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Abstract 
 
 

 
 
 

Query optimization is of great importance for the performance of a relational database, 
especially for the execution of complex SQL statements. A query optimizer 
determines the best strategy for performing each query. The query optimizer chooses, 
for example, whether or not to use indexes for a given query, and which join 
techniques to use when joining multiple tables. These decisions have a tremendous 
effect on SQL performance, and query optimization is a key technology for every 
application, from operational systems to data warehouse and analysis systems to 
content-management systems. 
 
Structured Query Language (SQL) has emerged as an industry standard for querying 
relational database management systems, largely because a user need only specify 
what data are wanted, not the details of how to access those data. A query optimizer 
uses a mathematical model of query execution to determine automatically the best 
way to access and process any given SQL query. This model is heavily dependent 
upon the optimizer’s estimates for the number of rows that will result at each step of 
the query execution plan (QEP), especially for complex queries involving many 
predicates and/or operations. These estimates rely upon statistics on the database and 
modeling assumptions that may or may not be true for a given database.  
 
This paper, discusses a model of an autonomic query optimizer that automatically 
self-validates itself without requiring any user interaction to repair incorrect statistics 
or cardinality estimates. By monitoring queries as they execute, the autonomic 
optimizer compares the optimizer’s estimates with actual cardinalities at each step in a 
QEP, and computes adjustments to its estimates that may be used during future 
optimizations of similar queries. Moreover, the detection of estimation errors can also 
trigger reoptimization of a query in mid-execution. The autonomic refinement of the 
optimizer’s model can result in a reduction of query execution time by orders of 
magnitude at negligible additional run-time cost. Also discussed in this paper are 
various methods and configurations that one would like to do, and which will serve as 
a prerequisite for the learning optimizer. 
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A Query Optimizer 
 
Query optimization is of great importance for the performance of a relational database, 
especially for the execution of complex SQL statements. The task of a query optimizer is 
to determine the best strategy for performing each query. The query optimizer chooses, 
for example, whether or not to use indexes for a given query, and which join techniques 
to use when joining multiple tables. 
 
These decisions have a tremendous effect on SQL performance, and query optimization 
is a key technology for every application mainly in the case of data warehouses and 
analysis systems. The process of query optimization is entirely transparent to the 
application and the end-user. Because applications may generate very complex SQL, 
query optimizers must be extremely sophisticated and robust to ensure good performance. 
For example, query optimizers transform SQL statements, so that these complex 
statements can be transformed into equivalent, but better performing, SQL statements. 
 
Query optimizers are typically ‘cost-based’ although Oracle has provision for both cost 
based and rule based optimization. In a cost-based optimization strategy, multiple 
execution plans are generated for a given query, and then an estimated cost is computed 
for each plan. The query optimizer chooses the plan with the lowest estimated cost. 
 

Query Optimization in Oracle 9i 
 
Oracle’s query optimizer consists of four major components: 
 
SQL transformations: Oracle transforms SQL statements using a variety of 
sophisticated techniques during query optimization. The purpose of this phase of query 
optimization is to transform the original SQL statement into a semantically equivalent 
SQL statement that can be processed more efficiently. 
 
Execution plan selection: For each SQL statements, the optimizer chooses an execution 
plan (which can be viewed using Oracle’s EXPLAIN PLAN facility or via Oracle’s 
“v$sql_plan” views). The execution plan describes all of the steps when the SQL is 
processed, such as the order in which tables are accessed, how the tables are joined 
together and whether tables are accessed via indexes. The optimizer takes in account all 
possible execution plans for each SQL statement, and chooses the best one out of these. 
 
Cost model and statistics: Oracle’s optimizer relies upon cost estimates for the 
individual operations that make up the execution of a SQL statement. In order for the 
optimizer to choose the best execution plans, the optimizer needs the best possible cost 
estimates. The cost estimates are based upon in-depth knowledge about the I/O, CPU, and 
memory resources required by each query operation, statistical information about the 
database objects (tables, indexes, and materialized views), and performance information 
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regarding the hardware server platform. The process for gathering these statistics and 
performance information needs to be both highly efficient and highly automated. 
 
Dynamic runtime optimization: Not every aspect of SQL execution can be optimally 
planned ahead of time. Oracle thus makes dynamic adjustments to its query-processing 
strategies based on the current database workload. The goal of dynamic optimizations is 
to achieve optimal performance even when each query may not be able to obtain the ideal 
amount of CPU or memory resources. 
 
Oracle additionally has a legacy optimizer, the rule-based optimizer. This optimizer 
exists solely for backwards compatibility, and will be taken off from the next release.  
 

SQL Transformation 
 
There are many possible ways to express a complex query using SQL. Oracle mainly 
implements SQL transformation in two main categories 
 
Heuristic query transformation: These transformations are applied to incoming SQL 
transformations whenever possible. These transformations always provide equivalent or 
better query performance, so that Oracle asserts that applying these conditions would not 
degrade the performance of the query. 
 
