute Th(Cfreq) ∩ Th(C).

We now formally define the notion of anti-monotone and monotone con-
straints.

Definition 1. Given an itemset X, a constraint CAM is anti-monotone if

∀Y ⊆ X : CAM (X) ⇒ CAM (Y)

If CAM holds for X then it holds for any subset of X.

The frequency constraint is clearly anti-monotone. This property is used by the
APRIORI algorithm with the following heuristic: if an itemset X does not satisfy

Cfreq, then no superset of X can satisfy Cfreq, and hence they can be pruned.
This pruning can affect a large part of the search space, since itemsets form
a lattice. Therefore the APRIORI algorithm operates in a level-wise fashion
moving bottom-up on the itemset lattice, and each time it finds an infrequent
itemset it prunes away all its supersets.

Definition 2. Given an itemset X, a constraint CM is monotone if:

∀Y ⊇ X : CM (X) ⇒ CM (Y)

independently from the given input transaction database. If CM holds for X then
it holds for any superset of X.

Note that in the last definition we have required a monotone constraint to be
satisfied independently from the given input transaction database. This is nec-
essary since we want to distinguish between simple monotone constraints and
global constraints such as the ”infrequency constraint”:

suppTDB(X) ≤ δ.

This constraint is still monotone but has different properties since it is dataset
dependent and it requires dataset scans in order to be computed. Obviously,
since our pre-processing algorithm reduces the transaction dataset, we want to
exclude the infrequency constraint from our study. Thus, our study focuses on
”local” monotone constraints, in the sense that they depend exclusively on the
properties of the itemset (as those ones in Table1), and not on the underlying
transaction database.

The general problem that we consider in this paper is the mining of itemsets
which satisfy a conjunction of monotone and anti-monotone constraints:

Th(CAM) ∩ Th(CM).

Since any conjunction of anti-monotone constraints is an anti-monotone con-
straint, and any conjunction of monotone constraints is a monotone constraint,
we just consider two constraints: one per class. In particular, we choose fre-
quency (CAM ≡ suppTDB(X) ≥ δ) as anti-monotone constraint, in conjunction
with various simple monotone constraints (see Table1).

Th(Cfreq) ∩ Th(CM).

3 Search Space and input data reduction

As already stated, if we focus only on the itemsets lattice, pushing monotone
constraint can lead to a less effective anti-monotone pruning. Suppose that an
itemset has been removed from the search space because it does not satisfy some
monotone constraints CM . This pruning avoids checking support for it, but it
may be that if we check support, the itemset could result to be infrequent, and

Monotone constraint CM ≡
cardinality |X| ≥ n

sum of prices sum(X.prices) ≥ n

maximum price max(X.prices) ≥ n

minimum price min(X.prices) ≤ n

range of prices range(X.prices) ≥ n

Table 1. Monotone constraints considered in our analysis.

thus all its supersets could be pruned away. By monotone pruning an itemset
we risk to loose anti-monotone pruning opportunities given from the itemset
itself. The tradeoff is clear [3]: pushing monotone constraint can save tests on
anti-monotone constraints, however the results of these tests could have lead to
more effective pruning. In order to obtain a real amalgam of the two opposite
pruning strategies we have to consider the constrained frequent patterns problem
in its whole: not focussing only on the itemsets lattice but considering it together
with the input database of transactions. In fact, as proved by the theorems in the
following section, monotone constraints can prune away transactions from the
input dataset without loosing solutions. This monotone pruning of transactions
has got another positive effect: while reducing the number of transactions in
input it reduces the support of items too, hence the total number of frequent
1-itemsets. In other words, the monotone pruning of transactions strengthens
the anti-monotone pruning. Moreover, infrequent items can be deleted by the
computation and hence pruned away from the transactions in the input dataset.
This anti-monotone pruning has got another positive effect: reducing the size of
a transaction which satisfies a monotone constraint can make the transaction
violates the monotone constraint. Therefore a growing number of transactions
which do not satisfy the monotone constraint can be found. We are clearly
inside a loop where two different kinds of pruning cooperates to reduce the
search space and the input dataset, strengthening each other step by step until
no more pruning is possible (a fix-point has been reached). This is precisely the
idea underlying ExAnte.

