Active Server Pages

1. Introduction to ASP

What you should already know

Before you continue you should have some basic understanding of the following:

WWW, HTML and the basics of building Web pages

A scripting language like JavaScript or VBScript

If you want to study these subjects, go to our Home Page

What is ASP?

ASP stands for Active Server Pages

ASP is a program that runs inside IIS

IIS stands for Internet Information Server

IIS is a part of the Windows NT 4.0 Option Pack

The Option Pack can be downloaded from Microsoft

PWS is a smaller - but fully functional - version of IIS

PWS can be found on your Windows 95/98 CD

ASP compatibility

To run IIS you must have Windows NT 4.0 or later

To run PWS you must have Windows 95 or later

IIS is integrated as a standard part of Windows 2000

ChiliASP is a technology that runs ASP without Windows OS

InstantASP is another technology that runs ASP without Windows OS

What is an ASP file?

An ASP file is just the same as an HTML file

An ASP file can contain text, HTML tags and scripts

Scripts in an ASP file is executed on the server

An ASP file has the file extension ".asp"

How does it work?

When a browser requests an HTML file, the server returns the file

When a browser requests an ASP file, the server calls ASP

ASP reads the ASP file and executes the scripts in the file

Finally, the ASP file is returned to the browser as a plain HTML file

What can ASP do for you?

Dynamically edit, change or add any content of a Web page

Response to user queries or data submitted from HTML forms

Access any data or databases and return the results to a browser

Customize a Web page to make it more useful for individual users

The advantages of using ASP instead of CGI and Perl, are those of simplicity and speed

Provides security since your ASP code can not be viewed from the browser

Since ASP files are returned as plain HTML, they can be viewed in any browser

Clever ASP programming can minimize the network traffic

How to Run ASP on your own PC

You can run ASP on your own PC without an external server. Microsoft's Personal Web Server (PWS) is normally not installed on your PC. But if you look in your Windows 98 CD, you will find it hidden in the Add-ons folder.

You can install PWS and run ASP on your own PC following these steps:

1. If PWS is not installed with Windows98, find the Add-ons folder on your Windows98 CD, open the PWS folder and run the setup.exe file. If you don't have a Windows 98 CD, go to Microsoft's Web site and download IIS.

2. An "Inetpub" folder is now created on your harddrive. Open it and find the "wwwroot" folder. Create a folder, like "MyWeb", under wwwroot.

3. Use a text editor to write some ASP code, save the file as "test1.asp" in the "MyWeb" folder.

4. Open your browser and type in: http://localhost/MyWeb/test1.asp

2. ASP Syntax

You can not view server side scripts in a browser, you will only see the output from ASP which is plain HTML. This is because the scripts are executed on the server before the result is sent to the browser.

In our school, every example has a function that displays the hidden server side scripts. This will make it easier for you to understand how it works.

The Basic Syntax Rule

An ASP file normally contains HTML tags, just as a standard HTML file. In addition, an ASP file can contain server scripts, surrounded by the delimiters <% and %>. Server scripts are executed on the server, and can contain any expressions, statements, procedures, or operators that are valid for the scripting language you use.

The Response Object

The Write method of the ASP Response Object is used to send content to the browser. For example, the following statement sends the text "Hello World" to the browser: Response.Write("Hello Wold").

VBScript

In ASP it is possible to use different scripting languages. The default language in ASP is VBScript, as in this example:

<html>

<body>

<% response.write("Hello World!") %>

</body>

</html>	

The example above uses the response.write function to write Hello World! into the body of the HTML document.

JavaScript

To use JavaScript as the default scripting language, insert a language specification at the top of the page:

<%@ language="javascript" %>

<html> <body>

<% Response.Write("Hello World!") %>

</body>

</html>	

Note that - unlike VBScript - JavaScript is case sensitive. You will have to write your ASP code with uppercase letters and lowercase letters when the language requires it.

Other Scripting Languages

ASP comes with VBScript and JavaScript. If you want to script in another language, like PERL, REXX, or Python, you have to install scripting engines for them.

Because the scripts are executed on the server, the browser that requests the ASP file does not need to support scripting.

Examples

1. How to write some text into the body of the HTML document with ASP.

Coding

<html>

<body>

<%

response.write("Hello World!")

%>

</body>

</html>

Output

Hello World!

2. How to format the text with HTML tags.

Coding

<html>

<body>

<%

response.write("<h2>Hello World!
This sentence uses HTML tags to format the text!</h2>")

%>

</body>

</html>

Output

Hello World!

This sentence uses HTML tags to format the text!

3. ASP Variables ...

Lifetime of Variables

A variable declared outside a procedure, can be accessed and changed by any script in the ASP page where it is declared.

A variable declared inside a procedure, is created and destroyed every time the procedure is executed. No scripts outside that specific procedure can access or change that variable.

To make a variable accessible in several ASP pages, declare session variables or application variables.

Session Variables

Session variables stores information about one single user, and are available to all pages in one application. Common information stored in session variables are username and userid. To create a session variable, store it in a Session Object.

Application Variables

Application variables are also available to all pages in one application. Application variables are used to hold information about all users in a specific application. To create an application variable, store it in an Application Object.

Examples

1. Variables are used to store information. This example demonstrates how to create a variable, assign a value to it, and insert the variable value into a text.

Coding

<html>

<body>

<%

Dim name

name="Jan Egil"

response.write("My name is: " & name)

%>

</body>

</html>

Output

My name is: Jan Egil

2. Arrays are used to store a series of related data items. This example demonstrates how you can make an array that store names.

Coding

<html>

<body>

<%

Dim famname(5)

famname(0) = "Jan Egil"

famname(1) = "Tove"

famname(2) = "Hege"

famname(3) = "Ståle"

famname(4) = "Kai Jim"

famname(5) = "Børge"

For i = 0 to 5

response.write(famname(i) & "
")

Next

%>

</body>

</html>

Output

Jan Egil

Tove

Hege

Ståle

Kai Jim

Børge

3. This example demonstrates how you can loop through the 6 headers in HTML.

Coding

<html>

<body>

<%

Dim i

for i = 1 to 6

response.write("<h" & i & ">This is header " & i & "</h" & i & ">")

next

%>

</body>

</html>

Output

This is header 1

This is header 2

This is header 3

This is header 4

This is header 5

This is header 6

4. How to write VBScript syntax in ASP. This example will display a different message to the user depending on the time on the server.

Coding

<html>

<body>

<%

Dim h

h = hour(now())

If h < 12 then

response.write("Good Morning!")

else

response.write("Good day!")

end if

%>

</body>

</html>

Output

Good Morning!

5. How to write JavaScript syntax in ASP. This example is the same as the one above, but the syntax is different.

Coding

<%@ language="javascript" %>

<html>

<body>

<%

var d = new Date()

h = d.getHours()

if (h < 12)

{

Response.Write("Good Morning!")

}

else

{

Response.Write("Good day!")

}

%>

</body>

</html>

Output

Good Morning!

4. ASP Procedures ...

Procedures

ASP code can contain procedures and functions:

<html>

<head>

<%

sub vbproc(num1,num2)

response.write(num1*num2)

end sub

%>

</head>

<body> The result of the calculation is: <%call vbproc(3,4)%>

</body>

</html>	

Use the HTML <script> tag to include procedures or functions that is written in another scripting language than the default:

<html>

<head>

<script language="javascript" runat="server">

function jsproc(num1,num2)

{

Response.Write(num1*num2)

}

</script>

</head>

<body> The result of the calculation is: <%jsproc(3,4)%>

</body>

</html>	

The "language" attribute in the <script> tag defines the script language for the code block inside the script element. The "runat=server" attribute in the <script> tag defines that this is a server side script. If you omit the "runat=server" attribute, the script will be executed on the browser.

Calling a Procedure

When calling a JavaScript procedure from a VBScript, always use parentheses after the procedure name.

When calling a JavaScript procedure or VBScript procedure from a JavaScript, always use parentheses after the procedure name.

When calling a VBScript procedure from a VBScript, you can use the "call" keyword before the procedure name. If the procedures requires parameters, the parameter list must be enclosed in parentheses. If you do not use the "call" keyword, and the procedures requires parameters, the parameter list must not be enclosed in parentheses.

Example

1.How to call a VBScript procedure from VBScript.

Coding

<html>

<head>

<%

sub vbproc(num1,num2)

response.write(num1*num2)

end sub

%>

</head>

<body>

The result of the calculation is: <%call vbproc(3,4)%>

</body>

</html>

Output

The result of the calculation is: 12

2.How to call a JavaScript procedure from a JavaScript.

Coding

<%@ language="javascript" %>

<html>

<head>

<%

function jsproc(num1,num2)

{

Response.Write(num1*num2)

}

%>

</head>

<body>

The result of the calculation is: <%jsproc(3,4)%>

</body>

</html>

Output

The result of the calculation is: 12

3.How to call a JavaScript procedure and a VBScript procedure from a VBScript.

Coding

<html>

<head>

<%

sub vbproc(num1,num2)

Response.Write(num1*num2)

end sub

%>

<script language="javascript" runat="server">

function jsproc(num1,num2)

{

Response.Write(num1*num2)

}

</script>

</head>

<body>

The result of the calculation is: <%call vbproc(3,4)%>

The result of the calculation is: <%call jsproc(3,4)%>

</body>

</html>

Output

The result of the calculation is: 12

The result of the calculation is: 12

5. ASP Forms and User Input ...

User Input

To get information from forms, you can use the Request Object.

A simple form example:

<form method="get" action="../pg.asp">

First Name: <input type="text" name="fname">

Last Name: <input type="text" name="lname">

<input type="submit" value="Send">

</form>	

There are two ways to get form information: The Request.QueryString command and the Request.Form command.

Request.QueryString

The Request.QueryString command collects the values in a form as text.

Information sent from a form with the GET method is visible to everybody (in the address field). Remember that the GET method limits the amount of information to send.

If a user typed "Bill" and "Gates" in the form example above, the url sent to the server would look like this:

http://www.w3schools.com/pg.asp?fname=Bill&lname=Gates	

The ASP file "pg.asp" contains the following script:

<body>

Welcome

<%

response.write(request.querystring("fname"))

response.write(" ")

response.write(request.querystring("lname"))

%>

</body>	

The example above writes this into the body of a document:

Welcome Bill Gates	

Request.Form

To collect the values in a form with the POST method, use the Request.Form command.

Information sent from a form with the POST method is invisible to others. The POST method has no limits, you can send a large amount of information.

If a user typed "Bill" and "Gates" in the form example above, the url sent to the server would look like this:

http://www.w3schools.com/pg.asp?fname=Bill&lname=Gates	

The ASP file "pg.asp" contains the following script:

<body>

Welcome

<%

response.write(request.form("fname"))

response.write(" ")

response.write(request.form("lname"))

%>

</body>	

The example above writes this into the body of a document:

Welcome Bill Gates	

Form Validation

The form input should be validated on the browser, by client side scripts. Browser validation has faster response time, and reduces the server loads.

You should consider to use server validation if the input from a form is inserted into a database. A good way to validate the form on a server is to post the form into itself, instead of jumping to a different page. The user will then get the error messages on the same page as the form. This makes it easier to discover the error.

Example

1. Using Get Method

This example demonstrates how to interact with the user, with the Request.QueryString command.

Coding

<html>

<body>

<form action="demo_reqquery.asp" method="get">

Please type your first name:

<input type="text" name="fname">

<input type="submit" value="Submit">

</form>

<%

If Request.QueryString("fname")<>"" Then

Response.Write ("Hello " & Request.QueryString("fname") & "!")

Response.Write ("
How are you today?")

End If

%>

</body>

</html>

2. Using Post Method

This example demonstrates how to interact with the user, with the Request.Form command.

Coding

<html>

<body>

<form action="demo_simpleform.asp" method="post">

Please type your first name:

<input type="text" name="fname">

<input type="submit" value="Submit">

</form>

<%

If Request.Form("fname")<>"" Then

Response.Write ("Hello " & Request.Form("fname") & "!")

Response.Write ("
How are you today?")

End If

%>

</body>

</html>

3. form with Radio Buttons

This example demonstrates how to interact with the user, through radio buttons, with the Request.Form command.

Coding

<html>

<body>

<%

dim cars

cars=Request.Form("cars")

%>

<form action="demo_radiob.asp" method="post">

<p>Please select your favorite car:</p>

<input type="radio" name="cars" value="Volvo"

<%if cars = "Volvo" then Response.Write("checked")%>>

Volvo V70

<input type="radio" name="cars" value="Saab"

<%if cars = "Saab" then Response.Write("checked")%>>

Saab 95

<input type="submit" value="Submit">

</form>

<%

if cars<>"" then

Response.Write("<p>Your favorite car is: " & cars & "</p>")

end if

%>

</body>

</html>

6. ASP Global.asa ...

The Global.asa file

The Global.asa file is an optional text file that contains information about an ASP application. It can contain scripts, session and application objects that will be used by the entire application. The Global.asa file must be stored in the root directory of the application, and one application can only have one Global.asa file.

A Global.asa file can contain the following:

The Application_OnStart procedure

The Application_OnEnd procedure

The Session_OnStart procedure

The Session_OnEnd procedure

<object> declarations

TypeLibrary declarations

An example of a Global.asa file

<script language="vbscript" runat="server">

sub Application_OnStart

......some vbscript code

end sub

sub Application_OnEnd

......some vbscript code

end sub

sub Session_OnStart

......some vbscript code

end sub

sub Session_OnEnd

......some vbscript code

end sub

</script>	

We do not use the delimiters, <% and %>, to insert scripts in the Global.asa file. Scripts have to be enclosed in <script> tags.

The "Application_OnStart" procedure is executed once; when the Application starts. The Application starts when the first visitor calls the first .asp page. This procedure should contain code that must be executed before anyone can access the application (like database login information). When this procedure is complete, the "Session On_Start" procedure runs.

The "Session_OnStart" procedure is executed every time a new user begins a session with the site.

The "Session_OnEnd" procedure is executed every time a user ends a session. Code in this procedure can be for example to transfer session variables to databases, or set application-level variables to another value.

The "Application_OnEnd" procedure is executed once; when the Application ends (when the server stops). This procedure is used to clean up settings after the Application stops, like delete records or write information to text files .

7. ASP Cookies ...

Cookies

A cookie is a small file that the server embeds in a user's browser. The cookie is used to identify the user. Each time the same browser asks for a page, it sends the cookie too. ASP scripts can both get and set the values of cookies.

Set Cookies

To set a cookie value, use the "Response.Cookies" command. If the cookie does not exist, it will be created, and take the value that is specified.

In the example below, we send a cookie named "userid" with an value of "25" to the browser. This cookie only lasts during the current user session. This command must appear before the <html> tag:

<%

Response.Cookies("userid")=25

%>	

If you want to identify a user after the user has stopped and restarted the browser, you must use the "Expires" attribute for "Response.Cookies" and set the date to some date in the future:

<%

Response.Cookies("userid")=25

Response.Cookies("userid").Expires="May 10, 2002"

%>	

Get Cookies

To get a cookie value, use the "Request.Cookies" command.

In the example below, we want to retrieve the value of the "userid" cookie. We retrieves 25:

<%

Response.Write(Request.Cookies("userid"))

%>	

Set Cookie Paths

Each cookie stored on the browser contains path information. When the browser requests a file stored in the same location as the path specified in the cookie, the browser sends the cookie to the server.

By default the path of the cookie is set to the name of the application that contains the file that created the cookie. If a file, in an application called "userapp", creates a cookie, then each time a user's browser gets any file in that application, the browser will send the cookie.

To specify a path for a cookie, you can use the "Path" attribute for "Response.Cookies".

The example below assigns the path Sales/Customer/Profiles/ to a cookie called Zip:

<%

Response.Cookies("Zip")="12"

Response.Cookies("Zip").Expires="January 1, 2001"

Response.Cookies("Zip").Path="/Sales/Customer/Profiles/"

%>	

Note: Make sure all addresses to .asp files have the same case to ensure that the browser sends stored cookies.

The example below sets the cookie path so that the user's browser will send a cookie whenever the browser requests a file from your server, regardless of application or path:

<%

Response.Cookies("Zip").Path="/"

%>	

No Cookie Support

Not all browsers support cookies. If your application is in contact with browsers that do not support cookies, you can not use cookies. You will then have to use other methods to pass information from page to page in your application.