Cost based query transformation: Oracle mainly uses a cost-based approach for several 
classes of query optimization. Under this approach, the transformed query is compared 
with the original query and then it’s the task of the optimizer to determine the path that 
would lead to the least possible execution time. Since this is the default approach that 
Oracle uses, more emphasis is given to this part. Some aspects of the cost based approach 
can also be automated using some precomputed results. 
 

Materialized View Rewrite 
 
The concept of reusability comes in the case of one or more tables being accessed very 
frequently and the same data or a subset of this data being used in all the cases. In such a 
situation it is not wise to seek the desired data from the table, but rather it makes sense to 
maintain some sort of caching mechanism that the next query can utilize to make the data 
fetching much faster. 
 
Precomputing and storing commonly used data in the form of materialized views can 
really aid in the making query processing fast. Oracle can transform the SQL queries so 
that one or more tables that are referenced in the query can be replaced by a reference to a 
materialized view. If the materialized view is smaller than the original table or has a 
better access path, the transformed SQL statement could be executed much faster than the 
original table.  
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The materialized view can be thought of as a special kind of a view which physically 
exists inside the database, it can contain joins and or aggregate and exists to improve 
query execution time by precalculating expensive joins and aggregation operations prior 
to execution. The optimizer should be able to learn about the frequency with which some 
parts of a particular table or a join are being accessed, and thus retain this materialized 
view for further use. 
 
A materialized view definition can include aggregation, such as SUM, MIN, MAX, 
AVG, COUNT (*), COUNT(x), COUNT (DISTINCT), VARIANCE or STDDEV, one 
or more tables can be joined together and a GROUP BY. It may be indexed and 
partitioned and basic DDL operations such as CREATE, ALTER, DROP may be applied.  
 
Since a materialized view is an object in the database then in any ways, a materialized 
view behaves like an index because: 
 

• The purpose of the materialized view is to increase query execution performance 
• The existence of a materialized view is transparent to the SQL application 

 
This is a SQL statement to create a materialized view  
 
CREATE MATERIALIZED VIEW COSTS 
PCTFREE 0 
STORAGE (initial 8k next 8k pctincrease 0) 
BUILD IMMEDIATE 
REFRESH FAST ON DEMAND 
ENABLE QUERY REWRITE 
AS  
SELECT time_id, prod_name, 
 SUM (unit_cost) AS sum_units, 
 COUNT (unit_cost) AS count_units, 
 COUNT (*) AS cnt 
FROM costs c, products p 
WHERE c.prod_id = p.prod_id 
GROUP BY time_id, prod_name; 
 
This is a typical implementation of a materialized view using the normal parameters 
 

Index Selection for Materialized Views 
 
Depending on the number of rows in the materialized view and whether it will be 
incrementally refreshed, it may be necessary to create indexes on the materialized views. 
Therefore, consideration should be given to creating a unique, local index which contains 
all of the materialized view keys. Other indexes could include a single-column bitmap 
indexes on each materialized view key column. This consideration should  be learnt with 
time and the optimizer should be intelligent enough to determine the nature of the data. 
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Materialized View Invalidation 
 
Materialized views are constantly being monitored to ensure that the data they contain is 
fresh. The purpose of invalidating a materialized view is to ensure that invalid data is not 
returned. A materialized view will be marked as stale whenever an object on which it is 
based is changed. 
 
The state of the materialized view can he determined by querying the table 
USER_MVIEWS. If there is any doubt about the state of a materialized view, one can 
issue the command ALTER MATERIALIZED COMPILE to ensure that the latest status 
is shown. 
 

Loading and Refreshing of Materialized Views 
 
The main problem that is associated with the usage of summary tables is the initial 
loading and the subsequent updating of the summary. These issues are now addressed 
because summary management provides mechanisms to  
 

• Fully refresh the data 
• Perform a fast refresh, that is add/merge only the changes 
• Automatically update a materialized view whenever the changes are made 

 
Oracle 9i provides the following refresh methods: 

• Complete 
• fast(only the changes are applied) 
• force, so a fast if possible, otherwise perform a complete refresh 

 
These operations may be performed by: 

• On demand refreshing by: 
o Specific materialized views(DBMS_MVIEW.REFRESH) 
o Those materialized views dependent on a 

table(DBMS_MVIEW.REFRESH_DEPENDENT) 
o All materialized views(DBMS_MVIEW.REFRESH_ALL_MVIEWS) 

• On commit, whenever the tables on which the materialized view is defined are 
changed. 

 
In the case of a data warehouse where the data is accessed quite frequently it makes sense 
to refresh the data in the materialized views, whereas in a scenario where the data is 
rarely accessed the on commit refresh mode is preferred. 
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Query Rewrite 
 
One of the major benefits of using summary management which the end user will really 
benefit from is the query rewrite capability. It is a query optimizations technique that 
transforms a user query written in the terms of tables and views, to execute faster by 
fetching data from materialized views. The Oracle 9i server automatically rewrites any 
appropriate SQL application to use the materialized views. 
 