3.1 ExAnte Properties

In this section we formalize the basic ideas of ExAnte. First we define the two
kinds of reduction, than we prove the completeness of the method. In the next
section we provide the pseudo-code of the algorithm.

Definition 3. [µ-reduction] Given a transaction database TDB and a mono-
tone constraint CM , we define the µ-reduction of TDB as the dataset resulting
from pruning the transactions that do not satisfy CM .

µ[TDB]CM
= Th(CM) ∩ TDB

(Recall here that a transaction is an itemset).

Definition 4. [α-reduction] Given a transaction database TDB, a transaction
〈tID,X〉 and a frequency constraint Cfreq[TDB], we define the α-reduction of
〈tID,X〉 as the subset of items in X that satisfy Cfreq[TDB].

α[〈tID, X〉]Cfreq [TDB] = F1 ∩X

Where: F1 = {I ∈ Items|{I} ∈ Th(Cfreq[TDB])}. We define the α-reduction of
TDB as the dataset resulting from the α-reduction of all transactions in TDB.

The following two key theorems state that we can always µ-reduce and α-
reduce a dataset without reducing the support of solution itemsets. Moreover,
since satisfaction of CM is independent from the transaction dataset, all solution
itemsets will still satisfy it. Therefore, we can always µ-reduce and α-reduce a
dataset without loosing solutions.

Theorem 5 (µ-reduction correctness). Given a
transaction database TDB, a monotone constraint CM , and a frequency con-
straint Cfreq, we have that:

∀X ∈ Th(Cfreq[TDB]) ∩ Th(CM) :
suppTDB(X) = suppµ[TDB]CM

(X).

Proof. Since X ∈ Th(CM), all transactions containing X will also satisfy CM for
the monotonicity property. In other words: TDB[X] ⊆ µ[TDB]CM

. This implies
that:

suppTDB(X) = suppµ[TDB]CM
(X).

Theorem 6 (α-reduction correctness). Given a
transaction database TDB, a monotone constraint CM , and a frequency con-
straint Cfreq, we have that:

∀X ∈ Th(Cfreq[TDB]) ∩ Th(CM) :
suppTDB(X) = suppα[TDB]Cfreq

(X).

Proof. Since X ∈ Th(Cfreq), all subsets of X will be frequent (by the anti-
monotonicity of frequency). Therefore no subset of X will be α-pruned (in par-
ticular, no 1-itemsets in X). This implies that:

suppTDB(X) = suppα[TDB]Cfreq
(X).

3.2 ExAnte Algorithm

The two theorems above suggest a fix-point computation. ExAnte starts the
first iteration as any frequent patterns mining algorithm: counting the support
of singleton items. Items that are not frequent are thrown away once and for
all. But during this first count only transactions that satisfy CM are considered.
The other transactions are signed to be pruned from the dataset (µ-reduction).

Doing so we reduce the number of interesting 1-itemsets. Even a small reduction
of this number represents a huge pruning of the search space. At this point
ExAnte deletes from alive transactions all infrequent items (α-reduction). This
pruning can reduce the monotone value (for instance, the total sum of prices)
of some alive transactions, possibly resulting in a violation of the monotone
constraints. Therefore we have another opportunity of µ-reducing the dataset.
But µ-reducing the dataset we create new opportunities for α-reduction, which
can turn in new opportunities for µ-reduction, and so on, until a fix-point is
reached. the pseudo-code of ExAnte algorithm follows:

Procedure: ExAnte(TDB, CM , min supp)

1. I := ∅;
2. forall tuples t in TDB do
3. if CM (t) then forall items i in t do
4. i.count++; if i.count ≥ min supp then I := I ∪ i;
5. old number interesting items := |Items|;
6. while |I| < old number interesting items do
7. TDB := α[TDB]Cfreq ;
8. TDB := µ[TDB]CM ;
9. old number interesting items := |I|;

10. I := ∅;
11. forall tuples t in TDB do
12. forall items i in t do
13. i.count + +;
14. if i.count ≥ min supp then I := I ∪ i;
15. end while

Fig. 1. The ExAnte algorithm pseudo-code.