There are two ways to do this:

Add Parameters to a URL

Add parameters to a query string, like this:

http://www.w3schools.com/asp/greeting.asp?name=Hege	

Add Hidden Controls to a Form

Add hidden controls to a form.

The example below contains a hidden control. The form passes a user id value, in addition to the rest of the information:

<form method="post" action="greeting.asp">

First Name: <input type="text" name="fname" value="">

Last Name: <input type="text" name="lname" value="">

<input type="hidden" name="userid"

value=<%Response.write(userid(i))%>

<input type="submit" value="Send">

</form>	

Example

1. How to create a Welcome Cookie.

Coding

<%

response.cookies("NumVisits").Expires = date + 365

num=request.cookies("NumVisits")

If num = "" Then

response.cookies("NumVisits") = 1

Else

response.cookies("NumVisits") = num + 1

End If

%>

<html>

<body>

<%

if num="" then

%>

Welcome! This is first time you are visiting this Web page.

<%

else

%>

You have visited this Web page <%response.write(num)%> times before

<%

end if

%>

</body>

</html>

Output

Welcome! This is first time you are visiting this Web page.

8. ASP Sessions ...

Sessions

The Session Object is used to store information about, or change settings for a user session. Variables stored in the Session Object holds information about one single user, and are available to all pages in one application. Common information stored in session variables are name, id, and preferences. The server create new Session objects for new users, and destroy Session objects when the session expires.

Start a Session

A session can start when:

A new user requests an .asp file in an application, and the Global.asa file includes a Session_OnStart procedure

A user stores a value in the Session Object

The server receives a request that does not contain a valid SessionID cookie

A user requests an .asp file in an application, and the Global.asa file uses the <object> tag to instantiate an object with session scope

End a Session

A session ends if a user has not requested or refreshed a page in an application for a specified period. This value is 20 minutes by default.

If you want to set a timeout interval that is shorter or longer than the default, you can set the

"Timeout" property. The example below sets a timeout interval of 5 minutes.

<% Session.Timeout=5 %>	

To end a session you can also use the "Abandon" method.

<% Session.Abandon %>	

Store and Retrieve Variable Values

You can store variables in the Session Object, like this:

<%

Session("username")="Hege"

Session("age")=24

%>	

You can get variable values from the Session Object, like this:

Welcome <%Response.Write(Session("username"))%>	

The line above returns: "Hege".

You can also store user preferences in the Session Object, and then access that preference to choose what page to return to the user.

The example below specifies a text-only version of the page if the user has a low screen resolution:

<%

If Session("screenres")="low" Then

%>

This is the text version of the page

<%

Else

%>

This is the multimedia version of the page

<%

End If

%>	

Remove Variable Values

The Contents collection contains all of the variables that have been stored for a session. By using the Remove method, you can remove a variable from the session.

The example below removes an item, in this case a session variable named "sale":

<%

If Session.Contents("age")<=18 then

Session.Contents.Remove("sale")

End If

%>	

You can also use the RemoveAll method to remove all variables in a session:

<% Session.Contents.RemoveAll() %>	

Looping Through the Contents

You can loop through the contents collection, to see what is stored in it:

<%

dim i

For Each i in Session.Contents

Response.Write(Session.Contents(i) & "
")

Next

%>	

Result:

Hege

24	

If you do not know how many items that are stored in a contents collection, you can use the "Count" property:

<%

dim i

dim j

j=Session.Contents.Count

For i=1 to j

Response.Write(Session.Contents(i) & "
")

Next

%>	

Result:

Hege 24	

Looping Through the Objects

You can loop through the "StaticObjects" collection, to see the values of all the objects stored in the Session Object:

<%

dim i

For Each i in Session.StaticObjects

Response.Write(Session.StaticObjects(i) & "
")

Next

%>	

9. ASP Applications ...

Applications

The Application Object is used to tie together Web pages into an application. The Application Object store variables and objects for the entire application. Any page that is a part of this application can access these variables and objects. There is one instance of the Application Object for each application running on the server, but many clients can access the same application.

Store and Retrieve Variables Values

Application variables and objects must be declared in the Global.asa file, but they can be accessed and changed by any page in the application.

You can store variables in the Application Object (in global.asa), like this:

<script language="vbscript" runat="server">

Sub Application_OnStart

application("vartime")=""

application("whoon")=1

End Sub

</script>	

You can get variable values from the Application Object, like this:

There are

<%Response.Write(Application("whoon"))%>

active connections.	

Looping Through the Contents

You can loop through the "Contents" collection, to see the values of all the variables stored in the Application Object:

<%

dim i

For Each i in Application.Contents Response.Write(Application.Contents(i) & "
")

Next

%>	

Result:

1	

If you do not know how many items that are stored in a "Contents" collection, you can use the "Count" property:

<%

dim i

dim j

j=Application.Contents.Count

For i=1 to j

Response.Write(Application.Contents(i) & "
")

Next

%>	

Result:

1	

Looping Through the Objects

You can loop through the "StaticObjects" collection, to see the values of all the objects stored in the Application Object:

<%

dim i

For Each i in Application.StaticObjects Response.Write(Application.StaticObjects(i) & "
")

Next

%>	

Lock and Unlock

You can lock an application with the "Lock" method. This method prevents users (other than the one currently accessing it), from changing the Application variables:

<%

Application.Lock

%>	

You can unlock an application with the "Unlock" method. This method removes the lock from the Application variable:

<%

Application.Unlock

%>	

10. ASP Objects ...

ASP Built-in Objects

Object			Description	

Application		The Application Object is used to share information among all users of

			a given application	

Response		The Response Object is used to send output to the user 	

Request		The Request Object is used to get information from the user	

Server			The Server Object is used to access properties and methods on the

			server	

Session			The Session Object is used to store information about or change

			settings for a user's session	

ASP Scripting Objects

Object			Description	

Dictionary		The Dictionary object is used to store information	

Drive			The Drive Object is used to access to the properties of a disk drive

			or network	

File			The File Object is used to access the properties of a file	

FileSystemObject	The FileSystemObject object is used to access the file system on the

			server	

Folder			The Folder Object is used to access the properties of a folder	

TextStream		The TextStream Object is used to access the contents of a file	

11. Active Server Components ...

Components

Components are reusable code blocks. The code block performs a common task (like deleting a record in a database). Components can be accessed by other pages and other applications. This is very powerful; you do not have to write the same code over and over again on different pages or in different applications. Components can be created in C, C++, Java, VB, etc.

Active Server Components

ASP comes with some built-in components that can handle common tasks:

Component		Description	

Ad Rotator		The Ad Rotator component creates an Ad Rotator object that displays

			a different advertisement each time a user enters or refreshes a page	

Browser Capabilities	The Browser Capabilities component creates a BrowserType object

			that gives you a description of the capabilities of the client's browser	

Content Rotator	The Content Rotator component creates a ContentRotator object that

			displays a different HTML content string each time a user enters or

			refreshes a page	

Content Linking	The Content Linking component creates a Nextlink object that holds a

			list of urls, which is used to treat web pages like a book	

Counter		The Counter component creates a Counters object that can create,

			hold, increment, and get any number of individual counters	

Database Access	The Database Access component uses ActiveX Data Objects (ADO)

			to access information stored in a database	

File Access		The File Access component exposes methods and properties for

			accessing the computer's file system. You can use this component to

			create a FileSystemObject Object which provides the methods

			properties and collections you use to access the file system	

MyInfo			The MyInfo component creates a MyInfo object that keeps track of

			personal information	

Page Counter		The Page Counter component creates a PageCounter object that

			counts and displays the number of times a Web page has been opened	

Permission Checker	The Permission Checker component creates a PermissionChecker

			object that uses the password authentication protocols provided in

			Microsoft Internet Information Services (IIS) to determine whether a

			Web user has been granted permissions to read a file	

Tools			The Tools component creates a Tools object that provides utilities that

			enable you to easily add sophisticated functionality to your Web pages	

Status			The Status component creates a Status object that has

			properties that contain server status information. This server status is

			only available on Personal Web Server for Macintosh	

12. ASP Response Object ...

Response Object

The Response Object is used to send output to the user from the server.

Syntax

Response.collection

Response.property

Response.method 	

Collections

Collection			Description	

Cookies(name)		Sets a cookie value. If the cookie does not exist, it will be

				created, and take the value that is specified	

Properties

Property			Description	

Buffer				Whether to buffer the output or not. When the output is

				buffered, the server will hold back the response until all of the

				server scripts have been processed, or until the script calls the

				Flush or End method. If this property is set, it should be before

				the <html> tag in the .asp file	

CacheControl			Sets whether proxy servers can cache the output or not. When

				this property is set to Public, the output can be cached by a

				proxy server	

Charset(charset_name)	Sets the name of the character set (like "ISO8859-1") to the

				content type header	

ContentType			Sets the HTTP content type. Some common content types are

				"text/html", "image/gif", "image/jpeg", "text/plain". The default is

				"text/html"	

Expires				Sets how long a page will be cached on a browser before it

				expires	

ExpiresAbsolute		Sets a date and time when a page cached on a browser will

				expire	

IsClientConnected		Check to see if the client is still connected to the server	

Pics(pics_label)		Adds a value to the pics label response header.	

Status				Specifies the value of the status line. You can change the status

				line with this property	

Methods

Method			Description	

AddHeader(name, value)	Adds an HTML header with a specified value	

AppendToLog string		Adds a string to the end of the server log entry	

BinaryWrite(data_to_write)	Writes the given information without any character-set

				conversion.	

Clear				Clears the buffered output. Use this method to handle errors. If

				the Response.Buffer is not set to true, this method will cause a

				run-time error	

End				Stops processing the script, and return the current result	

Flush				Sends buffered output immediately. If the Response.Buffer is

				not set to true, this method will cause a run-time error	

Redirect(url)			Redirects the user to another url	

Write(data_to_write)		Writes a text to the user 	

Example

1.Write Text

Codeing

<html>

<body>

<%

response.write("Hello World!")

%>

</body>

</html>

Output

Hello World!

2.Text and Html Tags

Codeing

<html>

<body>

<%

response.write("<h2>Hello World!
This sentence uses HTML tags to format the text!</h2>")

%>

</body>

</html>

Output

Hello World!

This sentence uses HTML tags to format the text!

3.Redirect the User

Codeing

<%

if Request.Form("select")<>"" then

Response.Redirect(Request.Form("select"))

end if

%>

<html>

<body>

<form action="demo_redirect.asp" method="post">

<input type="radio" name="select"

value="demo_server.asp">

Server Example

<input type="radio" name="select"

value="demo_text.asp">

Text Example

<input type="submit" value="Go!">

</form>

</body>

</html>

4.Controlling the Buffer

Codeing

<%

Response.Buffer=true

%>

<html>

<body>

<p>I write some text, but I will control when the text will be sent to the browser.</p>

<p>The text is not sent yet. I hold it back!</p>

<p>OK, let it go!</p>

<%

Response.Flush

%>

</body>

</html>

Output

I write some text, but I will control when the text will be sent to the browser.

The text is not sent yet. I hold it back!

OK, let it go!

5.Clear the Buffer

Codeing

<%

Response.Buffer=true

%>

<html>

<body>

<p>This is some text I want to send to the user.</p>

<p>No, I changed my mind. I want to clear the text.</p>

<%

Response.Clear

%>

</body>

</html>

6.End a script in the middle of the processing

Codeing

<html>

<body>

<p>I am writing some text. This text wil never be

<%

Response.End

%>

finished! It's too late to write more!</p>

</body>

</html>

Output

I am writing some text. This text wil never be

7.Expires

Codeing

<%Response.Expires=0%>

<html>

<body>

<p>This page will be refreshed with each access!</p>

</body>

</html>

Output

This page will be refreshed with each access!

8.ExpiresAbsolute

Codeing

<%

Response.ExpiresAbsolute=#May 05,2000 05:30:30#

%>

<html>

<body>

<p>This page will expire on May 05, 2000 05:30:30!</p>

</body>

</html>

Output

This page will expire on May 05, 2000 05:30:30!

9.isClientConnected

Codeing

<html>

<body>

<%

If Response.IsClientConnected=true then

Response.Write("The user is still connected!")

else

Response.Write("The user is not connected!")

end if

%>

</body>

</html>

Output

The user is still connected!

10.content type

Codeing

<%

Response.ContentType="text/html"

%>

<html>

<body>

<p>This is some text</p>

</body>

</html>

Output

This is some text

11.char set

Codeing

<%

Response.Charset="ISO8859-1"

%>

<html>

<body>

<p>This is some text</p>

</body>

</html>

Output

This is some text

13. ASP Request Object ...

Request Object

When a browser asks for a page from a server, it is called a request. The Request Object is used to get information from the user.

Syntax

Request.collection

Request.property

Request.method 	

Collection

Collection				Description	

ClientCertificate			Holds field values stored in the client certificate	

Cookies(name)			Holds cookie values	

Form(element_name)			Holds form (input) values. The form must use the post

					method	

QueryString(variable_name)		Holds variable values in the query string	

ServerVariables(server_variable)	Holds server variable values	

Properties

Property				Description	

TotalBytes				Holds the total number of bytes the client is sending in

					the body of the request	

Method

Method				Description	

BinaryRead				Fetches the data that is sent to the server from the client

					as part of a post request	

Examples

QueryString Collection Examples

1. Add extra query information to a Link

This example demonstrates how to send some extra query information to a page within a link, and retrieve that information on the destination page (which is, in this example, the same page).

Coding

<html>

<body>

Example

<%

Response.Write(Request.QueryString)

%>

</body>

</html>

Output

Example

2. A query string collection in its simplest use

This example demonstrates how the QueryString collection retrieves the values from a form. The form uses the GET method, which means that the information sent is visible to everybody (in the address field), and it limits the amount of information to send.

Coding

<html>

<body>

<form action="demo_simplereqquery.asp" method="get">

First name: <input type="text" name="fname">

Last name: <input type="text" name="lname">

<input type="submit" value="Submit">

</form>

<%

Response.Write(Request.QueryString)

%>

</body>

</html>

3. How to use informations for forms

This example demonstrates how to use the values retrieved from a form. We use the QueryString collection. The form uses the get method.

Coding

<html>

<body>

<form action="demo_reqquery.asp" method="get">

Please type your first name:

<input type="text" name="fname">

<input type="submit" value="Submit">

</form>

<%

If Request.QueryString("fname")<>"" Then

Response.Write ("Hello " & Request.QueryString("fname") & "!")

Response.Write ("
How are you today?")

End If

%>

</body>

</html>

4. more information from a form

This example demonstrates what the QueryString contains if several input fields have the same name. It shows how to separate input fields with equal names from each other. It also shows how to use the Count keyword to count the "name" property. The form uses the get method.

Coding

<html>

<body>

<form action="demo_reqquery2.asp" method="get">

First name:

<input type="text" name="name" value="Donald">

Last name:

<input type="text" name="name" value="Duck">

<input type="submit" value="Submit">

</form>

<hr>

<p>The information received from the form above was:</p>

<%

If Request.QueryString("name")<>"" Then

Response.Write("<p>")

Response.Write("name=" & Request.QueryString("name"))

Response.Write("</p><p>")

Response.Write("The name property's count is: ")

Response.Write(Request.QueryString("name").Count)

Response.Write("</p><p>")

Response.Write("First name=" & Request.QueryString("name")(1))

Response.Write("</p><p>")

Response.Write("Last name=" & Request.QueryString("name")(2))

Response.Write("</p>")

end if

%>

</body>

</html>

Form Collection Examples

1. A form collection in its simplest use

This example demonstrates how the Form collection retrieves the values from a form. The form uses the POST method, which means that the information sent is invisible to others, and it has no limits (you can send a large amount of information).

Coding

<html>

<body>

<form action="demo_simpleform1.asp" method="post">

First name:

<input type="text" name="fname" value="Donald">

Last name:

<input type="text" name="lname" value="Duck">

<input type="submit" value="Submit">

</form>

<%

Response.Write(Request.Form)

%>

</body>

</html>

2. how to use informations form forms

This example demonstrates how to use the values retrieved from a form. We use the Form collection. The form uses the post method.

Coding

<html>

<body>

<form action="demo_simpleform.asp" method="post">

Please type your first name:

<input type="text" name="fname">

<input type="submit" value="Submit">

</form>

<%

If Request.Form("fname")<>"" Then

Response.Write ("Hello " & Request.Form("fname") & "!")

