
4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

LEARNING IN FUZZY DOMAINS

Maria do Carmo Nicoletti
Universidade Federal de São Carlos

Departamento de Computação
Caixa Postal 676 – 13565-905 – São Carlos - SP – Brazil

carmo@dc.ufscar.br

Flávia Oliveira Santos
Universidade de São Paulo

Instituto de Física de São Carlos
Caixa Postal 369 – 13560-970 – São Carlos - SP – Brazil

flavia@if.sc.usp.br

Abstract: Nested Generalized Exemplar (NGE) theory is an
incremental form of inductive learning from examples. This
paper presents a Fuzzy NGE learning system which induces
fuzzy hypotheses from a set of examples described by fuzzy
attributes and a crisp class. It presents and discusses the main
concepts which supported the development of this system. An
empirical evaluation of the FNGE prototype system is given.

Keywords: machine learning, knowledge acquisition, fuzzy
domains, exemplar-based learning.

1 INTRODUCTION
One of the most widely adopted and studied paradigms for
concept learning is known as inductive learning from
examples. In this paradigm the learning task consists of
building a general concept description, or hypotheses, from a
given set of instances and non-instances of the concept, known
as training set.

With few exceptions, existing inductive machine learning
systems are non-incremental, i.e. the training set must be
available to the system at the beginning of the learning process;
the expression of the concept is induced by considering all the
examples at once. If by any chance new training instances
become available after the learning process has already started,
the only possible way to incorporate them into the expression
of the concept is to start the whole learning process again, from
scratch, using the updated training set. In this kind of
environment, an ideal learning system could modify online the
expression of a concept as new training instances are presented.
A new training instance can potentially bring about a
rearrangement of the current expression of the concept,
although constraints on the extent of the arrangement may be
desirable.

Nested Generalized Exemplar (NGE) theory [Salzberg (1991)]
is an incremental form of inductive learning from examples
that can be considered a variant of the nearest neighbour
pattern classification [Cover (1967)]. This paper presents
FNGE, a learning system based on a fuzzy version of the NGE,
describes its main modules and discusses some empirical
results from its use in public domains. Section 2 introduces the
main ideas of the NGE paradigm. Section 3 presents the Fuzzy
NGE algorithm [Nicoletti (1996)] and the two fuzzy functions

adopted for implementing distance and generalization. Section
4 describes the details of the FNGE prototype system by
describing the functional and operational aspects of its three
main modules. Section 5 highlights some empirical results
obtained by testing FNGE in five different domains and finally,
in Section 6 we present the final remarks.

2 NGE THEORY
Nested Generalized Exemplar theory is a learning paradigm
based on class exemplars, where an induced hypothesis has the
graphical shape of a set of hyperrectangles in a n-dimensional
Euclidean space. Exemplars of classes are either
hyperrectangles or single training instances, i.e. points known
as trivial hyperrectangles.

The input to a NGE system is a set of training examples,
presented incrementally, each described as a vector of numeric
feature/value pairs and an associated class. NGE generalizes an
initial user-defined set of points, or seeds, expanding them
along one or more dimensions as new training examples are
presented. The choice of which hyperrectangle to generalize
depends on a distance metric. In a universe where the attributes
have crisp values, such a metric is a weighted Euclidean
distance, either point-to-point or point-to-hyperrectangle.

NGE initializes the learning process by randomly picking a
user-defined number of seeds and transforming them into
exemplars; the seeds become virtual hyperrectangles and are
collectively the initial expression of the concept. Then for each
new training instance Enew, NGE finds among all
hyperrectangles built to date, the closest to Enew, Hclosest1 and the
second closest, Hclosest2. These are the candidates to be
generalized. If Enew and Hclosest1 have the same class, Hclosest1 is
expanded to include Enew, a process called generalization;
otherwise the class comparison will take place between Enew

and Hclosest2. If they have the same class, NGE will specialize
Hclosest1, reducing its size by moving its edges away from Enew,
so that Hclosest2 becomes the closer of the two to Enew along that
dimension, and stretching Hclosest2 to make it absorb Enew. If the
class of Enew differs from the classes of both Hclosest1 and
Hclosest2, Enew itself becomes a new exemplar, assuming the
shape of a trivial hyperrectangle.