Clearly, a fix-point is eventually reached after a finite number of iterations,
as at each step the number od alive items strictly decreases.

3.3 Run-through Example

Suppose that the transaction and price dataset in Table 2 are given. Suppose
that we want to compute frequent itemsets (min supp = 4) with a sum of prices
≥ 45. During the first iteration the total price of each transaction is checked
to avoid using transactions which do not satisfy the monotone constraint. All
transaction with a sum of prices ≥ 45 are used to count the support for the
singleton items. Only the fourth transaction is discarded. At the end of the count
we find items a, e, f and h to be infrequent. Note that, if the fourth transaction
had not been discarded, items a and e would have been counted as frequent.
At this point we perform an α-reduction of the dataset: this means removing
a, e, f and h from all transactions in the dataset. After the α-reduction we have

more opportunities to µ-reduce the dataset. In fact transaction 2, which at the
beginning has a total price of 63, now has its total price reduced to 38 due to
the pruning of a and e. This transaction can now be pruned away. The same
reasoning holds for transactions number 7 and 9. At this point ExAnte counts
once again the support of alive items with the reduced dataset. The item g which
initially has got a support of 5 now has become infrequent (see Table 2 (c) for
items support iteration by iteration). We can α-reduce again the dataset, and
then µ-reduce. After the two reductions transaction number 5 does not satisfy
anymore the monotone constraint and it is pruned away. ExAnte counts again
the support of items on the reduced datasets but no more items are found to
have turned infrequent. The fix-point has been reached at the third iteration:
the dataset has been reduced from 9 transactions to 4 transactions (number
1,3,6 and 8), and interesting itemsets have shrunk from 8 to 3 (b, c and d). At
this point any constrained frequent pattern algorithm would find very easily the
unique solution to problem which is the 3-itemset 〈b, c, d〉.

item price

a 5
b 8
c 14
d 30
e 20
f 15
g 6
h 12

(a)

tID Itemset Total price

1 b,c,d,g 58
2 a,b,d,e 63
3 b,c,d,g,h 70
4 a,e,g 31
5 c,d,f,g 65
6 a,b,c,d,e 77
7 a,b,d,f,g,h 76
8 b,c,d 52
9 b,e,f,g 49

(b)

Supports

Items 1st 2nd 3rd

a 3 † †
b 7 4 4
c 5 5 4
d 7 5 4
e 3 † †
f 3 † †
g 5 3 †
h 2 † †

(c)

Table 2. Run-through Example: price table (a) and transaction database (b), items
and their supports iteration by iteration (c).

4 Experimental Results

In this section we deeply describe the experimental study that we have con-
ducted with different monotone constraints on various datasets. In particular,
the monotone constraints used in the experimentation are in Table 1. In addi-
tion, we have experimented a harder to exploit constraint: avg(X.prices) ≥ n.
This constraint is clearly neither monotone nor anti-monotone, but can exhibit
a monotone (or anti-monotone) behavior if items are ordered by ascending (or
descending) price, and frequent patterns are computed following a prefix-tree
approach. This class of constraints, named convertible, has been introduced in
[10]. In our experiments the constraint avg(X.prices) ≥ n is treated by inducing
a weaker monotone constraint: max(X.prices) ≥ n. Note that in every reported

Dataset "IBM", Cardinality constraint

Cardinality threshold

0 2 4 6 8

N
um

be
r

of
 a

liv
e

tr
an

sa
ct

io
ns

0

2x10 6

4x10 6

6x10 6

8x10 6

10x10 6 min_supp = 0.1
min_supp = 0.05
min_supp = 0.025
min_supp = 0.01

Dataset "IBM", Cardinality constraint

Cardinality threshold

0 2 4 6 8 10

N
um

be
r

of
 a

liv
e

1-
ite

m
se

ts

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
min_supp = 0,05
min_supp = 0,025