Response.Write ("
How are you today?")

End If

%>

</body>

</html>

3. more information form a form

This example demonstrates what the Form collection contains if several input fields have the same name. It shows how to separate input fields with equal names from each other. It also shows how to use the Count keyword to count the "name" property. The form uses the post method.

Coding

<html>

<body>

<form action="demo_form2.asp" method="post">

First name:

<input type="text" name="name" value="Donald">

Last name:

<input type="text" name="name" value="Duck">

<input type="submit" value="Submit">

</form>

<hr>

<p>The information received from the form above was:</p>

<%

If Request.Form("name")<>"" Then

Response.Write("<p>")

Response.Write("name=" & Request.Form("name"))

Response.Write("</p><p>")

Response.Write("The name property's count is: ")

Response.Write(Request.Form("name").Count)

Response.Write("</p><p>")

Response.Write("First name=" & Request.Form("name")(1))

Response.Write("</p><p>")

Response.Write("Last name=" & Request.Form("name")(2))

Response.Write("</p>")

End if

%>

</body>

</html>

4. a form with radio button

This example demonstrates how to interact with the user through radio buttons, with the Form collection. The form uses the post method.

Coding

<html>

<body>

<%

dim cars

cars=Request.Form("cars")

%>

<form action="demo_radiob.asp" method="post">

<p>Please select your favorite car:</p>

<input type="radio" name="cars" value="Volvo"

<%if cars = "Volvo" then Response.Write("checked")%>>

Volvo V70

<input type="radio" name="cars" value="Saab"

<%if cars = "Saab" then Response.Write("checked")%>>

Saab 95

<input type="submit" value="Submit">

</form>

<%

if cars<>"" then

Response.Write("<p>Your favorite car is: " & cars & "</p>")

end if

%>

</body>

</html>

5. a form with check box

This example demonstrates how to interact with the user through checkboxes, with the Form collection. The form uses the post method.

Coding

<html>

<body>

<%

fruits=Request.Form("fruits")

%>

<form action="demo_checkboxes.asp" method="post">

<p>Which of these fruits do you prefer:</p>

<input type="checkbox" name="fruits" value="Apples"

<%if instr(fruits,"Apple") then Response.Write("checked")%>>

Apple

<input type="checkbox" name="fruits" value="Oranges"

<%if instr(fruits,"Oranges") then Response.Write("checked")%>>

Orange

<input type="checkbox" name="fruits" value="Bananas"

<%if instr(fruits,"Banana") then Response.Write("checked")%>>

Banana

<input type="submit" value="Submit">

</form>

<%

if fruits<>"" then%>

<p>You like: <%Response.Write(fruits)%></p>

<%end if

%>

</body>

</html>

Other Examples

1. Server Variales

This example demonstrates how to find out the visitors (yours) browser type, IP address, and more with the ServerVariables collection.

Coding

<html>

<body>

<p>

You are browsing this site with:

<%Response.Write(Request.ServerVariables("http_user_agent"))%>

</p>

<p>

Your IP address is:

<%Response.Write(Request.ServerVariables("remote_addr"))%>

</p>

<p>

The DNS lookup of the IP address is:

<%Response.Write(Request.ServerVariables("remote_host"))%>

</p>

<p>

The method used to call the page:

<%Response.Write(Request.ServerVariables("request_method"))%>

</p>

<p>

The server's domain name:

<%Response.Write(Request.ServerVariables("server_name"))%>

</p>

<p>

The server's port:

<%Response.Write(Request.ServerVariables("server_port"))%>

</p>

<p>

The server's software:

<%Response.Write(Request.ServerVariables("server_software"))%>

</p>

</body>

</html>

Output

You are browsing this site with: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)

Your IP address is: 202.54.69.66

The DNS lookup of the IP address is: 202.54.69.66

The method used to call the page: GET

The server's domain name: www.w3schools.com

The server's port: 80

The server's software: Microsoft-IIS/4.0

2. Welcome Cookies

This example demonstrates how to create a Welcome Cookie with the Cookies Collection.

Coding

<%

response.cookies("NumVisits").Expires = date + 365

num=request.cookies("NumVisits")

If num = "" Then

response.cookies("NumVisits") = 1

Else

response.cookies("NumVisits") = num + 1

End If

%>

<html>

<body>

<%

if num="" then

%>

Welcome! This is first time you are visiting this Web page.

<%

else

%>

You have visited this Web page <%response.write(num)%> times before

<%

end if

%>

</body>

</html>

Output

Welcome! This is first time you are visiting this Web page.

3. Total Bytes

This example demonstrates how to use the TotalBytes property to find out the total number of bytes the user sent in the Request object.

Coding

<html>

<body>

<form action="demo_totalbytes.asp" method="post">

Please type something:

<input type="text" name="txt">

<input type="submit" value="Submit">

</form>

<%

If Request.Form("txt")<>"" Then

Response.Write("<p>You typed: ")

Response.Write(Request.Form("txt") & ".</p>")

Response.Write("<p>The user sent: ")

Response.Write(Request.Totalbytes & " bytes.</p>")

End If

%>

</body>

</html>

14. ASP Application Object ...

Application Object

The Application Object is used to share information among all users of a given application.

Syntax

Application.collection

Application.method 	

Collections

Collection		Description	

Contents		Holds the items added to the application with script commands	

StaticObjects		Holds the objects added to the session with the <object> tag	

Methods

Method		Description	

Contents.Remove	Deletes an item from a collection	

Contents.RemoveAll	Deletes all items from a collection	

Lock			Prevents other users from changing the application object properties	

Unlock			Allows other users to change the application object properties	

Events

Event			Description	

OnEnd			What to do when all user sessions are over, and the Application quits.

			This event will execute a script in the Global.asa file, if the script exist	

OnStart		What to do before the Application Object is first referenced. This event

			will execute a script in the Global.asa file, if the script exist	

15. ASP Session Object ...

Session Object

The Session Object is used to store information about or change settings for the user's current Web-server session.

Syntax

Session.collection

Session.property

Session.method 	

Collections

Collection		Description	

Contents		Holds the items added to the session with script commands	

StaticObjects		Holds the objects added to the session with the <object> tag, and a

			given session	

Properties

Property		Description	

CodePage		Sets the code page that will be used to display dynamic content 	

LCID			Sets the locale identifier that will be used to display dynamic content	

SessionID		Returns the session id	

Timeout		Sets the timeout for the session	

Method

Method				Description	

Abandon				Kills all objects in a session object	

Contents.Remove(Item or Index)	Deletes an item from the Contents collection	

Contents.RemoveAll()			Deletes all items from the Contents collection	

Events

Event		Description	

OnEnd		What to do when a session is over. This event will execute a script in the

		Global.asa file, if the script exist 	

OnStart	What to do before the start of any new session. This event will execute a script

		in the Global.asa file, if the script exist 	

Examples

1. Session Id

This example demonstrates the "SessionID" property. This property returns the session id number for each user (it is a read-only property). The session id number is generated by the server.

Coding

<html>

<body>

<%

Response.Write(Session.SessionID)

%>

</body>

</html>

Output

332916080

2. Get a Session's Timed Out

This example demonstrates the "Timeout" property. This example retrieves the timeout (in minutes) for the session. The default value for the "Timeout" property is 20 minutes.

Coding

<html>

<body>

<p>

The timeout for this session is

<%

Response.Write(Session.Timeout)

%>

minutes.

</p>

</body>

</html>

Output

The timeout for this session is 20 minutes.

16 ASP Server Object ...

Server Object

The Server Object is used to access properties and methods on the server.

Syntax

Server.property

Server.method 	

Properties

Property			Description	

ScriptTimeout			Sets how long a script can run before it is terminated	

Method

Method			Description	

CreateObject(type_of_object)	Creates an instance of an object	

Execute(path)			Executes an .asp file from inside another .asp file. After

				executing the called .asp file, you return the original .asp file	

GetLastError()			Returns an ASPError object that will describe the error

				that occurred	

HTMLEncode(string)		Applies HTML encoding to a string	

MapPath(path)			Maps a relative or virtual path to a physical path	

Transfer(path)			Sends all of the state information to another .asp file for

				processing. After the transferring is finished, you do not return

				to the original .asp page 	

URLEncode(string)		Applies URL encoding rules to a string	

Examples

1.Last Modified

When was this file last modified?

Coding

<html>

<body>

<%

Set fs = Server.CreateObject("Scripting.FileSystemObject")

Set rs = fs.GetFile(Server.MapPath("demo_lastmodified.asp"))

modified = rs.DateLastModified

%>

This file was last modified on: <%response.write(modified)

Set rs = Nothing

Set fs = Nothing

%>

</body>

</html>

Output

This file was last modified on: 12.04.00 15:14:35

2.Open a TextFile for Reading

This example opens the file "Textfile.txt" for reading.

Coding

<html>

<body>

<%

Set FS = Server.CreateObject("Scripting.FileSystemObject")

Set RS = FS.OpenTextFile(Server.MapPath("text") & "\TextFile.txt",1)

While not rs.AtEndOfStream

Response.Write RS.ReadLine

Response.Write("
")

Wend

%>

<p>

</p>

</body>

</html>

Output

Hello World line 1

Hello World line 2

Hello World line 3

3. hit Counter

This example reads the content of "MyHitCounter.txt", adds 1 to the content, and writes the new number back to the file before the number is displayed. The result will not be displayed due to write access security.

Coding

<html>

<body>

<%

Set FS=Server.CreateObject("Scripting.FileSystemObject")

Set RS=FS.OpenTextFile(Server.MapPath("my_hitcounter.txt"), 8, True)

if not RS.AtEndOfStream then

fcount=RS.ReadAll

else

fcount=0

end if

fcount=fcount+100

Response.Write("This page has been visited " & fcount & " times.")

RS.Write fcount

RS.Close

Set RS=Nothing

Set FS=Nothing

%>

</body>

</html>

17. ASP FileSystemObject Object ...

The FileSystemObject Object

The FileSystemObject object is used to access the file system on the server. This Object can manipulate files, folders, and directory paths, and it can get file system information.

Methods

Method		Description	

BuildPath		Appends a name to an existing path	

CopyFile		Copies a file	

CopyFolder		Copies a folder	

CreateFolder		Creates a folder	

CreateTextFile		Creates a text file	

DeleteFile		Deletes a file	

DeleteFolder		Deletes a folder	

DriveExists		Checks if a drive exists	

FileExists		Checks if a file exists	

FolderExists		Checks if a folder exists	

GetAbsolutePathName	Returns the complete path	

GetBaseName		Returns the base name of the file or folder	

GetDrive		Returns a Drive Object corresponding to the drive in a specified path	

GetDriveName		Returns the name of the drive	

GetExtensionName	Returns the file extension	

GetFile			Returns a File Object corresponding to the file in a path	

GetFileName		Returns the last file name or folder that is not part of the drive

			specification	

GetFolder		Returns a Folder Object corresponding to the folder in a path	

GetParentFolderName	Returns the name of the parent folder	

GetSpecialFolder	Returns the specified folder 	

GetTempName		Returns a randomly generated temporary file or folder name	

MoveFile		Moves a file	

MoveFolder		Moves a folder	

OpenTextFile		Opens a file and returns a TextStream object to access the file	

The BuildPath Method

The BuildPath method appends a name to an existing path.

Syntax

object.BuildPath(path, name)	

Part		Description	

object 		Required. The name of a FileSystemObject	

path 		Required. The path to append a name to	

name 		Required. The name appended to the path	

Example

dim fs, path

set fs=CreateObject("Scripting.FileSystemObject") path=fs.BuildPath("c:\mydocuments", "mydoc")

set fs=nothing	

The CopyFile Method

The CopyFile method copies a file or files, from one location to another.

Syntax

object.CopyFile source, destination, overwrite	

Part		Description	

object 		Required. The name of a FileSystemObject	

source 		Required. The files to copy	

destination 	Required. Where to copy the files	

overwrite 	Optional. Sets whether an existing file can be overwritten. True indicates that files can be overwritten, False indicates that files can not be overwritten. True is default	

Example

dim fs

set fs=CreateObject("Scripting.FileSystemObject")

fs.CopyFile "c:\mydocuments\web*.htm", "c:\webpages\"

set fs=nothing	

The CopyFolder Method

The CopyFolder method copies a folder or folders, from one location to another.

Syntax

object.CopyFolder source, destination, overwrite	

Part		Description	

object 		Required. The name of a FileSystemObject	

source 		Required. The folders to copy	

destination 	Required. Where to copy the folders	

overwrite 	Optional. Sets whether an existing folder can be overwritten. True indicates that folders can be overwritten, False indicates that folders can not be overwritten. True is default	

Example

dim fs

set fs=CreateObject("Scripting.FileSystemObject")

fs.CopyFolder "c:\mydocuments\web*", "c:\webpages\"

set fs=nothing	

The CreateFolder Method

The CreateFolder method creates a folder.

Syntax

object.CreateFolder(name)	

Part		Description	

object 		Required. The name of a FileSystemObject	

name 		Required. Name of the folder	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.CreateFolder("c:\asp")

set f=nothing

set fs=nothing	

The CreateTextFile Method

The CreateTextFile method creates a file and returns a TextStream object that can be used to read from or write to the file.

Syntax

object.CreateTextFile(filename, overwrite, unicode)	

Part		Description	

object 		Required. The name of a FileSystemObject or Folder Object	

filename 	Required. Name of the file to create	

overwrite 	Optional. Sets whether an existing file can be overwritten. True indicates that

		the file can be overwritten, False indicates that the file can not be overwritten.

		False is default	

unicode 	Optional. Sets whether the file is created as a Unicode or an ASCII file. True

		indicates that the file is created as a Unicode file, False indicates that the file is

		created as an ASCII file. False is default	

Example

dim fs, txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.CreateTextFile("c:\somefile.txt")

set txtfile=nothing

set fs=nothing 	

The DeleteFile Method

The DeleteFile method deletes a specified file.

Syntax

object.DeleteFile filename, force	

Part		Description	

object 		Required. The name of a FileSystemObject	

filename 	Required. The name of the file to delete	

force 		Optional. Sets whether the read-only files are deleted. True indicates that the

		read-only files are deleted, False indicates that they are not deleted. False is

		default	

Example

dim fs

set fs=CreateObject("Scripting.FileSystemObject") fs.DeleteFile("c:\asp\introduction.asp")

set fs=nothing	

The DeleteFolder Method

The DeleteFolder method deletes a specified folder and its contents.

Syntax

object.DeleteFolder foldername, force	

Part		Description	

object 		Required. The name of a FileSystemObject	

foldername 	Required. The name of the folder to delete	

force 		Optional. Sets whether the read-only folders are deleted. True indicates that the

		read-only folders are deleted, False indicates that they are not deleted. False is

		default 	

Example

dim fs

set fs=CreateObject("Scripting.FileSystemObject") fs.DeleteFolder("c:\temp")

set fs=nothing	

The DriveExists Method

The DriveExists method returns "true" if the specified drive exists, "false" if not.

Syntax

object.DriveExists(drive)	

Part		Description	

object 		Required. The name of a FileSystemObject	

drive 		Required. A drive letter or a complete path specification	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

if fs.DriveExists("c:") = true then

Response.Write("Drive c: exists.")

else

Response.Write("Drive c: does not exist.")

end If

set fs=nothing	

The FileExists Method

The FileExists method returns "true" if the specified file exists, "false" if not.

Syntax

object.FileExists(filename)	

Part		Description	

object 		Required. The name of a FileSystemObject	

filename 	Required. The name of the file we want to check the existence of	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

if fs.FileExists("c:\asp\introduction.asp") = true then Response.Write("File c:\asp\introduction.asp exists.")

else

Response.Write("File c:\asp\introduction.asp does not exist.")

end If

set fs=nothing	

The FolderExists Method

The FolderExists method returns "true" if the specified folder exists, "false" if not.

Syntax

object.FolderExists(foldername)	

Part		Description	

object 		Required. The name of a FileSystemObject	

foldername 	Required. The name of the folder we want to check the existence of	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject")

if fs.FolderExists("c:\asp") = true then

Response.Write("Folder c:\asp exists.")

else

Response.Write("Folder c:\asp does not exist.")

end If

set fs=nothing	

The GetAbsolutePathName Method

The GetAbsolutePathName method returns a complete path in the path specification.