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

3 FUZZY NGE ALGORITHM
The Fuzzy NGE algorithm is a constructive version of the NGE
algorithm suitable for learning in fuzzy domains, i.e. domains
of vague concepts expressed in natural language. The examples
in the training set are described by n fuzzy attributes and an
associated crisp class. Each attribute is described by a linguistic
variable that can assume different linguistic values. Each
linguistic value is represented by a fuzzy set.

Fuzzy NGE differs from the NGE mainly in the functions used
for choosing the closest exemplar to the new example and for
generalizing it. Like the NGE algorithm, the Fuzzy NGE
algorithm initializes the learning process by picking a number
of seeds and transforming them into fuzzy exemplars. These
seeds are chosen at random from the training set and, as in
NGE, its number is determined by the user. The learning phase
of Fuzzy NGE consists of two consecutive steps: choosing the
best exemplar and then generalizing it.

3.1 Choosing the Best Exemplar
Given the new training example, Enew, the Fuzzy NGE
algorithm evaluates the proximity of Enew to all available
exemplars built to date in order to choose the closest two. To
do that we propose a weighted distance measure based on the
possibility measure between the fuzzy sets that describe Enew

and H, for each existing attribute. Let us assume that associated
with each fuzzy attribute Fk (1≤ k ≤ n), there exist ik fuzzy sets.
These will be noted by

jjpv , where 1 ≤ j ≤ n and 1≤ pj ≤ ij .

Let Enew and a generic exemplar H be described respectively
by:

]v,...,v,v,v[E '
n

'
3

'
2

'
1 npp3p2p1new = (1)

]v,...,v,v,v[H ''
n

''
3

''
2

''
1 npp3p2p1

= (2)

where
jj

pandp ′′′ are two instances of 1 ≤ pj ≤ ij, for 1 ≤ j ≤ n.

The attribute-to-attribute distance metric between them will be
defined as the measure of possibility between the
corresponding fuzzy sets associated with each feature that
describes Enew and H, i.e, for j = 1,…,n

]vv[max]v|v[poss ''
j

'
j

''
j

'
j jpjpxjpjp

∧= (3)

The next step towards calculating the distance between Enew

and H is to combine all the individual attribute-to-attribute
distances into a single number. To do that these individual
attribute-to-attribute distances are weighted using the
corresponding attribute weight. So the weighted attribute-to-
attribute proximityH is defined as follows:

n

)at_weight]v|v[poss(
n

1j
jjpjp ''

j
'
j

∑ ×
=

 (4)

After that the obtained value is weighted by the weight of the
exemplar. Weights are dynamically modified during the
learning phase. Attribute weights are always updated for both
Hclosest1 and Hclosest2. The only exception to this rule is when
Hclosest1 classifies the example correctly and consequently
Hclosest2 is not used; in this case, only Hclosest1 has its attribute
weights updated.

For both attribute and exemplar weights the default value of
0.005 is used as the adjustment constant. This is an arbitrarily
chosen low value that aims to prevent weights from reaching
high values. The lowest value a weight can reach is 0. After
reaching 0, it remains 0 unless the attribute starts to provide
information for helping classification. The same policy is
adopted for exemplar weights. Although attribute and exemplar
weights have a lower limit of 0, an upper limit does not exist
for either of them.

For a certain attribute fi, let
ifH and

ifE represent the values

of fi in the exemplar H and example E, respectively. In order to
adjust the weight of each attribute, Fuzzy NGE evaluates the
degree in which the fuzzy set that describes

ifE is contained

in the fuzzy set that describes
ifH . In order to do that, the

system adopts a heuristic based on the fuzzy measure of
certainty between the fuzzy sets which describe the new
example and each of the exemplars for each attribute. If Enew

and H are generically described by the expressions (1) and (2),
then for j = 1,…,n

]vv[min]v|v[cert '
j

''
j

'
j

''
j jpjpxjpjp

∨= (5)

The adjustment of an attribute weight
ifw follows the rule

showed in Table 1 (the value 0.8 has been empirically
determined). Table 2 shows the proposed policy for exemplar
weight adjustment.