The compositions of query does not have to exactly match the definition of the 
materialized view because this would require that the DBA knew in advance what queries 
would be executed against the data. This of course, especially with respect to data 
warehouses where one of the main benefits to an organization is to suddenly execute a 
new query. Therefore, query rewrite will still occur even is only part is the query can be 
satisfied by the materialized view. 
 
Query rewrite occurs when the following parameters are set 
 
ALTER SESSION SET QUERY_REWRITE_ENABLED =TRUE or 
ALTER SYSTEM SET QUERY_REWRITE_ENABLED =TRUE  
 
Or when the materialized view is defined, it is eligible for query rewrite, by including the 
clause ENABLE QUERY REWRITE. 
 
One of the methods that help in the automation of the queries is the summary joinback 
method of query rewriting 
 
Some times a query may contain reference to a column which is not stored in a summary 
table but can the obtained by joining back the materialized view to the appropriate 
dimension table. For example, consider the query 
 
SELECT c.cust_last_name, 
 sum (s.quantity_sold) AS quantity, 
 sales s, customers c, products p 
FROM sales s, customers c, products p 
WHERE c.cust_id =s.cust_id 
AND s.prod_id = p.prod_id 
GROUP BY c.cust_last_name, p.prod_id 
 
This query references the column c.cust_last_name which is not in the materialized view 
all_cust_salses_mv, but cust_last_name is functionally dependent on c.cust_id because of 
the hierarchical relationship between them .This means that this query can the rewritten 
on terms of all_cust_sales_mv, which is joined back to the customers table no order to 
obtain c.cust_last_name column. 
 



Autonomic Query Optimization in Oracle9i  

 
9 

Query Rewrite Integrity Modes 
 
Summary management will endeavor to identify inconsistent materialized views and 
mark them accordingly, but to overcome these problems, three integrity levels are 
available, which are selected by the parameter QUERY_REWRITE_INTEGRITY 
 

• STALE_TOLERATED 
o In this mode, a materialized view will always be used even if it is stale.  

 
• TRUSTED 

o In this mode, the optimizer trusts that the data in the materialized views is 
fresh and that the relationships declared in dimensions and RELY 
constraints are correct. In this mode, the optimizer will also use prebuilt 
materialize views or materialized views based on views, and it will also 
used relationships that are not enforced as well as those that are enforced.  

• ENFORCED( by default) 
o In this mode, the optimizers will only use materialized views that it knows 

contain fresh data and it will only use those relationships that are based on 
ENABLED_VALIDATED primary/unique/foreign key constraints.  

 

Correctness of Result 
 
Whenever a SQL query uses a materialized view rather than the actual source of the data, 
there are instances when the results returned may be different. 
 

• A materialized view can be out of synchronization with the detail data. This 
generally happens because the refresh procedure is pending and 
STALE_TOLERATED integrity mode has been selected 

• Join columns may violate referential integrity. In this case, some child side rows 
are not rolled up into exactly one parent side row. To avoid this situation, the 
system enforced integrity whose overheads are negligible and benefits are 
significant, is used. 

 
It is possible to create a rolling materialized view, which is when the materialized view 
contains information about rows that no longer exist in the detail data. For example, the 
materialized view may contain 18 months worth of data, but the detail tables only contain 
the last 6 months. Therefore, if a query were ever to go against the base table rather than 
the materialized view than different results would show up. 
 

Summary Advisor 
  
When the decision is first made to use the materialized views an initial set has to be 
defined. To help resolve this problem, Summary Management contains a component 



Autonomic Query Optimization in Oracle9i  

 
10 

called the summary advisor which can either be invoked by calling a procedure or from 
the Oracle Enterprise Manager and it can provide the following information 
 

• Recommended materialized views based on a collected or hypothetical workload 
• Estimate the size of the materialized view 
• Report actual utilization of the materialized views based on collected workload. 
• Define filters to use against a workload 
• Load and validate the workload 
• Purge filters, workloads, and results 

 
Before using the summary advisor, the procedure DBMS_STATS should be run to gather 
cardinality information on the tables and materialized views in the database. This 
information is used as a part of the prediction process. 
 

Providing a Workload 
 
Although the summary advisor can recommend materialized views without a workload, it 
performs best when it has a workload, which in Oracle9i, can the provided in the form of: 
 

• User-defined (DBMS_OLAP.LOAD_WORKLOAD_USER) 
• Current contents of SQL cache (DBMS_OLAP.LOAD_WORKLOAD_CACHE) 
• Current contents of SQL trace (DBMS_OLAP.LOAD_WORKLOAD_TRACE) 

 
A user-defined workload involves storing the queries in a table in the database. This will 
then be read by the summary advisor and taken as its workload. Alternatively, the current 
queries in the SQL cache can be made into a workload and used as input to the summary 
advisor. 
 
If the Oracle Trace is available, an event set called the Summary Workload is provided. 
When enabled, it collects workload statistics comprising of the name of each materialized 
view and the ideal materialized view that could have been used in that particular case. 
 
Although only one workload can be used at a time as input to the recommendation 
procedure RECOMMEND_MVIEW_STRATEGY, multiple workloads may be stored in 
the database and the compared to see which one generates the best recommendation. 
 