Syntax

object.GetAbsolutePathName(pathspec)	

Part		Description	

object 		Required. The name of a FileSystemObject	

pathspec 	Required. Path specification to change to a complete and unambiguous path	

The GetBaseName Method

The GetBaseName method returns the base name of the file or folder, in the specified path.

Syntax

object.GetBaseName(path)	

Part		Description	

object 		Required. The name of a FileSystemObject	

path 		Required. The path for the file or folder whose base name is to be returned	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject") Response.Write(fs.GetBaseName("c:\winnt\cursors\3dgarro.cur"))

set fs=nothing	

The GetDrive Method

The GetDrive method returns a Drive Object corresponding to the drive in a specified path.

Syntax

object.GetDrive(drivespec)	

Part		Description	

object 		Required. The name of a FileSystemObject	

drivespec 	Required. Can be a drive letter (c), a drive letter followed by a colon (c:), a

		drive letter followed by a colon and path separator (c:\), or any network share

		specification (\\computer2\share1)	

Example

Dim fs, drive

set fs=Server.CreateObject("Scripting.FileSystemObject") drive=fs.GetDrive("c:")

Response.Write(drive)

set fs=nothing	

The GetDriveName Method

The GetDriveName method returns the name of the drive.

Syntax

object.GetDriveName(path)	

Part		Description	

object 		Required. The name of a FileSystemObject	

path 		Required. The path for the component whose drive name is to be returned	

Example

dim fs,p

set fs=Server.CreateObject("Scripting.FileSystemObject") p=fs.GetDriveName("c:\winnt\cursors\3dgarro.cur")

Response.Write(p)

set fs=nothing	

The GetExtensionName Method

The GetExtensionName method returns the file extension name for the last component in a path.

Syntax

object.GetExtensionName(path)	

Part	Description	

object 	Required. The name of a FileSystemObject	

path 	Required. The path for the component whose extension name is to be returned	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject") Response.Write(fs.GetExtensionName("c:\winnt\cursors\3dgarro.cur"))

set fs=nothing	

The GetFile Method

The GetFile method returns a File Object corresponding to the file in a specified path.

Syntax

object.GetFile(path)	

Part		Description	

object 		Required. The name of a FileSystemObject	

path 		Required. The path to the file	

Example

dim fs

set fs=Server.CreateObject("Scripting.FileSystemObject") fs.getfile("c:\winnt\cursors\3dgarro.cur")

set fs=nothing	

The GetFileName Method

The GetFileName method returns the last file name or folder of a specified path, that is not part of the drive specification.

Syntax

object.GetFileName(path)	

Part	Description	

object 	Required. The name of a FileSystemObject	

path 	Required. The path to a specific file	

Example

dim fs,p

set fs=Server.CreateObject("Scripting.FileSystemObject") p=fs.getfilename("c:\winnt\cursors\3dgarro.cur")

response.write(p)

set fs=nothing	

The GetFolder Method

The GetFolder method returns a Folder Object corresponding to the folder in a specified path.

Syntax

object.GetFolder(path)	

Part	Description	

object 	Required. The name of a FileSystemObject	

path 	Required. The path to the specific folder	

Syntax

dim fs,p

set fs=Server.CreateObject("Scripting.FileSystemObject") p=fs.getfolder("c:\winnt\cursors") response.write(p)

set fs=nothing	

The GetParentFolderName Method

The GetParentFolderName method returns the name of the parent folder in a specified path.

Syntax

object.GetParentFolderName(path)	

Part	Description	

object 	Required. The name of a FileSystemObject	

path 	Required. The path for the file or folder whose parent folder name is to be returned	

Example

Dim fs,p

set fs=Server.CreateObject("Scripting.FileSystemObject") p=fs.GetParentFolderName("c:\winnt\cursors\3dgarro.cur") Response.Write(p)

set fs=nothing	

The GetSpecialFolder Method

The GetSpecialFolder method returns the specified folder.

Syntax

object.GetSpecialFolder(foldername) 	

Part		Description	

object 		Required. The name of a FileSystemObject	

foldername 	Required. The name of the folder to be returned. 0 = WindowsFolder Contains

		files installed by the Windows operating system 1 = SystemFolder Contains

		libraries, fonts, and device drivers 2 = TemporaryFolder Used to store

		temporary files. Its path is found in the TMP environment variable 	

The GetTempName Method

The GetFolder method returns a randomly generated temporary file or folder name that is useful for performing operations that require a temporary file or folder.

Syntax

object.GetTempName	

Part	Description	

object 	Required. The name of a FileSystemObject	

The MoveFile Method

The MoveFile method moves a file or files, from one location to another.

Syntax

object.MoveFile source, destination	

Part	Description	

object 	Required. The name of a FileSystemObject	

source 	Required. The files to be moved	

destination 	Required. Where to move the files	

Example

dim fs

set fs=CreateObject("Scripting.FileSystemObject")

fs.MoveFile "c:\mydocuments\web*.gif", "c:\mydocuments\images\"

set fs=nothing	

The MoveFolder Method

The MoveFolder method moves a folder or folders, from one location to another.

Syntax

object.MoveFolder source, destination	

Part		Description	

object 		Required. The name of a FileSystemObject	

source 		Required. The folders to be moved	

destination 	Required. Where to move the folders	

Example

dim fs

set fs = CreateObject("Scripting.FileSystemObject")

fs.MoveFolder "c:\mydocuments\web\", "c:\windows\desktop\"

set fs=nothing	

The OpenTextFile Method

The OpenTextFile method opens a file and returns a TextStream object to access the file.

Syntax

object.OpenTextFile(filename, iomode, create, format)	

Part		Description	

object 		Required. The name of a FileSystemObject	

filename 	Required. Name of the file to open	

iomode 	Optional. How to open the file. 1 = ForReading Opens a file for reading. It is

		not possible to write to this file 2 = ForWriting Opens a file for writing. It is not

		possible to read from this file 8 = ForAppending Opens a file and write to the

		end of the file	

create 		Optional. Sets whether new file can be created if the filename does not exist.

		Use True if a new file can be created, and False if not. False is default	

format 	Optional. The format of the file. 0 = TristateFalse Opens the file as ASCII. This

		is the default -1 = TristateTrue Opens the file as Unicode -2 =

		TristateUseDefault Opens the file using the system default	

Example

Dim fs, f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1) Response.Write(f.readall)

f.Close

set f=Nothing

set fs=Nothing	

Properties

Property		Description	

Drives			Returns a collection of all Drive Objects available on the machine	

The Drives Property

The Drives property returns a collection of all Drive Objects available on the local machine.

Syntax

object.Drives	

Part	Description	

object 	Required. The name of a FileSystemObject	

Examples

1.File Exist

This example demonstrates how to first create a FileSystemObject Object, and then use the FileExists method to check if the file exists.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

If (fs.FileExists("c:\winnt\cursors\3dgarro.cur"))=true Then

Response.Write("File c:\winnt\cursors\3dgarro.cur exists.")

Else

Response.Write("File c:\winnt\cursors\3dgarro.cur does not exist.")

End If

set fs=nothing

%>

</body>

</html>

Output

File c:\winnt\cursors\3dgarro.cur does not exist.

2.Folder Exist

This example demonstrates how to use the FolderExists method to check if a folder exists.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

If fs.FolderExists("c:\temp") = true Then

Response.Write("Folder c:\temp exists.")

Else

Response.Write("Folder c:\temp does not exist.")

End If

set fs=nothing

%>

</body>

</html>

Output

Folder c:\temp exists.

3.Drive Exist

This example demonstrates how to use the DriveExists method to check if a drive exists.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

if fs.driveexists("c:") = true then

Response.Write("Drive c: exists.")

Else

Response.Write("Drive c: does not exist.")

End If

Response.write("
")

if fs.driveexists("g:") = true then

Response.Write("Drive g: exists.")

Else

Response.Write("Drive g: does not exist.")

End If

set fs=nothing

%>

</body>

</html>

Output

Drive c: exists.

Drive g: does not exist.

4.getDriveName

This example demonstrates how to use the GetDriveName method to get the name of a specified drive.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

p=fs.GetDriveName("c:\winnt\cursors\3dgarro.cur")

Response.Write("The drive name is: " & p)

set fs=nothing

%>

</body>

</html>

Output

The drive name is: c:

5.getParentFolderName

This example demonstrates how to use the GetParentFolderName method to get the name of the parent folder of a specified path.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

p=fs.GetParentFolderName("c:\winnt\cursors\3dgarro.cur")

Response.Write("The parent folder name of c:\winnt\cursors\3dgarro.cur is: " & p)

set fs=nothing

%>

</body>

</html>

Output

The parent folder name of c:\winnt\cursors\3dgarro.cur is: c:\winnt\cursors

6.getExtensionName

This example demonstrates how to use the GetExtensionName method to get the file extension of the last component in a specified path.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Response.Write("The file extension of the file 3dgarro is: ")

Response.Write(fs.GetExtensionName("c:\winnt\cursors\3dgarro.cur"))

set fs=nothing

%>

</body>

</html>

Output

The file extension of the file 3dgarro is: cur

7.getBaseName

This example demonstrates how to use the GetBaseName method to return the base name of the file or folder, in a specified path.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Response.Write(fs.GetBaseName("c:\winnt\cursors\3dgarro.cur"))

Response.Write("
")

Response.Write(fs.GetBaseName("c:\winnt\cursors\"))

Response.Write("
")

Response.Write(fs.GetBaseName("c:\winnt\"))

set fs=nothing

%>

</body>

</html>

Output

3dgarro

cursors

winnt

18. ASP TextStream Object ...

The TextStream Object

The TextStream Object is used to access the contents of a file.

Methods

Method		Description	

Close			Closes an open text file	

Read			Reads a number of characters from a file and returns the result	

ReadAll		Reads an entire file and returns the result	

ReadLine		Reads a line from a file and returns the result	

Skip			Skips a number of characters when reading a file	

SkipLine		Skips the next line when reading a file	

Write			Writes some text to a file	

WriteLine		Writes some text and a new-line character to a file	

WriteBlankLines	Writes new-line characters to a file	

Properties

Property		Description	

AtEndOfLine		Returns true if the file pointer is at the end of a line in a file	

AtEndOfStream	Returns true if the file pointer is at the end of a file	

Column			Returns the column number of the current character in a file	

Line			Returns the current line number in a file	

Methods

The Close Method

The Close method closes an open text file.

Syntax

object.Close	

Part		Description	

object 		Required. The name of a TextStream Object	

Example

dim fs, f

set fs = Server.CreateObject("Scripting.FileSystemObject")

set f = fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.readall)

f.Close

set f=nothing

set fs=nothing	

The Read Method

The Read method reads a number of characters from a TextStream file and returns the result.

Syntax

object.Read(number_of_char)	

Part			Description	

object 			Required. The name of a TextStream Object	

number_of_char 	Required. Number of characters you want to read from the file	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.Read(3))

f.Close

set f=nothing

set fs=nothing	

The ReadAll Method

The ReadAll method reads an entire TextStream file and returns the result.

Syntax

object.ReadAll	

Part		Description	

object 		Required. The name of a TextStream Object	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.ReadAll)

f.Close

set f=nothing

set fs=nothing	

The ReadLine Method

The ReadLine method reads one line from a TextStream file and returns the result.

Syntax

object.ReadLine	

Part		Description	

object 		Required. The name of a TextStream Object	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.ReadLine)

f.Close

set f=nothing

set fs=nothing	

The Skip Method

The Skip method skips a number of characters when reading a TextStream file.

Syntax

object.Skip(number_of_char)	

Part			Description	

object 			Required. The name of a TextStream Object	

number_of_char 	Required. Number of characters to skip	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

f.skip(4)

Response.Write(f.Read)

f.Close

set f=nothing

set fs=nothing	

The SkipLine Method

The SkipLine method skips a line when reading a TextStream file.

Syntax

object.SkipLine	

Part	Description	

object 	Required. The name of a TextStream Object	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

f.skipLine

Response.Write(f.Read)

f.Close

set f=nothing

set fs=nothing	

The Write Method

The Write method writes some text to a TextStream file.

Syntax

object.Write(some_text)	

Part	Description	

object 	Required. The name of a TextStream Object	

some_text 	Required. The text to write to the file	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 2)

f.Write("Hello!
How are you today?")

f.Close

set f=nothing

set fs=nothing	

The WriteLine Method

The WriteLine method writes a some text and a new-line character to a TextStream file.

Syntax

object.WriteLine(some_text)	

Part		Description	

object 		Required. The name of a TextStream Object	

some_text 	Optional. The text to write to the file. If omitted, a new-line character is written to the file	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 2)

f.WriteLine("Hello!")

f.WriteLine("How are you today?")

f.Close

set f=nothing

set fs=nothing	

The WriteBlankLines Method

The WriteBlankLines method writes new-line characters to a TextStream file.

Syntax

object.WriteBlankLines(number_of_newlines)	

Part			Description	

object 			Required. The name of a TextStream Object	

number_of_newlines 	Required. Number of new-line characters to write to the file	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 2)

f.WriteLine(Hello!)

f.WriteBlankLines(2)

f.WriteLine(How are you today!)

f.Close

set f=nothing

set fs=nothing	

Properties

The AtEndOfLine Property

The AtEndOfLine property returns True if the file pointer is at the end of line in a TextStream file, False if not.

Syntax

object.AtEndOfLine	

Part		Description	

object 		Required. The name of a TextStream Object	

The AtEndOfStream Property

The AtEndOfStream property returns True if the file pointer is at the end of a TextStream file, False if not.

Syntax

object.AtEndOfStream	

Part		Description	

object 		Required. The name of a TextStream Object	

The Column Property

The Column property returns the column number of the current character in a file, start at 1.

Syntax

object.Column	

Part	Description	

object 	Required. The name of a TextStream Object	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.Read(2))

Response.Write(f.Column)

f.Close

set f=nothing

set fs=nothing	

The Line Property

The Line property returns the current line number in a TextStream file. It starts at 1.

Syntax

object.Line	

Part	Description	

object 	Required. The name of a TextStream Object	

Example

dim fs,f

set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.OpenTextFile("c:\test\testread.txt", 1)

Response.Write(f.ReadAll)

Response.Write("
")

Response.Write("The number of lines in the text are: " & f.Line)

f.Close

Set f=nothing

Set fs=nothing	

Examples

1. Read a Text File

This example demonstrates how to use the OpenTextFile method of the FileSystemObject to create a TextStream Object. The ReadAll method of the TextStream Object reads from the opened text file.

Coding

<html>

<body>

<p>This is the text in the text file:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

Response.Write(f.ReadAll)

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

This is the text in the text file:

Hello! How are you today?

2. Read only a portion of a Text File

This example demonstrates how to only read a part of a TextStream file.

Coding

<html>

<body>

<p>This is the first five characters from the text file:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

Response.Write(f.Read(5))

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

This is the first five characters from the text file:

Hello

3. read one line of a text file

This example demonstrates how to read one line from a TextStream file.

Coding

<html>

<body>

<p>This is the first line of the text file:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

Response.Write(f.ReadLine)

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

This is the first line of the text file:

Hello!

4. read all the lines of a text file

This example demonstrates how to read all the lines from a TextStream file.

Coding

<html>

<body>

<p>This is all the lines in the text file:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

do while f.AtEndOfStream = false

Response.Write(f.ReadLine)

Response.Write("
")

loop

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

This is all the lines in the text file:

Hello!

How are you today?

5.skip a part of the text file

This example demonstrates how to skip a specified number of characters when reading the TextStream file.

Coding

<html>

<body>

<p>The first four characters in the text file are skipped:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

f.Skip(4)

Response.Write(f.ReadAll)

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

The first four characters in the text file are skipped:

o! How are you today?

6. skip a line of a text file

This example demonstrates how to skip a line when reading the TextStream file.

Coding

<html>

<body>

<p>The first line in the text file is skipped:</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

f.SkipLine

Response.Write(f.ReadAll)

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

The first line in the text file is skipped:

How are you today?

7. Return line number

This example demonstrates how to return the current line number in a TextStream file.

Coding

<html>

<body>

<p>This is all the lines in the text file (with line numbers):</p>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

do while f.AtEndOfStream = false

Response.Write("Line:" & f.Line & " ")

Response.Write(f.ReadLine)

Response.Write("
")

loop

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

This is all the lines in the text file (with line numbers):

Line:1 Hello!

