H geocities.com /jjl2436/q4 geocities.com/jjl2436/q4.html elayed x SJ s OK text/html b.H Tue, 25 May 2004 16:12:46 GMT Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98) en, * SJ
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
QUESTION 4 | |||||||||||||
![]() |
|||||||||||||
![]() |
|||||||||||||
![]() |
|||||||||||||
Consider the curve given by x^2+4y^2=7+3xy a. Show that dy/dx= (3y-2x)/(8y-3x) 2x+8y dy/dx=3y+3x dy/dx (ex+8y)dy/dx=3y-2x dy/dx=(3y-2x)/(8y-3x) b. Show that there is a point P w/ x-coord. 3 at which the line tan to the curve at P is horizontal. Find y-coord of P. (3y-2x)/(8y-3x)=0 3y=2x^3 3y=6 y=2 (3,2) c. Find value of d^2y/dx^2 at point P in B. Dos curve have local max, min, or neither? justify [ (3dy/dx-2)(8y-3x)-(8dy/dx-3)(3y-2x)]/(8y-3x)^2 =-14/49 =-2/7 because y second deriv is neg, the curve is concave down. Therefore there is a max at (3,2) |
|||||||||||||
My Favorite Links: | |||||||||||||
home | |||||||||||||
question 1 | |||||||||||||
question 3 | |||||||||||||
question 5 | |||||||||||||
|
|||||||||||||