Cost Model and Statistics 
 
A cost-based optimizer works by estimating the cost of various alternative execution 
plans and choosing the plan with the best (that is, lowest) cost estimate. Thus, the cost 
model is a crucial component of the optimizer, since the accuracy of the cost model 
directly impacts the optimizer’s ability to recognize and choose the best execution plans. 
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The ‘cost’ of an execution plan is based upon careful modeling of each component of the 
execution plan. The cost model incorporates detailed information about all of Oracle’s 
access methods and database structures, so that it can generate an accurate cost for each 
type of operation. Additionally, the cost model relies on ‘optimizer statistics’, which 
describe the objects in the database and the performance characteristics of the hardware 
platform. These statistics are described in brief below. In order for the cost-model to 
work effectively, the cost model must have accurate statistics.  
 
Oracle has many features to help simplify and automate statistics-gathering. The cost 
model is a very sophisticated component of the query optimizer. Not only does the cost-
model understand each access method provided by the database, but it must also consider 
the performance effects of caching, I/O optimizations, parallelism, and other performance 
features. Moreover, there is no single definition for costs. For some applications, the goal 
of query optimization is to minimize the time to return the first row or first set of N rows, 
while for other applications; the goal is to return the entire result set in the least amount 
of time. Oracle’s cost-model supports both of these goals by computing different types of 
costs based upon the preference of the DBA.  
 

Optimizer Statistics 
 
When optimizing a query, the optimizer relies on a cost model to estimate the cost of the 
operations involved in the execution plan (joins, index scans, table scans, etc.). This cost 
model relies on information about the properties of the database objects involved in the 
SQL query as well as the underlying hardware platform. In Oracle, this information, the 
optimizer statistics, comes in two flavors: object-level statistics and system statistics. 
 
Object-level Statistics  
 
Object-level statistics describe the objects in the database. These statistics track values 
such as the number of blocks and the number of rows in each table, and the number of 
levels in each b-tree index. There are also statistics describing the columns in each table. 
Column statistics are especially important because they are used to estimate the number 
of rows that will match the conditions in the WHERE-clauses of each query. For every 
column, Oracle’s column statistics have the minimum and maximum values, and the 
number of distinct values. Additionally, Oracle supports histograms to better optimize 
queries on columns which contain skewed data distributions. Oracle supports both height-
balanced histograms and frequency histograms, and automatically chooses the 
appropriate type of histogram depending on the exact properties of the column.  
 

System Statistics 
 
System statistics describe the performance characteristics of the hardware platform. The 
optimizer’s cost model distinguishes between the CPU costs and I/O costs. However, the 
speed of the CPU varies greatly between different systems and moreover the ratio 
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between CPU and I/O performance also varies greatly. Hence, rather than relying upon a 
fixed formula for combining CPU and I/O costs, Oracle provides a facility for gathering 
information about the characteristics of an individual system during a typical workload in 
order to determine the best way to combine these costs for each system. The information 
collected includes CPU-speed and the performance of the various types of I/O (the 
optimizer distinguishes between single-block, multi-block, and direct-disk I/Os when 
gathering I/O statistics). By tailoring the system statistics for each hardware environment, 
Oracle’s cost model can be very accurate on any configuration from any combination of 
hardware vendors. 
 

User-defined Statistics 
 
Oracle also supports user-defined cost functions for user-defined functions and domain 
indexes. Customers who are extending Oracle’s capabilities with their own functions and 
indexes can fully integrate their own access methods into Oracle’s cost model. Oracle’s 
cost model is modular, so that these user-defined statistics are considered within the same 
cost model and search space as Oracle’s own built-in indexes and functions. 
 

Statistics Management 
 
The properties of the database tend to change over time as the data changes, either due to 
transactional activity or due to new data being loaded into a data warehouse. In order for 
the object-level optimizer statistics to stay accurate, those statistics need to be updated 
when the underlying data has changed. The problem of gathering the statistics poses 
several challenges for the DBA. 
 
Statistics gathering can be very resource intensive for large databases. Determining which 
tables need updated statistics can be difficult. Many of the tables may not have changed 
very much and recalculating the statistics for those would be a waste of resources. 
However, in a database with thousands of tables, it is difficult for the DBA to manually 
track the level of changes to each table and which tables require new statistics. 
Determining which columns need histograms can be difficult. Some columns may need 
histograms, others not. Creating histograms for columns that do not need them is a waste 
of time and space. However, not creating histograms for columns that need them could 
lead to bad optimizer decisions. Oracle’s statistics-gathering routines address each of 
these challenges. 
 

Parallel Sampling 
 
The basic feature that allows efficient statistics gathering is sampling. Rather than 
scanning (and sorting) an entire table to gather statistics, good statistics can often be 
gathered by examining a small sample of rows. The speed-up due to sampling can be 
dramatic since sampling not only the amount of time to scan a table, but also 
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subsequently reduces the amount of time to process the data (since there is less data to 
sorted and analyzed). Further speed-up for gathering statistics on very large databases can 
be achieved by using sampling in conjunction with parallelism. Oracle’s statistics 
gathering routines automatically determines the appropriate sampling percentage as well 
as the appropriate degree of parallelism, based upon the data-characteristics of the 
underlying table. 
 