Line:2 How are you today?

8. get Column number

This example demonstrates how to get the column number of the current character in a file.

Coding

<html>

<body>

<%

Set fs=Server.CreateObject("Scripting.FileSystemObject")

Set f=fs.OpenTextFile(Server.MapPath("testread.txt"), 1)

Response.Write(f.Read(2))

Response.Write("<p>The cursor is now standing in position " & f.Column & " in the text file.</p>")

f.Close

Set f=Nothing

Set fs=Nothing

%>

</body>

</html>

Output

He

The cursor is now standing in position 3 in the text file.

19. ASP Drive Object ...

The Drive Object

The Drive Object is used to access to the properties of a disk drive or network.

Properties

Property	Description	

AvailableSpace	Returns the amount of space available	

DriveLetter	Returns the drive letter 	

DriveType	Returns the type of a specified drive.

		0 = unknown 1 = removable 2 = fixed 3 = network

		4 = CD-ROM 5 = RAM disk 	

FileSystem	Returns the type of the file system	

FreeSpace	Returns the amount of free space	

IsReady	Returns true if a specified drive is ready	

Path		Returns the path	

RootFolder	Returns a Folder Object representing a root folder	

SerialNumber	Returns the serial number of a specified drive	

ShareName	Returns the network share name	

TotalSize	Returns the total space	

VolumeName	Sets or returns the volume name	

Properties

The AvailableSpace Property

The AvailableSpace property returns the amount of available space on a specified drive. The value returned is often equal to the value returned by the FreeSpace property.

Syntax

object.AvailableSpace	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

n = "Drive: " & d

n = n & "
Available Space in bytes: " & d.AvailableSpace

Response.Write(n)

set d=nothing

set fs=nothing	

The DriveLetter Property

The DriveLetter property returns the drive letter.

Syntax

object.DriveLetter	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The drive letter is: " & d.driveletter)

set d=nothing

set fs=nothing	

The DriveType Property

The DriveType property returns a value indicating the type of a specified drive.

0 = unknown, 1 = removable, 2 = fixed, 3 = network, 4 = CD-ROM, 5 = RAM disk.

Syntax

object.DriveType	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The drive type is: " & d.DriveType)

set d=nothing

set fs=nothing	

The FileSystem Property

The FileSystem property returns the type of file system for a specified drive.

Syntax

object.FileSystem	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The file system is: " & d.FileSystem)

set d=nothing

set fs=nothing	

The FreeSpace Property

The FreeSpace property returns the amount of free space on a specified drive. The value returned is often equal to the value returned by the AvailableSpace property.

Syntax

object.FreeSpace	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

n = "Drive: " & d

n = n & "
Free Space in bytes: " & d.FreeSpace

Response.Write(n)

set d=nothing

set fs=nothing	

The IsReady Property

The IsReady property returns True if a specified drive is ready, False if not.

Syntax

object.IsReady	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs,d,n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

n = "The " & d.DriveLetter

if d.isready then

n = n & " drive is ready."

else

n = n & " drive is not ready."

end if

Response.Write(n)

set d=nothing

set fs=nothing	

The Path Property

The Path property returns the path for a specified file, folder, or drive.

Syntax

object.Path	

Part	Description	

object 	Required. The name of a Drive, File, or Folder Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("Path is " & d.Path)

set d=nothing

set fs=nothing	

The RootFolder Property

The RootFolder property returns a Folder Object representing the root folder of a specified drive.

Syntax

object.RootFolder	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The root folder is: " & d.rootfolder)

set d=nothing

set fs=nothing	

The SerialNumber Property

The SerialNumber property returns the serial number of a specified drive.

Syntax

object.SerialNumber	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The serialnumber is: " & d.serialnumber)

set d=nothing

set fs=nothing	

The ShareName Property

The ShareName property returns the network share name for a specified drive.

Syntax

object.ShareName	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The sharename is: " & d.ShareName)

set d=nothing

set fs=nothing	

The TotalSize Property

The TotalSize property returns the total space of a drive or network.

Syntax

object.TotalSize	

Part	Description	

object 	Required. The name of a Drive Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The total size is: " & d.TotalSize)

set d=nothing

set fs=nothing	

The VolumeName Property

The VolumeName property sets or returns the volume name of a specified drive.

Syntax

object.VolumeName =newname	

Part	Description	

object 	Required. The name of a Drive Object	

=newname 	Optional. Sets the new name of the specified drive	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The volume name is: " & d.VolumeName)

set d=nothing

set fs=nothing	

Examples

1.This example demonstrates how to first create a FileSystem Object, and then use the AvailableSpace property to get the available space on a specified drive.

Coding

<html>

<body>

<%

Dim fs, d, n

Set fs=CreateObject("Scripting.FileSystemObject")

Set d=fs.GetDrive("c:")

n = "Drive: " & d

n = n & "
Available Space in bytes: " & d.AvailableSpace

Response.Write(n)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

Drive: C:

Available Space in bytes: 572045312

2.This example demonstrates how to use the FreeSpace property to get the free space on a specified drive.

Coding

<html>

<body>

<%

Dim fs, d, n

Set fs=CreateObject("Scripting.FileSystemObject")

Set d=fs.GetDrive("c:")

n = "Drive: " & d

n = n & "
Free Space in bytes: " & d.FreeSpace

Response.Write(n)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

Drive: C:

Free Space in bytes: 572045312

3.This example demonstrates how to use the TotalSize property to get the total size of a specified drive.

Coding

<html>

<body>

<%

Dim fs, d, n

Set fs=CreateObject("Scripting.FileSystemObject")

Set d=fs.GetDrive("c:")

n = "Drive: " & d

n = n & "
Total size in bytes: " & d.TotalSize

Response.Write(n)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

Drive: C:

Total size in bytes: 2097315328

4.This example demonstrates how to use the DriveLetter property to get the drive letter of a specified drive.

Coding

<html>

<body>

<%

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The drive letter is: " & d.driveletter)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The drive letter is: C

5.This example demonstrates how to use the DriveType property to get the drive type of a specified drive.

Coding

<html>

<body>

<%

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The drive type is: " & d.DriveType)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The drive type is: 2

6.This example demonstrates how to use the FileSystem property to get the file system of a specified drive.

Coding

<html>

<body>

<%

dim fs, d, n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The file system is: " & d.FileSystem)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The file system is: NTFS

7.This example demonstrates how to use the IsReady property to check whether a specified drive is ready.

Coding

<html>

<body>

<%

dim fs,d,n

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

n = "The " & d.DriveLetter

if d.IsReady=true then

n = n & " drive is ready."

else

n = n & " drive is not ready."

end if

Response.Write(n)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The C drive is ready.

8.This example demonstrates how to use the Path property to get the path of a specified drive.

Coding

<html>

<body>

<%

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The path is " & d.Path)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The path is C:

9.This example demonstrates how to use the RootFolder property to get the root folder of a specified drive.

Coding

<html>

<body>

<%

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The rootfolder is " & d.RootFolder)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The rootfolder is C:\

10.This example demonstrates how to use the Serialnumber property to get the serialnumber of a specified drive.

Coding

<html>

<body>

<%

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("The serialnumber is " & d.SerialNumber)

set d=nothing

set fs=nothing

%>

</body>

</html>

Output

The serialnumber is 816018874

20. ASP File Object ...

The File Object

The File Object is used to access the properties of a file.

Methods

Method		Description	

Copy			Copies a file	

Delete			Deletes a file	

Move			Moves a file	

OpenAsTextStream 	Opens a text file and returns a TextStream object to access the file	

Properties

Property		Description	

Attributes		Sets or returns the attributes of a file	

DateCreated		Returns the date and time when a file was created	

DateLastAccessed	Returns the date and time when a file was last accessed	

DateLastModified	Returns the date and time when a file was last modified	

Drive			Returns the drive letter where a specified file resides	

Name			Sets or returns the name of a file	

Paren		

Methods

The Copy Method

The Copy method copies a file or folder.

Syntax

object.Copy(destination, overwrite)	

Part		Description	

object 		Required. The name of a File or Folder Object	

destination 	Required. Where to copy the file or folder	

overwrite 	Optional. Sets whether an existing file or folder can be overwritten. True

		indicates that the file/folder can be overwritten, False indicates that the file/folder

		can not be overwritten. True is default	

Example

dim fs,txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.GetFile("c:\testfile.txt") txtfile.Copy("c:\mydocuments\test\test2.txt")

set txtfile=nothing

set fs=nothing	

The Delete Method

The Delete method deletes a specified file or folder.

Syntax

object.Delete force	

Part		Description	

object 		Required. The name of a File or Folder Object	

force 		Optional. Sets whether a read-only file or folder are deleted. True indicates that

		a read-only file/folder are deleted, False indicates that it is not deleted. False is

		default	

Example

dim fs,txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.GetFile("c:\testfile.txt")

txtfile.Delete

set txtfile=nothing

set fs=nothing 	

The Move Method

The Move method moves a file or folder.

Syntax

object.Move destination	

Part		Description	

object 		Required. The name of a File or Folder Object	

destination 	Required. Where to move the file or folder	

Example

dim fs, txtfile

set fs=CreateObject("Scripting.FileSystemObject")

Set txtfile = fs.GetFile("c:\testfile.txt")

txtfile.Move("c:\mydocuments\test\")

set txtfile=nothing

set fs=nothing	

The OpenAsTextStream Method

The OpenAsTextStream method opens a file and returns a TextStream object to access the file.

Syntax

object.OpenAsTextStream(iomode, format)	

Part		Description	

object 		Required. The name of a File Object	

iomode 	Optional. How to open the file. 1 = ForReading Opens a file for reading. It is

		not possible to write to this file 2 = ForWriting Opens a file for writing. It is not

		possible to read from this file 8 = ForAppending Opens a file and write to the

		end of the file	

format 	Optional. The format of the file. 0 = TristateFalse Opens the file as ASCII. This

		is the default -1 = TristateTrue Opens the file as Unicode -2 =

		TristateUseDefault Opens the file using the system default 	

Example

1.When was the File Created?

This example demonstrates how to first create a FileSystem Object, and then use the DateCreated property of the File Object to get the date and time a specified file was created.

Coding

<html>

<body>

<%

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile(Server.MapPath("testread.txt"))

Response.Write("The file testread.txt was created on: " & f.DateCreated)

set f=nothing

set fs=nothing

%>

</body>

</html>

Output

The file testread.txt was created on: 28.04.00 15:01:17

2.When was the File Last Modified?

This example demonstrates how to use the DateLastModified property to get the date and time a specified file was last modified.

Coding

<html>

<body>

<%

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile(Server.MapPath("testread.txt"))

Response.Write("The file testread.txt was last modified on: " & f.DateLastModified)

set f=nothing

set fs=nothing

%>

</body>

</html>

Output

The file testread.txt was last modified on: 15.06.00 15:12:04

3.When was the File Last Accessed?

This example demonstrates how to use the DateLastAccessed property to get the date and time a specified file was last accessed.

Coding

<html>

<body>

<%

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile(Server.MapPath("testread.txt"))

Response.Write("The file testread.txt was last accessed on: " & f.DateLastAccessed)

set f=nothing

set fs=nothing

%>

</body>

</html>

Output

The file testread.txt was last accessed on: 12.08.00 14:35:28

4.Attributes

This example demonstrates how to use the Attributes property to return the attributes of a specified file.

Coding

<html>

<body>

<%

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile(Server.MapPath("testread.txt"))

Response.Write("The attributes of the file testread.txt are: " & f.Attributes)

set f=nothing

set fs=nothing

%>

</body>

</html>

Output

The attributes of the file testread.txt are: 32

Properties

21. ASP Folder Object ...

The Folder Object

The Folder Object is used to access the properties of a folder.

Methods

Method		Description	

Copy			Copies a folder	

Delete			Deletes a folder	

Move			Moves a folder	

CreateTextFile		Creates a text file and returns a TextStream Object to access the file	

Properties

Property		Description	

Attributes		Sets or returns the attributes of a folder	

DateCreated		Returns the date and time when the folder was created	

DateLastAccessed	Returns the date and time when the folder was last accessed	

DateLastModified	Returns the date and time when the folder was last modified	

Drive			Returns the drive letter where a specified folder resides	

Files			Returns a collection of all files in a folder	

IsRootFolder		Returns true if a folder is the root folder	

Name			Sets or returns the name of a folder	

ParentFolder		Returns the parent folder of a folder	

Path			Returns the path for a folder	

ShortName		Returns the short name of a folder (the earlier 8.3 naming convention)	

ShortPath		Returns the short path (the earlier 8.3 file naming convention)	

Size			Returns the size of a folder	

SubFolders		Returns a collection of all sub folders in a folder	

Type			Returns the type of a folder	

Methods

The Copy Method

The Copy method copies a file or folder.

Syntax

object.Copy(destination, overwrite)	

Part	Description	

object 	Required. The name of a File or Folder Object	

destination 	Required. Where to copy the file or folder	

overwrite 	Optional. Sets whether an existing file or folder can be overwritten. True indicates that the file/folder can be overwritten, False indicates that the file/folder can not be overwritten. True is default	

Example

dim fs,txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.GetFile("c:\testfile.txt")

txtfile.Copy("c:\mydocuments\test\test2.txt")

set txtfile=nothing

set fs=nothing	

The Delete Method

The Delete method deletes a specified file or folder.

Syntax

object.Delete force	

Part	Description	

object 	Required. The name of a File or Folder Object	

force 	Optional. Sets whether a read-only file or folder are deleted. True indicates that a read-only file/folder are deleted, False indicates that it is not deleted. False is default	

Example

dim fs,txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.GetFile("c:\testfile.txt")

txtfile.Delete

set txtfile=nothing

set fs=nothing 	

The Move Method

The Move method moves a file or folder.

Syntax

object.Move destination	

Part	Description	

object 	Required. The name of a File or Folder Object	

destination 	Required. Where to move the file or folder	

Example

dim fs, txtfile

set fs=CreateObject("Scripting.FileSystemObject")

Set txtfile = fs.GetFile("c:\testfile.txt")

txtfile.Move("c:\mydocuments\test\")

set txtfile=nothing

set fs=nothing	

The CreateTextFile Method

The CreateTextFile method creates a file and returns a TextStream object that can be used to read from or write to the file.

Syntax

object.CreateTextFile(filename, overwrite, unicode)	

Part		Description	

object 		Required. The name of a FileSystemObject or Folder Object	

filename 	Required. Name of the file to create	

overwrite 	Optional. Sets whether an existing file can be overwritten. True indicates that

		the file can be overwritten, False indicates that the file can not be overwritten.

		False is default	

unicode 	Optional. Sets whether the file is created as a Unicode or an ASCII file. True

		indicates that the file is created as a Unicode file, False indicates that the file is

		created as an ASCII file. False is default	

Example

dim fs, txtfile

set fs=CreateObject("Scripting.FileSystemObject")

set txtfile=fs.CreateTextFile("c:\somefile.txt")

set txtfile=nothing

set fs=nothing 	

Properties

The Attributes Property

The Attributes property sets or returns the attributes of files or folders.

Syntax

object.Attributes = newattributes	

Part			Description	

object 			Required. The name of a File or Folder Object	

=newattributes 	Optional. Sets the new value for the attributes of the specified object.

			Can have any of the following values or a combination of the following

			values: 0 = Normal file 1 = Read-only file 2 = Hidden file 4 = System

			file 16 = Folder or directory 32 = File has changed since last backup

			1024 = Link or shortcut 2048 = Compressed file	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The attributes of the file are: ")

Response.Write(f.Attributes)

set f=nothing

set fs=nothing	

The DateCreated Property

The DateCreated property returns the date and time when a file or folder was created.

Syntax

object.DateCreated	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The file was created on: ")

Response.Write(f.DateCreated)

set f=nothing

set fs=nothing	

The DateLastAccessed Property

The DateLastAccessed property returns the date and time when a file or folder was last accessed.

Syntax

object.DateLastAccessed	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The file was last accessed on: ") Response.Write(f.DateLastAccessed)

set f=nothing

set fs=nothing	

The DateLastModified Property

The DateLastModified property returns the date and time when a file or folder was last modified.