if class (E) = class (H)
 then
 for each fi do
 if cert (Hfi

| Efi
) ≥ 0.8 then wfi

 = wfi
 + 0.005

 else wfi
 = wfi

 - 0.005

 else
 for each fi do
 if cert (Hfi

| Efi
) ≥ 0.8 then wfi

 = wfi
 - 0.005

 else wfi
 = wfi

 + 0.005

Table 1. Adjustment of attribute weights

Class of
Hclosest1

 Class of
Hclosest2

Weight of Exemplar

Class =  Hclosest1 : wH = wH + 0.05
Hclosest2 : wH remains the same

of ≠ = Hclosest1 : wH = wH - 0.05
Hclosest2 : wH = wH + 0.05

New
Example

≠ ≠ Hclosest1 : wH = wH - 0.05
Hclosest2 : wH = wH - 0.05

Table 2. Adjustment of exemplar weights

Using the measures of proximities, weighted by attribute and
by exemplar weights, the Fuzzy NGE defines the first and
second closest exemplars to Enew, identified by the names
Hclosest1 and Hclosest2, and starts the generalization step.

3.2 Generalizing the Exemplar
The Fuzzy NGE algorithm behaves exactly as the original
NGE, in how it chooses between Hclosest1 and Hclosest2 to
generalize. The process of generalizing an exemplar H using an
example Enew can be described as an absorption of Enew by H,

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

which is accomplished by “extending” the limits of the
exemplar in order to include the example. The fuzzy version
will generalize an exemplar through generalizing the fuzzy sets
associated with the attributes used to describe both Enew and H.
So, if Enew and a generic exemplar H are described by the
previous expressions (1) and (2) respectively, the generalized
expression of H will be given by the union of the fuzzy sets
associated to each attribute, in Enew and H, i.e.:

]vv,...,vv,vv[''
n

'
n

''
2

'
2

''
1

'
1 jpjpp1p1p1p1

∨∨∨ (6)

As commented earlier in this paper, at the beginning of the
learning process (Section 3.1), associated to each attribute Fk

(1 ≤ k ≤ n) there exist ik fuzzy sets. The number ik can increase
when new fuzzy sets are created during the generalization
process. This gives the system its constructive characteristic.
The pseudocode of the Fuzzy NGE learning phase is described
in Figure 1.

Figure 1. Pseudocode of the Fuzzy NGE Algorithm

4 FUZZY NGE PROTOTYPE SYSTEM
The Fuzzy NGE algorithm has been implemented as a
prototype system called FNGE. Its three main modules,
identified as Attribute Definition, Training and Classification
Modules are described next.

4.1 The Attribute Definition Module
Through this module the user provides the system with: (a) the
number of attributes which describe the examples in the
training set; (b) all the possible attribute linguistic values which
exist in the training set; (c) the fuzzy set associated with each
possible attribute linguistic value; (d) the number of elements
and the elements themselves that constitute the universal set
(provided it is finite and discrete). The last three items are
given as an ASCII file, as shown in Figure 2, where each of its
records has the syntax: <number of elements in the universal
set, linguistic value, list of the elements of the universal set, list
of membership function values for the elements of the universal
set>.

Figure 2. Defining attribute values to FNGE

The first line of Figure 2, for example, reads as: 6 - number of
elements in the universal set; low - linguistic value being
defined; 150,160,170,180,190,200 - list of the 6 elements of the
universal set; 1.0,0.8,0.2,0,0,0 - list of the six membership
function values of the elements in the universal set. Besides
providing attribute values, the user should also inform the
system, via Dialog Box, the number of attributes that describe
the examples in the training set. Assuming that all information
has been correctly given during the Attribute Definition phase,
the system is ready to start the next phase, i.e., the Training
phase.

4.2 The Training Module
The Training Module is the main module of the FNGE system
and implements the Fuzzy NGE algorithm described in Section
3, Figure 1. It is the module responsible for choosing the
closest exemplar to the new example and for generalizing it
(when appropriate).