Monitoring 
 
Another key feature for simplifying statistics management is monitoring. Oracle keeps 
track of how many changes (inserts, updates, and deletes) have been made to a table since 
the last time statistics were collected. Those tables that have changed sufficiently to merit 
new optimizer statistics are marked automatically by the monitoring process. When the 
DBA gathers statistics, Oracle will only gather statistics on those tables which have been 
significantly modified. 
 

Automatic Histogram Determination 
 
Oracle’s statistics-gathering routines also implicitly determine which columns require 
histograms. Oracle takes this decision by examining two characteristics: the data-
distribution of each column, and the frequency with which the column appears in the 
WHERE-clause of SQL statements. For columns which are both highly-skewed and 
commonly appear in WHERE-clauses, Oracle will create a histogram. These features 
together virtually automate the process of gathering optimizer statistics. With a single 
command, the DBA can gather statistics on an entire schema, and Oracle will implicitly 
determine which tables require new statistics, which columns require histograms, and the 
sampling level and degree of parallelism appropriate for each table.  
 

Dynamic Sampling 
 
Unfortunately, even accurate statistics are not always sufficient for optimal query 
execution. The optimizer statistics are by definition only an approximate description of 
the actual database objects. In some cases, these static statistics are incomplete. Oracle 
addresses those cases by supplementing the static object-level statistics with additional 
statistics that are gathered dynamically during query optimization. There are primarily 
two scenarios in which the static optimizer statistics are inadequate: 
 
Correlation  
 
Often, queries have complex WHERE-clauses in which there are two or more conditions 
on a single table. Here is a very simple example: 
 
SELECT * FROM EMP 
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WHERE JOB_TITLE = 'VICE PRESIDENT' 
AND SAL < 40000 
 
The optimization approach is to assume that these two columns are independent. That is, 
if 5% of the employees are ‘Vice President’ and 40% of the employees have a salary less 
than 40,000, then the simple approach is to assume that .05 * .40 = .02 of employees 
match both criteria of this query. This simple approach is incorrect in this case. Job title 
and salary are correlated, since employees with a job title of ‘Vice President’ are much 
more likely to have higher salaries. Although the simple approach indicates that this 
query should return 2% of the rows, this query may in actuality return zero rows. 
 
The static optimizer statistics, which store information about each column separately, do 
not provide any indication to the optimizer of which columns may be correlated. 
Moreover, trying to store statistics to capture correlation information is a daunting task: 
the number of potential column combinations is exponentially large. 
 
Transient Data  
 
Some applications will generate some intermediate result set that is temporarily stored in 
a table. The result set is used as a basis for further operations and then is deleted or 
simply rolled back. It can be very difficult to capture accurate statistics for the temporary 
table where the intermediate result is stored since the data only exists for a short time and 
might not even be committed. There is no opportunity for a DBA to gather static statistics 
on these transient objects. 
 
Oracle's dynamic sampling feature addresses these problems. While a query is being 
optimized, the optimizer may notice that a set of columns may be correlated or that a 
table is missing statistics. In those cases, the optimizer will sample a small set of rows 
from the appropriate table(s) and gather the appropriate statistics on the-fly. In the case of 
correlation, all of the relevant conditions in the WHERE clause are applied to those rows 
simultaneously to directly measure the impact of correlation. This dynamic sampling 
technique is also very effective for transient data; since the sampling occurs in the same 
transaction as the query, the optimizer can see the user's transient data even if that data is 
uncommitted. 
 

Dynamic Runtime Optimizations 
 
The workload on every database fluctuates, sometimes greatly, from hour to hour, from 
daytime workloads to evening workloads, from weekday workloads to weekend 
workloads, and from normal workloads to end-of-quarter and end-of year workloads. No 
set of static optimizer statistics and fixed optimizer models can cover all of the dynamic 
aspects of these ever-changing systems. Dynamic adjustments to the execution strategies 
are mandatory for achieving good performance. For this reason, Oracle’s query 
optimization extends beyond just access path selection. 
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 Oracle has a very robust set of capabilities which allow for adjustments to the execution 
strategies for each query based not only on the SQL statement and the database objects, 
but also the current state of the entire system at the point in time when the query is 
executing. The key consideration for dynamic optimization is the appropriate 
management of the hardware resources, such as CPU and memory. The hallmark of 
dynamic optimization is the dynamic adjustments of execution strategies for each query 
so that the hardware resources are utilized to maximize the throughput of all queries. 
While most other aspects of query optimization focus on optimizing only a single SQL 
statement, dynamic optimization focuses on optimizing each SQL statement in the 
context of all of the other SQL statements that are currently executing.  
 

Dynamic Degree of Parallelism 
 
Parallelism is a great way to improve the response time of a query on a multiprocessor 
hardware. However, the parallel execution of the query will likely use slightly more 
resources in total than serial execution. Hence, on a heavily loaded system with resource 
contention, parallelizing a query or using too high a degree of parallelism can be 
counterproductive.  
 