Syntax

object.DateLastModified	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The file was last modified on: ")

Response.Write(f.DateLastModified)

set f=nothing

set fs=nothing	

The Drive Property

The Drive property returns the drive letter where a specified file or folder resides.

Syntax

object.Drive	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The file resides on drive: ")

Response.Write(f.Drive)

set f=nothing

set fs=nothing	

The Files Property

The Files property returns a collection of all files in a specified folder.

Syntax

object.Files	

Part	Description	

object 	Required. The name of a Folder Object	

The IsRootFolder Property

The IsRootFolder property returns true if the specified folder is the root folder, false if not.

Syntax

object.IsRootFolder	

Part	Description	

object 	Required. The name of a Folder Object	

Example

dim fs,f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFolder("c:\asp\")

if f.IsRootFolder = true then

Response.Write("The folder is the root folder")

else

Response.Write("The folder is not the root folder")

end if

set f=nothing

set fs=nothing	

The Name Property

The Name property sets or returns the name of a specified file or folder.

Syntax

object.Name =newname	

Part		Description	

object 		Required. The name of a File or Folder Object	

=newname 	Optional. Sets the new name of the specified file or folder	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\test.txt")

Response.Write("The file's name: ")

Response.Write(f.Name)

set f=nothing

set fs=nothing	

The ParentFolder Property

The ParentFolder property returns the parent folder of a specified file or folder.

Syntax

object.ParentFolder	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\asp\test.asp")

Response.Write("The file test.asp is in the folder: ")

Response.Write(f.ParentFolder)

set f=nothing

set fs=nothing	

The Path Property

The Path property returns the path for a specified file, folder, or drive.

Syntax

object.Path	

Part	Description	

object 	Required. The name of a Drive, File, or Folder Object	

Example

dim fs,d

set fs=CreateObject("Scripting.FileSystemObject")

set d=fs.GetDrive("c:")

Response.Write("Path is " & d.Path)

set d=nothing

set fs=nothing	

The ShortName Property

The ShortName property returns the short name of the file (the earlier 8.3 naming convention).

Syntax

object.ShortName	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\asp\test_new_components.asp")

Response.Write("The short name for ")

Response.Write("test_new_components.asp is: ")

Response.Write(f.ShortName)

set f=nothing

set fs=nothing	

The ShortPath Property

The ShortPath property returns the short path (the earlier 8.3 file naming convention).

Syntax

object.ShortPath	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\asp\test.asp")

Response.Write("The short path for ")

Response.Write("c:\mydocuments\test.htm is: ")

Response.Write(f.ShortPath)

set f=nothing

set fs=nothing	

The Size Property

The Size property returns the size of a file or folder in bytes.

Syntax

object.Size	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:\asp\test.asp")

Response.Write("The size of the file test.asp is: ")

Response.Write(f.Size) Response.Write(" bytes.")

set f=nothing

set fs=nothing	

The SubFolders Property

The SubFolders property returns a collection of all subfolders in a specified folder.

Syntax

object.SubFolders	

Part	Description	

object 	Required. The name of a Folder Object	

The Type Property

The Type property returns information about the type of a file or folder.

Syntax

object.Type	

Part	Description	

object 	Required. The name of a File or Folder Object	

Example

dim fs, f

set fs=CreateObject("Scripting.FileSystemObject")

set f=fs.GetFile("c:test.txt")

Response.Write("The file test.txt is of type: ")

Response.Write(f.Type)

set f=nothing

set fs=nothing	

22. ASP Dictionary Object ...

The Dictionary Object

The Dictionary object is used to store information. You can attach a key word to each pieces of information. Later, when you want to retrieve the information, all you have to do is to provide the dictionary with the keyword, and it will return the information you have stored there.

Methods

Method	Description	

Add		Adds a key and item pair to a Dictionary Object	

Exists		Returns true if a specified key exists, false if not	

Items		Returns an array of all the items in a Dictionary object	

Keys		Returns an array of all the keys in a Dictionary object	

Remove	Removes a single key/item pair	

RemoveAll	Removes all the key/item pairs	

Properties

Property		Description	

CompareMode		Sets or returns the string comparison mode for the keys. This property

			is unavailable in JScript	

Count			Returns the number of keys/items in a Dictionary object	

Item			Sets or returns the value of an item	

Key			Sets a key in a Dictionary object	

Methods

The Add Method

The Add method adds a key and item pair to a Dictionary object.

Syntax

object.Add key, item	

Part	Description	

object 	Required. The name of a Dictionary Object	

key 	Required. A key associated with the added item	

item 	Required. A item associated with the added key	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

set d=nothing	

The Exists Method

The Exists method checks whether a specified key exists in the Dictionary object. It returns true if the key exists, and false if not.

Syntax

object.Exists(key)	

Part	Description	

object 	Required. The name of a Dictionary Object	

key 	Required. The key value to search for	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

if d.Exists("n")= true then

Response.Write("Key exists.")

else

Response.Write("Key does not exist.")

end if

set d=nothing	

The Items Method

The Items method returns an array of all the items in a Dictionary object.

Syntax

object.Items	

Part	Description	

object 	Required. The name of a Dictionary Object	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write(d.Items)

set d=nothing	

The Keys Method

The Keys method returns an array of all keys in a Dictionary object.

Syntax

object.Keys	

Part	Description	

object 	Required. The name of a Dictionary Object	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write(d.Keys)

set d=nothing	

The Remove Method

The Remove method removes a single key/item pair from a Dictionary object.

Syntax

object.Remove(key)	

Part	Description	

object 	Required. The name of a Dictionary Object	

key 	Required. Key associated with the key/item pair you want to remove	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

d.Remove("n")

Response.Write(d.Keys)

set d=nothing	

The RemoveAll Method

The Remove method removes all the key/item pairs from a Dictionary object.

Syntax

object.RemoveAll	

Part	Description	

object 	Required. The name of a Dictionary Object	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

d.RemoveAll

Response.Write(d.Keys)

set d=nothing	

Properties

The CompareMode Property

The CompareMode property sets and returns the comparison mode for strings in a Dictionary object.

Syntax

object.CompareMode = compare	

Part		Description	

object 		Required. The name of a Dictionary Object	

=compare 	Optional. A value representing the comparison mode. Has one of the following

settings: 	0 = vbBinaryCompare performs a binary comparison 1 = vbTextCompare

		performs a textual comparison	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.CompareMode=1

d.Add "n", "Norway"

d.Add "i", "Italy"

d.Add "i", "Ireland" 	'The Add method fails on this line because the 			'letter i already exists in the Dictionary	

The Count Property

The Count property returns the number of key/item pairs in a collection or Dictionary object.

Syntax

object.Count	

Part	Description	

object 	Required. The name of a collection or Dictionary object	

Example

dim d, a, s, i

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write(d,Count)

set d=nothing	

The Item Property

The Item property sets or returns the value of an item in a collection or a Dictionary object.

Syntax

object.Item(key) = newitem	

Part		Description	

object 		Required. The name of a collection or a Dictionary Object	

key 		Required. Key associated with the item	

=newitem 	Optional. Used for Dictionary object only. Sets the new value associated with

		the specified key	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write(d.item("n"))

set d=nothing	

The Key Property

The Key property sets a key in a Dictionary object.

Syntax

object.Key(key) = newkey	

Part		Description	

object 		Required. The name of a Dictionary Object	

key 		Required. Key value that will be changed	

=newkey 	Required. New value of the specified key	

Example

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

d.Key("i") = "it"

Response.Write(d.Item("it"))

set d=nothing	

Examples

1. Exists

This example demonstrates how to first create a Dictionary Object, and then use the Exists method to check if a specified key exists.

Coding

<html>

<body>

<%

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

if d.Exists("n")= true then

Response.Write("Key exists.")

else

Response.Write("Key does not exist.")

end if

set d=nothing

%>

</body>

</html>

Output

Key exists.

2. Items

This example demonstrates how to use the Items method to return an array of all the items.

Coding

<html>

<body>

<%

dim d,a,i,s

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write("<p>The value of the items are:</p>")

a=d.Items

for i = 0 To d.Count -1

s = s & a(i) & "
"

next

Response.Write(s)

set d=nothing

%>

</body>

</html>

Output

The value of the items are:

Norway

Italy

3. Keys

This example demonstrates how to use the Keys method to return an array of all the keys.

Coding

<html>

<body>

<%

dim d,a,i,s

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write("<p>The value of the keys are:</p>")

a=d.Keys

for i = 0 To d.Count -1

s = s & a(i) & "
"

next

Response.Write(s)

set d=nothing

%>

</body>

</html>

Output

The value of the keys are:

n

i

4. Item

This example demonstrates how to use the Item property to return the value of an item.

Coding

<html>

<body>

<%

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write("The value of the item n is: " & d.item("n"))

set d=nothing

%>

</body>

</html>

Output

The value of the item n is: Norway

5. Key

This example demonstrates how to use the Key property to set a key in a Dictionary object.

Coding

<html>

<body>

<%

dim d

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

d.Key("i") = "it"

Response.Write("The key i has been set to it, and the value is: " & d.Item("it"))

set d=nothing

%>

</body>

</html>

Output

The key i has been set to it, and the value is: Italy

6. Count

This example demonstrates how to use the Count property to return the number of key/item pairs.

Coding

<html>

<body>

<%

dim d, a, s, i

set d=CreateObject("Scripting.Dictionary")

d.Add "n", "Norway"

d.Add "i", "Italy"

Response.Write("The number of key/item pairs are: " & d.Count)

set d=nothing

%>

</body>

</html>

Output

The number of key/item pairs are: 2

23. ASP Ad Rotator ...

Ad Rotator

The Ad Rotator component creates an Ad Rotator object that displays a different advertisement image each time a user opens or refreshes the page. A text file includes information about the images.

To record how many users clicking on each advertisement, or to create links of the images, redirect the users to a "Redirection File".

The "Redirection File" is an optional file that implements redirection, and enables the Ad Rotator to record each click on each advertisement. Each jump to an advertiser's url will be recorded in the server's activity log.

Syntax

<% set adrotator=server.createobject("MSWC.AdRotator") adrotator.GetAdvertisement("sometextfile.txt") %>	

Methods

Method			Description	

GetAdvertisement(text_file)	Gets information about the next advertisement in the text file,

				and formats it as HTML	

Properties

Property	Description	

Border		Sets the size of the border around the advertisement	

Clickable	Specifies whether the advertisement is a hyperlink	

TargetFrame	Name of the frame to display the advertisement	

Examples

1. The AdRotator Component

This component displays a different advertisement each time a user visits or refreshes the page.

Coding

<html>

<body>

<%

set adrotator=Server.CreateObject("MSWC.AdRotator")

adrotator.Border="2"

adrotator.Clickable=false

Response.Write(adrotator.GetAdvertisement("text/advertisements.txt"))

%>

<p>

NOTE: Because the images are changed randomly, and because this page has only four images to choose from, sometimes the page will display the same advertisement twice in a row.

</p>

<p>

</p>

</body>

</html>

Output

NOTE: Because the images are changed randomly, and because this page has only four images to choose from, sometimes the page will display the same advertisement twice in a row.

View Text File

*

../banners/rd_htmlref.jpg

http://www.w3schools.com/html/html_reference.asp

Complete HTML 4.0 Reference

20

../banners/w3schools.gif

http://www.w3schools.com

Web Tutorials from W3Schools

20

../banners/w3scripts.gif

http://www.w3scripts.com

Lots of Scripts and Examples

20

../banners/wroxxmlbanner.gif

http://www.w3schools.com/xml/xml_books.asp

XML Books

20

2. The AdRotator Component 2

This component displays a different advertisement each time a user visits or refreshes the page. In addition, the images are hyperlinks.

Coding

<%

url=Request.QueryString("url")

If url<>"" then Response.Redirect(url)

%>

<html>

<body>

<%

set adrotator=Server.CreateObject("MSWC.AdRotator")

adrotator.TargetFrame="target='_blank'"

response.write(adrotator.GetAdvertisement("text/advertisements2.txt"))

%>

<p>

NOTE: Because the images are changed randomly, and because this page has only four images to choose from, sometimes the page will display the same advertisement twice in a row.

</p>

<p>

</p>

</body>

</html>

Output

NOTE: Because the images are changed randomly, and because this page has only four images to choose from, sometimes the page will display the same advertisement twice in a row.

View Text Files

REDIRECT demo_adrotator2.asp

*

../banners/rd_htmlref.jpg

http://www.w3schools.com/html/html_reference.asp

Complete HTML 4.0 Reference

20

../banners/w3schools.gif

http://www.w3schools.com

Web Tutorials from W3Schools

20 ../banners/w3scripts.gif

http://www.w3scripts.com

Lots of Scripts and Examples

20 ../banners/wroxxmlbanner.gif

http://www.w3schools.com/xml/xml_books.asp

XML Books

20

24. ASP Browser Capabilities ...

Browser Capabilities

The Browser Capabilities component creates a BrowserType object that determines the type, capabilities and version of each browser that visits your site.

An HTTP User Agent Header is sent to the server when a browser connects to it. This header identifies the browser and the browser version. The BrowserType object compares the header to entries in the Browscap.ini file. If it finds a match, the BrowserType object assumes the properties of the browser listing that matched the User Agent header. If the object does not find a match for the header in the Browscap.ini file, it sets every property to "UNKNOWN".

The file "Browscap.ini" is a text file on the server that maps browser capabilities to the HTTP User Agent header.

Syntax

<% Set MyBrow = Server.CreateObject("MSWC.BrowserType") %>	

Examples

1. The Browser Capabilities Component

This component determines the type, capabilities and version of each browser that visits your site.

Coding

<html>

<body>

<%

Set MyBrow=Server.CreateObject("MSWC.BrowserType")

%>

<table border="1" width="65%">

<tr>

<td width="52%">Client OS</td>

<td width="48%"><%=MyBrow.platform%></td>

</tr>

<tr>

<td >Web Browser</td>

<td ><%=MyBrow.browser%></td>

</tr>

<tr>

<td>Browser version</td>

<td><%=MyBrow.version%></td>

</tr>

<tr>

<td>Frame support?</td>

<td><%=MyBrow.frames%></td>

</tr>

<tr>

<td>Table support?</td>

<td><%=MyBrow.tables%></td>

</tr>

<tr>

<td>Sound support?</td>

<td><%=MyBrow.backgroundsounds%></td>

</tr>

<tr>

<td>Cookies support?</td>

<td><%=MyBrow.cookies%></td>

</tr>

<tr>

<td>VBScript support?</td>

<td><%=MyBrow.vbscript%></td>

</tr>

<tr>

<td>JavaScript support?</td>

<td><%=MyBrow.javascript%></td>

</tr>

</table>

</body>

</html>

Output

Client OS		Unknown	

Web Browser		IE	

Browser version	5.0	

Frame support?	True	

Table support?	True	

Sound support?	True	

Cookies support?	True	

VBScript support?	True	

JavaScript support?	True	

25. ASP Content Rotator (ASP 3.0) ...

Content Rotator

The Content Rotator component creates a ContentRotator object that displays a different HTML content string each time a user enters or refreshes a page. A text file includes information about the content string. The content strings can contain HTML tags.

Syntax

<% Set cr = Server.CreateObject("MSWC.ContentRotator") response.write(cr.ChooseContent("sometextfile.txt") %>	

Methods

Method			Description	

ChooseContent(text_file)	Gets and displays a content string	

GetAllContent(text_file)	Retrieves and displays all the content strings in the text file	

Examples

1. The Content Rotator Component

This component displays a different HTML content string each time a user visits or refreshes the page.

Coding

<html>

<body>

<p>

If this example gives an error, ASP 3.0 is not installed on the server.

</p>

<%

set cr=server.createobject("MSWC.ContentRotator")

response.write(cr.ChooseContent("text/textads.txt"))

%>

<p>

NOTE: Because the content strings are changed randomly in the text file, and this page has only four content strings to choose from, sometimes the page will display the same content strings twice in a row.

</p>

<p>

</p>

</body>

</html>

Output

If this example gives an error, ASP 3.0 is not installed on the server.

Server object error 'ASP 0177 : 800401f3'

Server.CreateObject Failed

/asp/demo_contentrotator.asp, line 9

Invalid class string

26. ASP Content Linking ...

Content Linking

The Content Linking component creates a Nextlink object that holds a list of linked Web pages. This component generates and updates tables of contents and navigational links. It is ideal for online newspapers and forum message listings. A text file, stored on the server, contains the list of the linked pages.