The Training Module expects as input an ASCII file (train.txt)
which contains the training set and the number of seeds, s,
given by the user via Dialog Box. Each record in the input file
corresponds to a fuzzy example, where the last value is
assumed, by default, to be the example class (see Figure 3).
The system splits the input file train.txt into two new files: a
new train.txt and a file test.txt, containing 75% and 25% of the
examples, to be used in training and testing respectively. After
the first splitting, the new train.txt is split into two other files:
seeds.txt and new.txt; seeds.txt contains the s (number of seeds)
first examples of new train.txt and new.txt contains what is left
after extracting the seeds. Each example in the file new.txt is
treated as a new example that becomes, in an incremental way,
available to the learning system. Each example in the file
seeds.txt is considered already an exemplar and, consequently,
has an associated weight. Initially, the weights of exemplars
and attributes are initialized to 1 and are updated during the
training process, according to the weighting process,
previously described in Section 3.1. The input files used by
FNGE are shown in Figure 4.

 6,low,150,160,170,180,190,200,1,0.8,0.2,0,0,0
 6,tall,150,160,170,180,190,200,0,0,0.2,0.5,1,1
 7,light,40,50,60,70,80,90,100,1,1,0.8,0.5,0.1,0,0
 7,heavy,40,50,60,70,80,90,100,0,0,0,0,0.1,0.8,1
 7,very heavy,40,50,60,70,80,90,100,1,1,0.64,0.25,0.01,0,0
 7,little educated,0,1,2,3,4,5,6,1,0.8,0.5,0,0,0,0

��
for each new training example Enew do
 begin

 weights of attributes = 1
 weight of exemplar = 1

 for each existing exemplar H do
 begin

• determine the attribute-to-attribute distance between Enew

and H, using the concept of possibility between fuzzy sets
to compute distances

• weight each attribute-to-attribute distance by the
corresponding weight of the attribute

• calculate the mean value of these distances
• calculate the final distance by weighting the mean value

using the corresponding weight of the exemplar
 end
 choose the two closest exemplars to Enew,

naming them Hclosest1 and Hclosest2

 if Enew and Hclosest1 have the same crisp class
 then
 begin

• generalize Hclosest1 with Enew using union of fuzzy sets for
each attribute value

• update weights of attributes and the weight of Hclosest1

 end
 else
 if Enew and Hclosest2 have the same crisp class
 then
 begin

• generalize Hclosest2 with Enew, using union of fuzzy sets for
each attribute value

• update the weights of attributes, and the weights of
Hclosest1 and Hclosest2H

 end
 else
 begin

• store Enew into a new exemplar
• update the weights of attributes, and the weights of

Hclosest1 and Hclosest2

 end
 end

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

 low,light,little educated,C
 very low, very light, very little educated,C
 low,very light, more or less little educated,J
 very tall, average heavy,very highly educated,A
 tall, very heavy,highly educated,A
 average tall, average heavy, more or less highly educated,J
 low, very light, more or less little educated,C
 tall,heavy,highly educated,A

��

train.txt

 new train.txt test.txt

seeds.txt new.txt

Figure 3. An example of a training set

Figure 4. Files used by FNGE

The system initializes the learning phase by making the s
training examples contained in seeds.txt, exemplars. After that,
each new fuzzy example from the new.txt file is compared to
each existing fuzzy exemplar, to find the first and second
exemplars closest to it. If the current example is equidistant to
various exemplars, the implemented heuristic chooses the
oldest exemplar. After finding the two closest exemplars, the
system proceeds by choosing which of them to generalize
(when generalization can be applied).

The learning phase ends after each example in new.txt has been
processed. The result of this phase is the fuzzy expression of
the learned concept which can be defined as the induced set of
vectors of attributes, where each attribute is given by a fuzzy
value. The learned concepts and the descriptions of all fuzzy
sets are recorded on two files, concepts.txt and fuzzy.txt.
Examples of the contents of both files can be seen in Figure 5
and Figure 6 respectively.

Figure 5. Concepts learned by FNGE

As mentioned earlier, the NGE induces hypotheses with the
graphical shape of hyperrectangles as a consequence of its
generalization process, which “grows” the hyperrectangle
when it makes a correct prediction in order to absorb the
current training example that lies outside its boundaries. Due to
its fuzzy nature, FNGE generalizes hypotheses by (generally)
creating new fuzzy values for attributes. In this sense, the
FNGE learning phase can be considered a type of constructive
process; however it does not create new attributes as
constructive algorithms usually do. Instead, it creates new
fuzzy values for the existing attributes (attributes
fuzzy1,…fuzzy6 in Figure 6).