(a) (b)

Fig. 2. Transactions reduction (a), and interesting 1-itemsets reduction (b), on dataset
”IBM”.

experiment we have chosen monotone constraints thresholds that are not very
selective: there are always solutions to the given problem. In the experiments
reported in this paper we have used two datasets. ”IBM” is a synthetic dataset
obtained with the most commonly adopted dataset generator, available from
IBM Almaden1. We have generate a very large dataset since we have not been
able to find a real-world dataset over one million transactions. ”Italian” is a
real-world dataset obtained from an Italian supermarket chain within a market-
basket analysis project conducted by our research lab, few years ago (note that
the prices are in the obsolete currency Italian Lira).

Max Avg
Dataset Transactions Items Trans Trans

Size Size

IBM 8,533,534 100,000 37 11.21
Italian 186,824 4800 31 10.42

Dataset Min Price Max Price Avg Price

Italian 100 900,000 6454.87

Table 3. Characteristics of the datasets used in the experiments.

For a more detailed report of our experiments see [5]. In Figure 2 (a) the re-
duction of the number of transactions w.r.t the cardinality threshold is shown for
four different support thresholds on the synthetic dataset. When the cardinality
threshold is equals to zero the number of transactions is obviously as the total
number of transactions in the database, since there is no monotone pruning.
Already for a low support threshold as 0.1% with a cardinality constraint equals
1

http://www.almaden.ibm.com/cs/quest/syndata.html#assocSynData

to 2 the number of transactions decreases dramatically. Figure 2 (b) describes
the reduction of number of interesting 1-itemsets on the same dataset.

Dataset "Italian"

Minimum support (%)

0,00 0,02 0,04 0,06 0,08 0,10 0,12

C
an

di
da

te
 it

em
se

ts
 g

en
er

at
ed

0

1x106

2x106

3x106

4x106

5x106

6x106

Apriori
ExAnteApriori sum(prices) > 50k
ExAnteApriori sum(prices) > 150k
ExAnteApriori sum(prices) > 100k
ExAnteApriori avg(prices) > 25k

Dataset "Italian"

n

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

T
ot

al
 n

um
be

r
of

 c
an

di
da

te
s

ite
m

se
ts

0

2x106

4x106

6x106

8x106

min_supp = 10 & avg(prices) > n
min_supp = 5 & range(prices) > n

Fig. 3. Search space reduction on dataset ”Italian” .

As already stated, even a small reduction in the number of relevant 1-itemsets
represents a very large pruning of the search space. In our experiments, as a mea-
sure of the search space explored, we have considered the number of candidate
itemsets generated by a level-wise algorithm such as Apriori. In Figure 3 is
reported a comparison of the number of candidate itemsets generated by Apri-
ori and by ExAnteApriori (ExAnte pre-processing followed by Apriori) on the
”Italian” dataset with various constraints. The dramatic search space reduction
is evident, and it will be confirmed by computation time reported in the next
section. How the number of candidate itemsets shrinks by increasing strength of
the monotone constraint is also reported in Figure 3. This figure also highlights
another interesting feature of ExAnte: even at very low support level (min supp
= 5 on a dataset of 186,824 transactions) the frequent patterns computation is
feasible if coupled with a monotone constraint. Therefore, ExAnte can be used
to make feasible the discovery of particular patterns which can be discovered
only at very low support level, for instance:

– extreme purchasing behaviors (such as patterns with a very high average of
prices);

– very long patterns (using the cardinality constraint coupled with a very low
support threshold).

We report time comparison between Apriori and ExAnteApriori (ExAnte
pre-processing followed by Apriori). We have chosen Apriori as the ”standard”
frequent pattern mining algorithm. Recall that every frequent pattern mining
algorithm can be coupled with ExAnte pre-processing obtaining similar benefits.
Execution time is reported in Figure 4. The large search space pruning reported
in the previous section is here confirmed by the execution time.