Syntax

<% Set nextlink = Server.CreateObject("MSWC.NextLink") %>	

Methods

Method				Description	

GetListCount(text_file)		Counts the number of items linked in the text file	

GetListIndex(text_file)			Gets the index of the current page in the text file	

GetNextDescription(text_file)		Gets the description of the next page listed in the text

					file	

GetNextURL(text_file)		Gets the URL of the next page listed in the text file	

GetNthDescription(text_file, number)	Gets the description of the Nth page listed in the text

					file	

GetNthURL(text_file, number)	Gets the URL of the Nth page listed in the text file	

GetPreviousDescription(text_file)	Gets the description line of the previous page listed in

					the text file	

GetPreviousURL(text_file)		Gets the URL of the previous pages listed in the text file 	

Examples

1. The Content Linking Component

This example builds a table of contents.

Coding

<html>

<body>

<p>

The example below builds a table of contents.

</p>

<%

dim c

dim i

set nl=server.createobject("MSWC.Nextlink")

c = nl.GetListCount("text\links.txt")

i = 1

%>

<%do while (i <= c) %>

<a href="<%=nl.GetNthURL("text\links.txt", i)%>">

<%=nl.GetNthDescription("text\links.txt", i)%>

<%

i = (i + 1)

loop

%>

<p>

The text file contains a list of page urls

and link descriptions. It contains one line of text for each page. Note that the url and

description MUST be

seperated by the TAB character.

</p>

<p>

</p>

</body>

</html>

Output

The example below builds a table of contents.

Introduction to ASP

The Basic Syntax Rules

Asp Variables

ASP Procedures

The text file contains a list of page urls and link descriptions. It contains one line of text for each page. Note that the url and description MUST be seperated by the TAB character.

View Text file

asp_intro.asp Introduction to ASP

asp_syntax.asp The Basic Syntax Rules

asp_variables.asp Asp Variables

asp_procedures.asp ASP Procedures

2. The Content Linking Component 2

The example uses the Content Linking Component to navigate between the pages in a text file.

Coding

<html>

<body>

<h1>

This is page 1!

</h1>

<%

Set nl=Server.CreateObject("MSWC.NextLink")

If (nl.GetListIndex("text/links2.txt")>1) Then

%>

<a href="

<%Response.Write(nl.GetPreviousURL("text/links2.txt"))%>

">Previous Page

<%End If%>

<a href="

<%Response.Write(nl.GetNextURL("text/links2.txt"))%>

">Next Page

<p>The example uses the Content Linking Component

to navigate between the pages in a text file.</p>

<p>

</p>

</body>

</html>

Output

This is page 1!

Next Page

The example uses the Content Linking Component to navigate between the pages in a text file.

View Text File

demo_contentlinking2.asp Page 1

page2.asp Page 2

page3.asp Page 3

27. Introduction to ADO ...

What is ADO?

ADO stands for ActiveX Data Objects

With ADO you can access and manipulate data in a database

You can move data from a server to a client, manipulate the data, and return updates to the server, with ADO's Remote Data Service (RDS)

ADO and RDS are automatically installed with Microsoft IIS

Where to go next?

If you want to study more about ADO, you should go to our ADO School.

27. 1. Welcome to ADO School

After you have studied ADO School, you will know what ADO is.

You will know how to use the Active Data Object, to access databases from your Web.

Table of contents

ADO Introduction

This chapter explains what ADO is, and how it can be used.

ADO Database Connection

This chapter explains how to connect to a database using ADO.

ADO Recordset

This chapter explains how to access an ADO Recordset.

ADO Display

This chapter explains the most common way to display data from an ADO Recordset.

ADO and SQL

This chapter explains how to use SQL to filter and order an ADO Recordset.

ADO Demonstration

This chapter demonstrates how ADO can be used.

27. 2. Introduction to ADO

ADO can be used to access databases from your web pages.

What you should already know

Before you continue you should have some basic understanding of the following:

WWW, HTML and the basics of building Web pages

A scripting language like JavaScript or VBScript

Active Server Pages (ASP)

Structured Query Language (SQL)

What is ADO?

ADO is a Microsoft technology

ADO stands for ActiveX Data Objects

ADO is a Microsoft Active-X component

ADO is automatically installed with Microsoft IIS

ADO is a programming interface to access data in a database

ADO can be accesses from within your Active Server Pages

Accessing a Database from an ASP Page

The normal way to access a database from inside an ASP page is to:

Create an ADO connection to a database

Open the database connection

Create an ADO recordset

Open the recordset

Extract the data you need from the recordset

Close the recordset

Close the connection

27. 3. ADO Database Connection

Before a database can be accessed from a web page, a database connection has to be established.

Create a DSN-less Database Connection

The easiest way to connect to a database is to use a DSN-less connection. A DSN-less connection can be used against any Microsoft Access database on your web site.

If you have a database called "northwind.mdb" located in a web directory like "c:/webdata/", you can connect to the database with the following ASP code:

<% set conn=Server.CreateObject("ADODB.Connection") conn.Provider="Microsoft.Jet.OLEDB.4.0" conn.Open "c:/webdata/northwind.mdb" %>	

Note that from the example above, that you have to specify the Microsoft Access database driver (Provider), and the physical path to the database on your computer.

Create an ODBC Database Connection

If you have an ODBC database called "northwind" you can connect to the database with the following ASP code:

<% set conn=Server.CreateObject("ADODB.Connection") conn.Open "northwind" %>	

With an ODBC connection, you can connect to any database, on any computer in your network, as long as an ODBC connection is available.

An ODBC Connection to a MS Access Database

Here is how to create a connection to a MS Access Database:

Open the ODBC icon in your Control Panel.

Choose the System DSN tab.

Click on Add in the System DSN tab.

Select the Microsoft Access Driver. Click Finish.

In the next screen, click Select to locate the database.

Give the database a Data Source Name (DSN).

Click OK.

Note that this configuration has to be done on computer where your web site is located. If you are running Personal Web Server (PWS) or Internet Information Server (IIS) on your own computer, the instructions above will work, but if your web site is located on a remote server, you have to have physical access to that server, or ask your web host to do this for you.

The ADO Connection Object

The ADO Connection Object is used to establish a database connection.

Syntax

conn.method conn.property	

The most common Methods and Properties

Methods

Method	Description	

Close		Closes a connection	

Execute	Executes a query, statement, procedure or provider specific text	

Open		Opens a connection	

Properties

Property	Description	

Mode		Sets or returns the provider access permission	

Provider	Sets or returns the provider name	

State		Returns a value describing if the connection is open or closed	

Version		Returns the ADO version number	

ADO Connection Object

Connection Object

The Connection Object is used to create a connection to a data source.

Syntax

objectname.method

objectname.property	

Methods

Method	Description	

BeginTrans	Begins a new transaction	

Cancel		Cancels an execution	

Close		Closes a connection	

CommitTrans	Saves any changes and ends the current transaction	

Execute	Executes a query, statement, procedure or provider specific text	

Open		Opens a connection	

OpenSchema	Returns schema information from the provider about the data source	

RollbackTrans	Cancels any changes in the current transaction and ends the transaction	

Properties

Property		Description	

Attributes		Sets or returns the attributes of a Connection object	

CommandTimeout	Sets or returns the number of seconds to wait while attempting to execute a command	

ConnectionString	Sets or returns the details used to create a connection to a data source	

ConnectionTimeout	Sets or returns the number of seconds to wait for a connection to open	

CursorLocation		Sets or returns the location of the cursor service	

DefaultDatabase	Sets or returns the default database name	

IsolationLevel		Sets or returns the isolation level	

Mode			Sets or returns the provider access permission	

Provider		Sets or returns the provider name	

State			Returns a value describing if the connection is open or closed	

Version			Returns the ADO version number	

Events

Event				Description	

BeginTransComplete		Triggered after the BeginTrans operation	

CommitTransComplete		Triggered after the CommitTrans operation	

ConnectComplete		Triggered after a connection starts	

Disconnect			Triggered after a connection ends	

ExecuteComplete		Triggered after a command has finished executing	

InfoMessage			Triggered if a warning occurs during a ConnectionEvent

				operation	

RollbackTransComplete	Triggered after the RollbackTrans operation	

WillConnect			Triggered before a connection starts	

WillExecute			Triggered before a command is executed	

Collections

Collection	Description	

Errors		Contains all the Error objects of the Connection object	

Properties	Contains all the Property objects of the Connection object	

Methods

The BeginTrans, CommitTrans, and RollbackTrans Methods

The BeginTrans method begins a new transaction. When calling this method within an open transaction starts a new, nested transaction. This method can also be called as a function which return the nested level of the transaction.

The CommitTrans method saves any changes and ends the current transaction.

The RollbackTrans method cancels any changes in the current transaction and ends the transaction.

These methods can be used with the Connection object to save or cancel changes made to the data source.

Note: Not all providers support transactions.

Note: These methods are not available on a client-side Connection object.

Syntax

level = BeginTrans()

connobj.BeginTrans

connobj.CommitTrans

connobj.RollbackTrans	

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object		Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The Close Method

The Close method is used to close a Connection, a Record, a Recordset, or a Stream object to free system resources.

When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

object.Close	

The Execute Method

The Execute method executes a query, SQL statement, procedure, or provider-specific text in text.

Syntax

Set rs = connection.Execute(text, recaffected, options)	

Part		Description	

text 		The SQL statement, table name, procedure, url, or provider-specific text to

		execute	

recaffected 	Optional. The number of records affected 	

options 	Optional. Sets how the provider should evaluate the text argument. Can be one or more 	CommandTypeEnum or ExecuteOptionEnum values 	

Example

The Open Method

The Open method opens a connection to a data source.

Syntax

connection.Open

connectionstring, userid, psword, options	

Part			Description	

connectionstring 	Optional. Information about the connection. See ConnectionString

			properties for details	

userid 			Optional. A user name for the connection 	

psword 		Optional. A password for the connection 	

options 		Optional. A value that sets whether this method should return after or

			before the connection is established 	

Example

A DSN-less connection:

 <% set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb" %>

An ODBC Database Connection:

<% set conn=Server.CreateObject("ADODB.Connection")

conn.Open "northwind" %>	

The OpenSchema Method

The OpenSchema method returns a Recordset object with schema information from the provider about the data source.

Syntax

Set rs = connection.OpenSchema(type, criteria, schemaid)	

Part		Description	

type 		The type of schema query to run	

criteria 	Optional. An array of query constraints for each type option 	

schemaid 	Required if type is set to adSchemaProviderSpecific 	

Properties

The Attributes Property

The Attributes property sets or returns the attributes of an object.

Note: When setting multiple attributes, it is possible to sum the values.

Syntax

object.Attributes	

Object	Description of the Attributes Property	

Connection 	The Attributes property is read/write. The value can be one or more

		XactAttributeEnum values. Default is 0	

Parameter 	The Attributes property is read/write. The value can be one or more

		ParameterAttributesEnum values. Default is adParamSigned 	

Field 		The Attributes property is normally read-only. The value can be one or more

		FieldAttributeEnum values 	

Property 	The Attributes property is read-only. The value can be one or more

		PropertyAttributesEnum values 	

The CommandTimeout Property

The CommandTimeout property sets or returns the number of seconds to wait while attempting to execute a command, before canceling the attempt and generate an error. Default is 30.

Syntax

object.CommandTimeout	

The ConnectionString Property

The ConnectionString property sets or returns the details used to create a connection to a data source.

Note: You can not use both the Provider and File Name arguments.

Syntax

connobj.ConnectionString = arg1=value; arg2=value; etc;	

The ConnectionString property has these arguments:

Argument		Description	

Provider		The provider to use for the connection	

File Name		A provider-specific file that contains connection information	

Remote Provider	The provider to use when opening a client-side connection	

Remote Server		A path name of the server to use when opening a client-side connection	

url			An absolute URL identifying a resource, such as a file or directory	

The ConnectionTimeout Property

The ConnectionTimeout property sets or returns the number of seconds to wait for a connection to open, before canceling the attempt and generate an error. Default is 15 seconds.

Syntax

connobj.ConnectionTimeout	

The CursorLocation Property

The CursorLocation property sets or returns the location of the cursor service. Can take a CursorLocationEnum value.

A cursor is used to:

control record navigation

control the visibility of changes in the database

control the updatability of data

Note: A Recordset inherits this setting from the associated Connection.

Note: This property is read-only on an open Recordset, and read/write on a Connection or on a closed Recordset.

Syntax

connobj.CurserLocation rsobj.CurserLocation	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation = adUseClient

rs.CursorType = adOpenStatic

rs.LockType = adLockBatchOptimistic

rs.Open sql, conn

%>	

The DefaultDatabase Property

The DefaultDatabase property sets or returns the default database name for a specific Connection object.

Syntax

connobj.DefaultDatabase	

The IsolationLevel Property

The IsolationLevel property sets or returns the isolation level of a Connection object.

The value can be an IsolationLevelEnum value. Default is adXactChaos.

Note: The IsolationLevel settings will not work until next time BeginTrans is called.

Syntax

connobj.IsolationLevel	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.IsolationLevel = adXactIsolated

conn.Open "northwind"

%> 	

The Mode Property

The Mode property sets or returns the permissions for modifying data in a Connection, Record, or Stream object.

Can take one of the ConnectModeEnum values.

Connection object - Default is adModeUnknown

Record object - Default is adModeRead

Stream object - Default is adReadOnly or adModeUnknown

Note: This property can be set only when the Connection object is closed.

Syntax

object.Mode	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Mode = adModeReadWrite

conn.Open "northwind"

%> 	

The Provider Property

The Provider property sets or returns the provider name of a Connection object. Default is MSDASQL (Microsoft OLE DB provider for ODBC).

This property can also be set by the ConnectionString property or the ConnectionString argument of the Open method.

The Provider property is read/write when the connection is closed. The setting takes effect when you open the Connection object or access the Properties collection of the Connection object.

Syntax

connobj.Provider	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

%>	

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

object.State	

The Version Property

The Version property returns the ADO version number.

Syntax

version = connobj.Version	

Events

The BeginTransComplete Event

The BeginTransComplete event is triggered after the BeginTrans operation.

Syntax

BeginTransComplete translevel, objerror, status, conn	

Part		Description	

translevel 	The new transaction level of the BeginTrans that caused this event	

objerror 	An Error object that describes the error that occurred if status is set to

		adStatusErrorsOccurred 	

status 		An EventStatusEnum value. This parameter is set to adStatusOK if the

		operation that caused the event was successful, or to adStatusErrorsOccurred if

		it failed. To avoid subsequent notifications set this parameter to

		adStatusUnwantedEvent before the event returns 	

conn 		The Connection object that triggered this event 	

The CommitTransComplete Event

The CommitTransComplete event is triggered after the CommitTrans operation.

Syntax

CommitTransComplete objerror, status, conn	

Part		Description	

objerror 	An Error object that describes the error that occurred if the value of status is

		adStatusErrorsOccurred 	

status 		An EventStatusEnum value. This parameter is set to adStatusOK if the

		operation that caused the event was successful, or to adStatusErrorsOccurred if

		it failed. To avoid subsequent notifications set this parameter to

		adStatusUnwantedEvent before the event returns 	

conn 		The Connection object that triggered this event 	

The ConnectComplete Event

The ConnectComplete event is triggered after a connection starts.

Syntax

ConnectComplete objerror, status, conn	

Part		Description	

objerror 	An Error object that describes the error that occurred if the value of status is

		adStatusErrorsOccurred 	

status 		An EventStatusEnum value. Returns always adStatusOK 	

conn 		The Connection object that triggered this event 	

The Disconnect Event

The Disconnect event is triggered after a connection ends.

Syntax

Disconnect status, conn	

Part	Description	

status 	An EventStatusEnum value. Returns always adStatusOK 	

conn 	The Connection object that triggered this event 	

The ExecuteComplete Event

The ExecuteComplete event is triggered after a command has finished executing.

Syntax

ExecuteComplete recaffected, objerror, status, comm, rs, conn	

Part		Description	

recaffected 	The number of records affected by the command 	

objerror 	An Error object that describes the error if status is set to

		adStatusErrorsOccurred 	

status 		An EventStatusEnum value. This parameter is set to adStatusOK if the

		operation that caused the event was successful, or to adStatusErrorsOccurred if

		it failed. To avoid notifications set this parameter to adStatusUnwantedEvent

		before the event returns 	

comm 		The Command object that was executed 	

rs 		A Recordset object that is the result of the executed command 	

conn 		A Connection object. The connection over which the operation was executed 	

The InfoMessage Event

The InfoMessage event is triggered if a warning occurs in a ConnectionEvent operation.