Figure 6. Fuzzy values used in the description of the
concept

4.3 The Classification Module
The Classification Module is responsible for classifying new
instances using the concept learned in the previous module. It
requires, as input, the descriptions of the concepts (files
concepts.txt and fuzzy.txt). It can be used for (a) classifying
new instances and/or (b) checking the predictive accuracy of
the system (in this case the system should be provided with the
test.txt file created by the Training Module).

5 EXPERIMENTAL RESULTS
This section presents some experimental results concerning the
performance of the FNGE system. Due to the lack of available
real-world fuzzy domains, five datasets from the UCI
Repository [Merz (1998)] were “transformed” into fuzzy
datasets, i.e., datasets where attributes are described by fuzzy
sets. These datasets are well-known and their descriptions can
be found in many references, including in the UCI Repository.
Since we have used only subsets of the original domains, Table
3 lists the figures related to the number of examples used in the
experiments.

Table 3. Domains and number of examples

Domain training testing number of classes
Breast Cancer 69 22 2

Glass 82 27 7
Lung Cancer 24 8 3

Pima Diabetes 88 29 2
Postoperative 68 22 3

We have worked with subsets of the original domains for two
reasons: a) in some domains (Breast Cancer, Glass and Pima
Diabetes), due to the transformation process, different crisp
examples can be transformed into the same fuzzy example; b)
examples which had attributes with absent value were
discarded. It is important to note that irrelevant attributes that
were part of the original domains have not been included in the
corresponding fuzzy domain. In order to obtain the fuzzy
domains, the following rules were used:

• numerical attributes: these attributes have values within an
interval. The interval was divided into smaller intervals
(smaller sets) and for each of them, a fuzzy set associated to
a linguistic value was defined. Tables 4 and 5 exemplify
this process for one attribute.

• symbolic attributes: for each possible symbolic value, a
fuzzy set was defined to represent that value. Such fuzzy
sets were defined using the information about the domain

 fuzzy1,fuzzy2,little educated,C
 very low,fuzzy6,little educated,C
 low,very light,more or less little educated,J
 fuzzy5,not very light,more or less highly educated,V
 average tall,fuzzy4,highly educated,A
 average tall,average light,little educated,J

��

 low
 150,160,170,180,190,200
 1,0.8,0.2,0,0,0
 fuzzy1
 150,160,170,180,190,200
 1,0.8,0.8,0,0,0
 fuzzy2
 40,50,60,70,80,90,100
 1,1,0.9,0.6,0.1,0,0
 fuzzy3
 150,160,170,180,190,200
 0,0.5,0.8,0.5,0,0

��

 tall
 150,160,170,180,190,200
 0,0,0.2,0.5,1,1
 very tall
 150,160,170,180,190,200
 0,0,0.04,0.25,1,1
 fuzzy4
 40,50,60,70,80,90,100
 1,1,0.8,0.5,1,0.3,0
 fuzzy5
 150,160,170,180,190,200
 1,0.8,0.2,0.5,1,1

��

4o. SBAI – Simpósio Brasileiro de Automação Inteligente, São Paulo, SP, 08-10 de Setembro de 1999

found in the Repository which states for the Postoperative
domain, for example, that high temperature is above 37oC,
medium is between 36oC and 37oC and low is below 36oC.
Tables 6 and 7 show an example of the transformation
process for the temperature attribute.

Table 4. Transforming a numerical attribute of the Pima
Diabetes domain (number of times pregnant) into a fuzzy

attribute – creating linguistic values

Subsets Linguistic value
{0} very low
{1} low

{2,3,4} medium
{5,6,7,8,9} high
{10,11,12} very high

Table 5. Defining the fuzzy sets associated with the
linguistic values shown in Table 2

Values Fuzzy Sets
elements 0 1 2 3 4 5 6 7 8 9 10 11 12
very low 1 0.8 0.04 0.01 0 0 0 0 0 0 0 0 0
low 1 0.9 0.2 0.1 0 0 0 0 0 0 0 0 0
medium 0 0 0.1 1 0.8 0.1 0 0 0 0 0 0 0
high 0 0 0 0 0.1 0.5 0.8 1 1 1 1 1 1
very high 0 0 0 0 0.01 0.25 0.64 1 1 1 1 1 1