On other hand, on a lightly loaded system, queries should have a high degree parallelism 
to leverage the available resources. Therefore, relying on a fixed degree of parallelism is 
a bad idea since the workload on the system varies over time. Oracle automatically 
adjusts the degree of parallelism for query, throttling it back as the workload increases in 
order to avoid resource contention. As the workload decreases, the degree of parallelism 
is again increased. 
 

Dynamic Memory Allocation 
 
Some operations (primarily, sorts and hash joins) are faster if they have access to more 
memory. These operations typically process the data multiple times; the more data that 
can fit into memory, the less data will need to be stored on disk in temporary table spaces 
between each pass. In the best case, sorts and hash joins can occur entirely in memory so 
that temporary disk space is not used at all. Unfortunately, there is only a finite amount of 
physical memory available on the system and it has to be shared by all the operations that 
are executing concurrently. If memory is over allocated, then swapping will occur and 
performance will deteriorate dramatically. On the other hand, if there is memory 
available that could be used to speed up the execution of a sort or a hash join, it should be 
allocated or the performance of the operation will be suboptimal. The challenge is to 
provide the optimal amount of memory for each query: enough memory to process the 
query efficiently, but not too much memory so that other queries can receive their share 
of memory as well. 
 
Assigning a fixed amount of memory to each SQL statement is not an effective solution. 
As the database workload increases, more and more memory will be required to handle 
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the increasing number of queries. Eventually, the physical memory on the system would 
be exhausted, and the performance of the system would degrade dramatically. A slightly 
cleverer, but nevertheless inefficient, approach is to give each query an equal-sized 
portion of memory, so that if there are 100 concurrent queries, then each query gets 1% 
of the available memory and if there are 1000 concurrent queries, then each query gets 
.1% of the available memory.  
 
This solution is insufficient, because each query operates on different-sized data sets, and 
each query may have a different number of sort and hash-join operations. If each query 
was given a fixed amount of memory, then some queries would have far too much 
memory while other queries would have insufficient memory. Oracle's dynamic memory 
management resolves these issues. The DBA specifies the total amount of system 
memory available to Oracle for SQL operations. Oracle manages the memory so that 
each query receives an appropriate amount of memory within the boundary that the total 
amount of memory for all queries does not exceed the DBA-specified limit. 
 
For each query, the optimizer generates a profile with the memory requirements for each 
operation in the execution plan. These profiles not only contain the ideal memory levels 
(that is, the amount of memory needed to complete an operation entirely in memory) but 
also the memory requirements for multiple disk passes. At runtime, Oracle examines the 
amount of available memory on the system and the query’s profile, and allocates memory 
to the query to provide optimal performance in light of the current system workload. 
Even while queries are running,  
 
Oracle will continue to dynamically adjust the memory for each query. If a given query is 
using less memory than anticipated, that memory will be re-assigned to other queries. If a 
given query can be accelerated with the addition of more memory, then that query will be 
given additional memory when it is available. The decision about how each individual 
operation is affected by altering the memory allocations is based upon its memory profile. 
When dynamically adjusting memory allocations, Oracle will pick the individual 
operations that are best suited for the change with respect to the impact on overall 
performance. This unique feature greatly improves both the performance and 
manageability of the database, and relieves the DBA from managing memory allocations 
– a problem that is impossible to manually resolve to perfection.  
 

A Self Learning Optimizer 
 
This section describes the architecture of the proposed autonomic optimizer that observes 
actual query execution and uses actual cardinalities to autonomically validate and refine 
the estimates from its model and to reoptimize the current query, without requiring user 
intervention. In the following sections two essential functions of the autonomic optimizer 
are discussed: deferred learning for future queries and progressive optimization of the 
query currently under execution. 
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Deferred Feedback-Based Learning 
 
Deferred learning exploits empirical results from actual executions of queries to validate 
the optimizer’s model incrementally, deduce what part of the optimizer’s model is in 
error, and compute adjustments to the optimizer’s model for future query optimizations. 
Deferred learning with proposed model works under the assumption that future queries 
will be similar to previous queries, that is, they will share one or several predicates. The 
proposed model currently corrects the statistics for tables (which may be out of date) and 
estimates the selectivity of individual predicates in this way.  
 
The feedback loop is comprised of four steps, as seen in Figure 1: monitoring, analysis, 
feedback, and feedback exploitation. At query compilation time, the monitoring 
component saves the cardinality estimates derived by the optimizer for the best (i.e., 
least-cost) plan, and during query execution saves the actual cardinalities observed for 
that plan. The analysis component uses the information thus learned to identify modeling 
errors and compute corrective adjustments. This analysis is a stand-alone process that 
may be run separately from the database server and even on another system. The 
feedback component modifies the catalog statistics of the database according to the 
learned information. The exploitation component closes the feedback loop by using the 
learned information in the system catalog to provide adjustments to the query optimizer’s 
cardinality estimates. 
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The four components can operate independently, but form a consecutive sequence that 
constitutes a continuous learning mechanism by incrementally capturing plans, 
monitoring their execution, analyzing the monitor output, and computing adjustments to 
be used for future query compilations. This mechanism enables deferred learning, since 
only future queries will benefit from the feedback.  
 

