№H geocities.com /jjl2436/q3 geocities.com/jjl2436/q3.html elayed x SеJ џџџџ џџџџџџџџџџџџџџџџШ s ђ OK text/html икЬ ђ џџџџ b.H Mon, 24 May 2004 17:12:00 GMT Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98) en, * SеJ ђ
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
QUESTION 3 | |||||||||||||
![]() |
|||||||||||||
![]() |
|||||||||||||
![]() |
|||||||||||||
An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t greater than or equal to 0 with dx/dt = 3+cos(t^2) The derivative dy/dt is not explicitly given. At time t=2, the object is at position (1,8) a. Find the x-coordinate of the pos. of the object at time t=4. integral of 3+cos(t^2)dt+1 from 2-4 = 7.133 b. At time t=2, the value of dy/dt is -7. Write an eq for the line tangent to the curve at the point (2,2) y=8+dy/dx(x-1) = y=8+(-7/(3+cos4))(x-1) c. Find the speed of the object at time=2 speed = square root of (49+(3+cos4)^2) = 7.383 d. For t greater than or equal to 3, the line tan to the curve at (x,y) has a slope of 2t+1. Find accel. Vector at t=4. dy/dx=2t+1 d(dy/dt)/dt=-2tsint^2 d(dy/dt) dt=(2t+1)(3+cost^2)+(-2tsint^2)(2t+1) =2(3tcos16)+72sin16 |
|||||||||||||
My Favorite Links: | |||||||||||||
BACK TO HOME | |||||||||||||
Yahoo! Games | |||||||||||||
Yahoo! Photos | |||||||||||||
Yahoo! Greetings | |||||||||||||
|
|||||||||||||