Table 6. Transforming a symbolic attribute of the
Postoperative domain (temperature) into a fuzzy attribute -

creating linguistic values

Symbolic
Values

Linguistic Values

high high
medium medium

low low

Table 7. Defining the fuzzy sets associated with the
linguistic values shown in Table 5

Values Fuzzy Sets
elements 35 36 36.5 37 38 39 40

high 0 0 0 0.5 1 1 1
medium 0 0.8 1 0.8 0 0 0

low 1 0.5 0.1 0 0 0 0

For testing the FNGE prototype an approach inspired by the
one adopted in [Wettschereck (1995)] was used. For each
dataset, five different training files (and the corresponding
testing files) were consecutively generated. It can be seen in
Table 6 that FNGE (with weights) has a performance over 70%
in three domains. The performance of FNGE (with weights)
was shown to be approximately the same as that of NGE1 on
the Pima Diabetes domain and is slightly superior, on the
Postoperative domain (Table 8). We believe that one of the
reasons for the low performance of FNGE (inferior to 50%) in
two domains is the low number of training examples. However,
that could be explained by a possible inadequacy of the
transformation process used in those domains. By looking at
the figures in Table 8 we could risk saying that on average, the
FNGE with weights tends to have a better performance than its
counterpart; nevertheless, we still believe we do not have

1 We have conducted some experiments with the NGE system,
available via ftp (http://www.gmd.de/ml-archive/frames/software/
Software/Software-frames.html), on 13 domains from the UCI
Repository.

enough data to confirm this and further investigation needs to
be carried on.

Table 8. Average performance (%) of FNGE and NGE

Domain FNGE with
weights

FNGE without
weights

NGE

Breast Cancer 85.19 95.54 95.66
Glass 42.16 23.82 85.50

Lung Cancer 30.59 34.51 36.00
Pima Diabetes 72.08 56.65 69.69
Postoperative 73.08 61.19 44.74

6 FINAL REMARKS
In this paper we have presented a prototype of a new inductive
learning system based on the Nested Generalized Exemplar
theory, designed for fuzzy domains, called FNGE. It is an
incremental, supervised and constructive learning method.
Since its design was substantially based on the NGE theory, we
kept this name only as a reference. The FNGE cannot be
thought of as a system that induces nested exemplars because
this does not mean anything in fuzzy domains.

FNGE is an easy-to-use fuzzy learning environment. The
interactive prototype has been designed as a window-driven
environment and offers an interactive interface. FNGE runs
under Windows and has been programmed in C++ using an
object oriented approach. Some of its features are still under
development: a second option for the Classification Module, an
automatic help and a more refined set of error message. Others,
such as the use of modifiers, are scheduled to be implemented
very soon. A few others such as the proximity distance based
on the possibility measure and the generalization process,
based on the union of fuzzy sets, need further investigation and
empirical validation.

Acknowledgements: Support for this work has been provided
by FAPESP. Thanks to Brenda Padgett, for her insightful
comments and suggestions.

REFERENCES
Cover, T. and Hart, P. (1967). Nearest Neighbour Pattern

Classification. IEEE Transactions on Information
Theory 13, pp. 21-27.

Merz, C. J. and Murphy, P.M. (1998). UCI Repository of
Machine Learning Databases [http://www.ics.uci.edu/
~mlearn/MLRepository.html]. Irvine, CA: University of
California, Department of Information and Computer
Science.

Nicoletti, M. C. and Santos, F. O. (May 1996). Learning Fuzzy
Exemplars through a Fuzzified Nested Generalized
Exemplar Theory. Proceedings of the European
Workshop on Fuzzy Decision Analysis for Management,
Planning and Otimization, Dortmund, Germany, pp.
140-145.

Salzberg, S. L. (1991). A Nearest Hyperrectangle Learning
Method. Machine Learning 6, pp. 251-276.

Wettschereck, D. and Dietterich, T.G. (1995). An Experimental
Comparison of the Nearest-Neighbour and Nearest-
Hyperrectangle Algorithms. Machine Learning 19, pp.
5-27.