Immediate Feedback-Based Learning 
 
The monitored cardinalities need not be used for subsequent queries alone. If the actual 
cardinalities are significantly different from the estimated cardinalities, the chosen query 
plan could be highly suboptimal.  
 
Generally, response time and memory are optimized if each row is processed completely 
and returned to the user in a pipelined plan. But occasionally, the rows of an intermediate 
result must be fully materialized, either as a sorted or unsorted temporary table 
(TEMPORARY), which is called a materialization point. TEMPORARY afford a natural 
opportunity to count the number of rows and possibly to reoptimize the plan before any 
rows are returned to the user, thereby avoiding returning duplicate rows that are caused 
by restarting the query. However, two important issues arise:  
 

• Since reoptimization involves a cost, when is it worthwhile? 
• How can reoptimization be done efficiently? 

 
The first question is answered in this subsection. For the second question, the easiest 
solution is to simply rerun the query “from scratch” under a new plan. However, this 
would waste all the work that has been done up to the materialization point, which was 
saved in the TEMPORARY. In most cases, it is preferable for the reoptimized plan to 
avoid having to redo that work by instead accessing that TEMPORARY in the 
reoptimized plan.  
 
For example, Figure 2 shows a query plan for a simple two-table join that 
groups/aggregates the Orders table by Product_Id before the join. The sort that may be 
needed to accomplish this aggregation must materialize its entire input before proceeding 
and thus constitutes a TEMPORARY. Since most aggregations can be performed 
incrementally as the rows are sorted, the TEMPORARY will, at its conclusion, contain 
the GROUP BY result. The optimal join algorithm (nested loop join, hash join, or merged 
join) for subsequently joining Orders and Products tables depends crucially on the size of 
this GROUP BY result. The query optimizer could choose a suboptimal join algorithm if 
it under- or over-estimates the size of this result.  
 
However, during query execution, the optimizer can monitor the size of the GROUP BY 
result, and reoptimize in case of severe estimation errors, for example, by changing the 
join algorithm if needed. Such reoptimization becomes more complex for more elaborate 
query plans with multiple materialization points. TEMPORARYs can be encapsulated as 
tables and the remaining portion of the query plan can be converted after the 
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TEMPORARYs into an SQL query, which can then be resubmitted to the query 
optimizer. Unfortunately, this approach has two problems. First, it may not be optimal to 
reuse a TEMPORARY as it is. In cases where the size of the TEMPORARY is much 
larger than expected, the optimal plan might be to reuse only a part of the 
TEMPORARY, or even ignore the TEMPORARY completely, in favor of a totally new 
plan that directly uses the base tables. Moreover, the remaining portion of the plan 
beyond the TEMPORARY may not always be expressible as an SQL statement, 
especially if it contains update operations, which are fed from sub queries. 
 
A better alternative is not to encapsulate the TEMPORARYs, but instead to define them 
as materialized views and expose their definition to the query optimizer. The optimizer 
can then rely on standard view-matching techniques to identify TEMPORARYs that are 
worthwhile to reuse. The cost of reoptimization using additional materialized views is 
almost identical to the cost of optimizing the original query, since the optimizer only has 
to investigate one alternative intermediate table access method per materialized view. 
Moreover, once TEMPORARYs are defined as materialized views, there is no reason to 
limit their use to the current query only. All subsequent queries can potentially exploit 
materialized TEMPORARYs, just as they exploit user-defined materialized views. Of 
course, this approach could lead to an avalanche of such views, so that the query engine 
would have to periodically delete rarely used ones. 

 

Research issues in Autonomic Query Optimization 
 
This initial prototype of the Oracle autonomic optimizer has uncovered a number of 
challenging research problems that require solutions for any practical application of the 
optimizer in a product. Discussed below are these problems and possible approaches to 
their solution. 
 

Stability and Convergence 
 
A cardinality model refined by feedback has to take incomplete information into account. 
While some cardinalities may be deduced from query feedback—constituting hard 
facts—others are derived from statistics and modeling assumptions—forming uncertain 
knowledge. The learning rate of the system is largely dependent on the workload and the 
accuracy of statistics and assumptions. Assuming independence of predicates, when in 
fact the data are correlated, usually results in underestimation of the cardinalities of the 
intermediate results, which are used by the optimizer when determining the cost of a 
QEP. This underestimation will cause the optimizer to prefer a plan based on uncertain 
knowledge over one based on hard facts. The underestimation of cardinalities can result 
in a complete exploration of the search space; the system will converge only after trying 
out and learning about all QEPs that contain underestimation. Overestimation, however, 
may result in a local minimum (i.e., a suboptimal QEP); the optimizer will prefer other 
QEPs over a QEP with overestimates. Hence overestimates are unlikely to ever be 
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discovered or corrected. To reach a reasonable form of stability, the autonomic optimizer 
should initially use an exploratory mode, for example, before going into production. This 
mode will initially involve more risks by choosing promising QEPs based on uncertain 
knowledge, thus validating the model and gathering hard facts about data distribution and 
workload. 
 