Iteration Transactions 1-itemsets
0 17306 2010
1 13167 1512
2 11295 1205
3 10173 1025
4 9454 901
5 9005 835
6 8730 785
7 8549 754
8 8431 741
9 8397 736
10 8385 734
11 8343 729
12 8316 726
13 8312 724
14 8307 722
15 8304 722

Execution time: 1.5 sec

Dataset "Italian"

Support (%)

0,00 0,02 0,04 0,06 0,08 0,10

R
u
n
tim

e
 (

m
se

c)

0

10000

20000

30000

40000

50000

60000
Apriori
ExAnteApriori Sum > 150k
ExAnteApriori Avg > 25k

Fig. 4. A typical execution of ExAnte: Dataset ”Italian” with min sup = %40 and sum
of prices ≥ 100000; and a runtime comparison between Apriori and ExAnteApriori with
two different constraints.

5 Related Work

Being a pre-processing algorithm, ExAnte can not be directly compared with any
previously proposed algorithm for constrained frequent pattern mining. However,
it would be interesting to couple ExAnte data reduction with those algorithms
and to measure the improve in efficiency. Among constrained frequent pattern
mining algorithms, we would like to mention FICM [11] and the recently pro-
posed DualMiner [4].

6 Conclusions and Future Work

In this paper we have introduced ExAnte, a pre-processing data reduction algo-
rithm which reduces dramatically the search space the input dataset, and hence
the execution time, in constrained frequent patterns mining. We have proved
experimentally the effectiveness of our method, using different constraints on
various datasets. Due to its capacity in focussing any particular instance of the
problem, ExAnte exhibits very good performance also when one of the two con-
straints (the anti-monotone or the monotone) is not very selective. This feature
makes ExAnte useful to discover particular patterns which can be discovered
only at very low support level, for which the computation is unfeasible for tra-
ditional algorithms.

We are actually developing a new algorithm for constrained frequent pat-
tern mining, which will take full advantage of ExAnte pre-processing. We are
also interested to study in which other mining tasks ExAnte can be useful. We
will investigate its applicability to constrained sequential patterns, and to the
discovery of anomalies and outliers in data cubes.

ExAnte executable can be downloaded by our web site:
http://www-kdd.cnuce.cnr.it/

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of
the 1993 ACM SIGMOD International Conference on Management of Data, pages
207–216, Washington, D.C., 26–28 May 1993.

2. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the Twentieth International Conference on Very Large
Databases, pages 487–499, Santiago, Chile, 1994.

3. J.-F. Boulicaut and B. Jeudy. Using constraints during set mining: Should we
prune or not? In Actes des Seizime Journes Bases de Donnes Avances BDA’00,
Blois (F), pages 221–237, 2000.

4. C. Bucila, J. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning al-
gorithm for itemsets with constraints. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2002.

5. F.Bonchi, F.Giannotti, A.Mazzanti, and D.Pedreschi. Exante: a preprocessing algo-
rithm for constrained frequent pattern mining. Technical Report ISTI-B4-2003-07,
ISTI, 2003.

6. G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained cor-
related sets. In 16th International Conference on Data Engineering (ICDE’ 00),
pages 512–524. IEEE, 2000.

7. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional
data mining. Computer, 32(8):46–50, 1999.

8. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. SIGMOD Record (ACM Special
Interest Group on Management of Data), 28(2), 1999.

9. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD-98), vol-
ume 27,2 of ACM SIGMOD Record, pages 13–24, New York, June 1–4 1998. ACM
Press.

10. J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedinmgs
of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’00), pages 350–354, N. Y., Aug. 20–23 2000. ACM Press.

11. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In (ICDE’01), pages 433–442, 2001.

12. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors, Proc.
3rd Int. Conf. Knowledge Discovery and Data Mining, KDD, pages 67–73. AAAI
Press, 14–17 Aug. 1997.

13. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In F. Provost and R. Srikant, editors, Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 401–406, 2001.