 A second operational mode will be biased toward QEPs that are based on experience. 
This mode favors QEPs based on hard facts over slightly cheaper QEPs based on 
uncertain knowledge. The transition between the modes would be gradual. To overcome 
the local optimum caused by overestimation, it is necessary to explore uncertain 
knowledge used for presumably suboptimal, but promising QEPs, for example, by 
synchronous or asynchronous sampling. 
 

Detecting and Exploiting Correlation 
 
In practical applications, data are often highly correlated. In a country database, for 
instance, the selectivity of the conjunction (country _ “India” and city _ “Pune”) is not 
correctly derived by multiplying the individual selectivity of country _ “India” and city _ 
“Pune”, because the columns country and city are correlated —only India has a city 
called Pune. Since correlation constitutes a violation of the independence assumption, 
selectivity estimates for predicates involving correlation can be off by orders of 
magnitude in state-of-the-art query optimizers. There is an opportunity to detect and 
correct such errors in the approach followed.  
 
Correlations pose many challenges. First, there are many types of correlation, ranging 
from functional dependencies between columns, especially referential integrity, to more 
subtle and complex cases, such as an application-specific constraint that an item is 
supplied by at most 20 suppliers. Second, correlations may involve more than two 
columns, and hence more than two predicates in a query, with subsets of those columns 
having varying degrees of correlation. Moreover, a single query can only provide 
evidence that two or more columns are correlated for specific values. For complex 
queries involving several predicates, isolating which subsets of predicates are correlated 
and the degree of correlation can be extremely difficult. 
 
Another difficult research problem is to generalize correlations from specific values to 
relationships between columns: How many different values from executing multiple 
queries having predicates on the same columns are required to safely conclude that those 
columns are, in general, correlated, and to what degree? Instead of waiting for that many 
queries to execute, correlation detection could instead identify promising combinations of 
columns —even from different tables—on which the statistics utility would then collect 
multidimensional histograms. In addition, the observed information can be used to 
pinpoint errors in the cardinality model, populate the database statistics, or to adjust the 
erroneous estimates by creating an additional layer of statistics.  
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Reoptimization 
 
As discussed in the subsection, “Immediate feedback-based learning,” immediate 
learning can change the plan for a query at run time, when the actual cardinalities are 
significantly different from the estimated cardinalities. But the new plan could itself be 
quite expensive, if it cannot make use of prior TEMPORARYs efficiently. The optimizer 
will find this out during reoptimization, but the cost of reoptimization could itself be 
significant. Therefore it is crucial to determine, without reoptimizing, when it will be 
worthwhile to reoptimize.  
 
However the question is not how inaccurate the optimizer’s estimate is; it is whether the 
plan is suboptimal under the new cardinalities and whether the cost difference is enough 
to pay for the reoptimization. One heuristic looks at the nature of the plan operators and 
decides whether a change in the input cardinality for an operator is likely to make the 
operator suboptimal. Alternatively, the optimizer can be enhanced to pick not only the 
optimal plan, but also the range of selectivity for each predicate within which the plan is 
optimal. This prediction of the sensitivity of any plan to any one -parameter is extremely 
hard, because of nonlinearities in the cost model. The number of reoptimization attempts 
for a single query has also to be limited because the convergence problem of the 
subsection, “Stability and convergence” is even more serious here. 
 

Learning More Information 
 
Learning and adapting to a dynamic environment is not restricted to cardinalities and 
selectivity. Using a feedback loop, many costs and parameters currently estimated by the 
optimizer can be made self-validating. For example, the dominant aspect of cost, the 
number of physical I/Os, is currently estimated probabilistically from estimated hit ratios, 
assuming each application gets an equal share of the buffer pool. The optimizer could 
validate these estimates by observing actual I/Os, actual hit ratios, and/or actual times to 
access tables for a given plan.  
 
Another example is the maximum amount of memory allocated to perform a particular 
sort in a plan. If the DBMS detected by query feedback that a sort operation could not be 
performed in main memory, it could adjust the sort heap size to avoid external sorting for 
future sort operations. Feedback is not limited to services and resources consumed by the 
DBMS, but also extend to the applications that the DBMS serves.  
 
For example, the DBMS could measure how many of the rows in a query’s result are 
actually consumed by each application and optimize each query’s  performance for just 
that portion of the result, for example, by effectively appending the OPTIMIZE FOR _n_ 
ROWS clause of SQL to that query. Similarly, feedback from executions could be used to 
automatically set many configuration parameters for shared resources that are currently 
set manually. Physical parameters such as the network rate, disk access time, and disk 
transfer rate are used to weight the contribution of these resources to plan costs, and are 
usually considered to be constant after an initial set-up. However, setting these 
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parameters using measured values is more autonomic and more accurately captures the 
effective rate. In the same way, the allocation of memory among different buffer pools, 
the total sort heap, and so on, can be tuned automatically according to hit ratios that were 
recently observed.  
 
 