Syntax

InfoMessage objerror, status, conn	

Part		Description	

objerror 	An Error object that contains any errors that are returned 	

status 		An EventStatusEnum value. If a warning occurs, status is set to adStatusOK

		and the objerror contains the warning. To avoid notifications set this parameter

		to adStatusUnwantedEvent before the event returns 	

conn 		A Connection object. The connection for which the warning occured 	

The RollbackTransComplete Event

The RollbackTransComplete event is triggered after the RollbackTrans operation.

Syntax

RollbackTransComplete objerror, status, conn	

Part		Description	

objerror 	An Error object that describes the error if status is set to

		adStatusErrorsOccurred 	

status 		An EventStatusEnum value. This parameter is set to adStatusOK if the

		operation that caused the event was successful, or to adStatusErrorsOccurred if

		it failed. To avoid subsequent notifications set this parameter to

		adStatusUnwantedEvent before the event returns 	

conn 		The Connection object that triggered this event 	

The WillConnect Event

The WillConnect event is triggered before a connection starts.

Syntax

WillConnect ConnectionString, userid, psword, opt, stat, con	

Part			Description	

ConnectionString 	Holds the connection information for the connection 	

userid 			Holds a user name for the connection 	

psword 		Holds a password for the connection 	

opt 			Specifies how the provider should evaluate the ConnectionString. Your

			only option is adAsyncOpen 	

stat 			An EventStatusEnum value. Default is adStatusOK. It is set to

			adStatusCantDeny if the event can not cancel the operation. To avoid

			notifications set this parameter to adStatusUnwantedEvent before the

			event returns. Set this parameter to adStatusCancel to request the

			connection operation that caused cancellation 	

con 			The Connection object for which this event notification applies 	

The WillExecute Event

The WillExecute event is triggered before a command is executed.

Syntax

WillExecute src, cursortyp, locktyp, opt, stat, com, rs, con	

Part		Description	

src 		Holds a SQL command or a procedure name 	

cursortyp 	The cursor type for the Recordset to open 	

locktyp 	The lock type for the Recordset to open 	

opt 		A value that indicates options that can be used to execute the command or open

		the Recordset 	

stat 		An EventStatusEnum value. It may be adStatusCantDeny or adStatusOK when

		this event is called 	

com 		The Command object for which this event notification applies 	

rs 		The Recordset object for which this event notification applies 	

con 		The Connection object for which this event notification applies 	

27. 4. ADO Recordset

To be able to read database data, the data must first be loaded into a recordset.

Create an ADO Table Recordset

After an ADO Database Connection has been created, like demonstrated in the previous chapter, it is possible to create an ADO Recordset.

Suppose we have a database named "Northwind", we can get access to the "Customer" table inside the database with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

%>	

Create an ADO SQL Recordset

We can also get access to the data in the "Customers" table using SQL:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>	

Extract Data from the Recordset

After an recordset is opened, we can extract data from recordset.

Suppose we have a database named "Northwind", we can get access to the "Customer" table inside the database with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

for each x in rs.fields

response.write(x.name)

response.write(" = ")

response.write(x.value)

next

%>	

The ADO Recordset Object

The Recordset Object is used to hold a set of records from a database table.

Syntax

rs.method

rs.property	

The most common Methods and Properties

Methods

Method	Description	

AddNew	Creates a new record	

Close		Closes a Recordset	

Delete		Deletes the current record or group of records	

MoveFirst	Moves to the first record	

MoveLast	Moves to the last record	

MoveNext	Moves to the next record	

MovePrevious	Moves to the previous record	

Open		Opens a Recordset	

Update		Saves any changes	

Properties

Property	Description	

BOF		Returns true if the current record is before the first record, otherwise it returns

		false	

EOF		Returns true if the current record is after the last record, otherwise it returns

		false	

Fields		Contains all of the field objects for the Recordset Object	

RecordCount	Returns how many records there are in a Recordset object	

Sort		Specifies a comma-separated list of field names the Recordset is sorted on	

ADO Recordset Object

Recordset Object

The Recordset Object is used to hold a set of records from a database table.

Syntax

objectname.method objectname.property	

Methods

Method		Description	

AddNew		Creates a new record	

Cancel			Cancels an execution	

CancelBatch		Cancels a batch update. Must happen in batch update mode	

CancelUpdate		Cancels any changes. Must be done before an Update	

Clone			Creates a copy of a Recordset	

Close			Closes a Recordset	

CompareBookmarks	Compares two bookmarks	

Delete			Deletes a record or a group of records	

Find			Searches for a record in a Recordset	

GetRows		Copies records into an array	

GetString		Returns a Recordset as a string	

Move			Moves the position of the current record	

MoveFirst		Moves to the first record	

MoveLast		Moves to the last record	

MoveNext		Moves to the next record	

MovePrevious		Moves to the previous record	

NextRecordset		Clears the current Recordset and returns the next Recordset	

Open			Opens a Recordset	

Requery		Updates the data in a Recordset by executing the query again	

Resync			Refreshes the data in the current Recordset from the original database	

Save			Saves the Recordset to a file	

Seek			Searches the index of a Recordset to locate the row that matches the

			specified values	

Supports		Defines whether or not a Recordset supports a specific type of

			functionality	

Update			Saves any changes of the current record	

UpdateBatch		Saves all changes in a Recordset to the database. Used when working

			on a Recordset in batch update mode	

Properties

Property		Description	

AbsolutePage		Specifies on which page the current record is located	

AbsolutePosition	Specifies the ordinal position of the current record in a Recordset	

ActiveCommand	Returns the Command Object associated with the Recordset	

ActiveConnection	Sets or returns a definition for a connection if the connection is closed,

			or the current Connection object if the connection is open	

BOF			Returns true if the current record position is before the first record,

			otherwise false	

Bookmark		Sets or returns a bookmark. The bookmark saves the position of the

			current record	

CacheSize		Sets or returns the number of records that are cached	

CursorLocation		Sets or returns the location of the cursor service	

CursorType		Sets or returns the type of cursor	

DataMember		Sets or returns the name of the data member referenced by the

			DataSource property	

DataSource		Specifies an object containing data to be represented as a Recordset

			object	

EditMode		Defines the editing status of the current record	

EOF			Returns true if the current record position is after the last record,

			otherwise false	

Filter			Sets or returns a filter for the data in the Recordset	

Index			Sets or returns the name of the index in effect	

LockType		Sets or returns the type of locking on records	

MarshalOptions	Sets or returns which records are to be transferred back to the server	

MaxRecords		Sets or returns the maximum number of records to return to a

			Recordset object from a query	

PageCount		Returns the number of pages in a Recordset object	

PageSize		Sets or returns how many records are on one page	

RecordCount		Returns how many records	

Methods

The AddNew Method

The AddNew method creates a new record for an updateable Recordset object.

After you call this method, the new record will be the current record.

Syntax

recordsetobj.AddNew fieldlist, values	

Part		Description	

fieldlist 	Optional. A name, or an array of names or ordinal positions of the fields in the

		new record 	

values 		Optional. A value, or an array of values for the fields in the new record 	

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object		Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The CancelBatch Method

The CancelBatch method cancels a batch update. Must happen in batch update mode.

Syntax

recordsetobj.CancelBatch affectrec	

Part		Description	

affectrec 	Optional. A value that specifies how many records this method will affect 	

The CancelUpdate Method

The CancelUpdate method cancels any changes made to the new row, current row, or the Fields collection. Must be done before calling the Update method.

Recordset object

Use this method to cancel any changes made to the current row or to delete a newly added row.

Record object

Use this method to cancel any changes of Field objects, and to cancel updates of existing fields.

Syntax

recordsetobj.CancelUpdate

recordobj.Fields.CancelUpdate	

The Clone Method

The Clone method creates a copy of a Recordset object and returns a Recordset object reference.

Syntax

Set rscopy = rsoriginal.Clone(locktype)	

Part		Description	

rscopy		The duplicate Recordset object to be created	

rsoriginal	The Recordset object to be duplicated	

locktype	Optional. A value that specifies the lock type of the original Recordset, or a

		read-only Recordset. The valid values are adLockUnspecified or

		adLockReadOnly	

The Close Method

The Close method is used to close a Connection, a Record, a Recordset, or a Stream object to free system resources.

When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

object.Close	

The CompareBookmarks Method

The CompareBookmarks method compares two bookmarks. This method returns a value that indicates the bookmark's relative values.

Note: The two bookmarks must be within the same Recordset object, or within a Recordset object and its clone.

Syntax

result = recordsetobj.CompareBookmarks(bookmark1, bookmark2)	

Part	Description	

bookmark1	The bookmark of the first row	

bookmark2	The bookmark of the second row	

The Delete Method

The Delete method is used to delete the current record or a group of records.

Note: To use this method assure that the Recordset object allows record deletion.

Syntax

recordsetobj.Delete affectrecords	

Part		Description	

affectrecords	A value that specifies how many records this method will affect. Default is

		adAffectCurrent. Note that the values adAffectAll and adAffectAllChapters are

		not valid arguments to this method	

The Find Method

The Find method searches for a record in a Recordset that satisfies a specified criteria.

Note: A current row position must be set before calling this method.

Syntax

recordsetobj.Find(criteria, skiprows, direction, start)	

Part		Description	

criteria		The column name, comparison operator, and value to use in the search.

Example: 	"country='Norway'", "date > #7/22/97#" and "country like N*"	

skiprows	Optional. Specifies the row offset from the current row or start bookmark to

		begin the search	

direction	Optional. A value that specifies if the search should begin on the current record

		or on the next record in the direction of the search	

start		Optional. The starting position for the search	

The GetRows Method

The GetRows method copies multiple records into a two-dimensional array.

Syntax

vararray = recordsetobj.GetRows(rows, start, fields)	

Part		Description	

rows		Optional. The number of rows to retrieve. Default is adGetRowsRest (or -1),

		which copies the rest of the records in the Recordset If you omit this argument,

		this method will retrieve all the records in the Recordset. If you specify more

		records than are available, this method will return only the number of available

		records	

start		Optional. What record to start on. It can be a number or a BookmarkEnum

		value	

fields		Optional. If you want to specify only the fields that the GetRows call will return,

		it is possible to pass a single field name/number or an array of field

		names/numbers in this argument 	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy

'The second number indicates what recordnumber to start on

p=rs.GetRows(2,0)

'This example returns the value of the first

'column in the first two records

response.write(p(0,0))

response.write("
")

response.write(p(0,1))

'This example returns the value of the first

'three columns in the first record

response.write(p(0,0))

response.write("
")

response.write(p(1,0))

response.write("
")

response.write(p(2,0))

rs.close

conn.close

%>	

The GetString Method

The GetString method returns a Recordset as a string.

Syntax

Set var = recordsetobj.GetString (format, num, coldel, rowdel, nullexpr)	

Part		Description	

format		Specifies how the Recordset should be converted to a string. Can be a

		StringFormatEnum value. coldel, rowdel, and nullexpr are used only if format

		is adClipString	

num		Optional. The number of rows to be converted in the Recordset	

coldel		Optional. If specified it is s a column delimiter. Otherwise it is the tab character 	

rowdel		Optional. If specified it is a row delimiter. Otherwise it is the carriage return

		character 	

nullexpr	Optional. If specified it is an expression used instead of a null value. Otherwise

		an empty string 	

The Move Method

The Move method moves the current record in a Recordset object.

Note: This method can be used on all Recordset objects.

Syntax

recordsetobj.Move numrec, start	

Part		Description	

numrec	Specifies where to move the current record. This value must be of data type

		Long. Example: If this argument is 3, the current record moves 3 records

		forward. Example: If this argument is -3, the current record moves 3 records

		backward 	

start		Optional. Specifies where to start; can be a String value, a Variant that

		evaluates to a bookmark, or a BookmarkEnum value	

The MoveFirst, MoveLast, MoveNext, MovePrevious Method

The MoveFirst method moves to the first record in a Recordset.

The MoveLast method moves to the last record in a Recordset.

The MoveNext method moves to the next record in a Recordset.

The MovePrevious method moves to the previous record in a Recordset.

Syntax

recordsetobj.MoveFirst

recordsetobj.MoveLast

recordsetobj.MoveNext

recordsetobj.MovePrevious	

The NextRecordset Method

The NextRecordset method clears the current Recordset and returns the next Recordset.

Note: Recordset1 and recordset2 can be the same Recordset object.

Tip: Use this method to return the result of the next command, or the next result of a stored procedure that returns multiple results.

Syntax

Set recordset2 = recordset1.NextRecordset(recordsaffected)	

Part			Description	

recordsaffected	Optional. Returns the number of records affected 	

The Open Method

The Open method opens a opens a Recordset that holds records from a table, from a query, or from a saved Recordset.

Tip: Always close the Recordset object (with the Close method) after using it; to free system resources. Set the object to Nothing, to completely eliminate it from memory.

Syntax

recordsetobj.Open src, actconn, cursortyp, locktyp, opt	

Part		Description	

src 		Optional. Specifies a data source	

actconn 	Optional. Specifies in which connection to open the Recordset. Can be a

		Connection object variable name, or ConnectionString parameters 	

cursortyp 	Optional. Specifies the type of cursor. Can be a CursorTypeEnum value.

		Default is adOpenForwardOnly 	

locktyp 	Optional. Specifies the type of locking. Can be a LockTypeEnum value. Default

		is adLockReadOnly 	

opt 		Optional. Specifies how to evaluate the src argument if it is not a Command

		object, or specifies that the Recordset should be restored from a file where it

		was saved. Can be one or more CommandTypeEnum or ExecuteOptionEnum

values. 		Default is adCmdFile 	

Example

Create an ADO Table Recordset:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

%>

Create an ADO SQL Recordset:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>	

The Requery Method

The Requery method updates the data in a Recordset by executing the query again.

Tip: Use this method to refresh the contents of a Recordset.

Syntax

recordsetobj.Requery options	

Part		Description	

options 	Optional. Specifies how to execute this command. Can be an

		ExecuteOptionEnum value	

The Resync Method

The Resync method refreshes the data in a Recordset from the original database.

Tip: Use this method to resynchronize the Recordset with the database. If you want to see changes in the database and you are using a static or forward-only Recordset this method is useful.

Note: This method does not re-execute the Recordset, so new records in the database will be invisible.

Syntax

recordsetobj.Resync affectrecords, resyncvalues	

Part			Description	

affectrecords 		Optional. Specifies how many records this method will affect. Can be

			an AffectEnum value. Default is adAffectAll	

resyncvalues 		Optional. Specifies if underlying values are overwritten. Can be a

			ResyncEnum value. Default is adResyncAllValues	

The Save Method

The Save method saves the Recordset in a file or Stream object.

Syntax

recordsetobj.Save destination, persistformat	

Part		Description	

destination 	Optional. Specifies where to save the Recordset (the path name of a file), or a

		reference to a Stream object	

persistformat 	Optional. Specifies the format of the Recordset (XML or ADTG). Can be a

		PersistFormatEnum value. Default is adPersistADTG (0)	

Example

You can save a Recordset in XML format:

<%

set xmlDoc=CreateObject("Microsoft.XMLDOM")

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

'Save the Recordset into a DOM tree

rs.Save xmldoc, 1

%>	

The Seek Method

The Seek method searches the index of a Recordset to locate the row that matches some specified values.

Syntax

recordsetobj.Seek keyvalues, seekoption	

Part		Description	

keyvalues 	Specifies an array of values	

seekoption 	Specifies the type of comparison to be made between the columns of the index

		and the corresponding keyvalues. Can be a SeekEnum value	

The Supports Method

The Supports method Defines whether or not a Recordset supports a specific type of functionality.

This method returns True if the features identified by the cursoroptions argument are supported, False if not.

Syntax

recordsetobj.Supports(cursoroptions)	

Part			Description	

cursoroptions 		Specifies what functionality this method should test for. Can be one or

			more CursorOptionEnum values	

The Update Method

The Update method saves any changes of the current record in a Recordset.

Note: This method will not work if the Recordset object does not support updates.

Syntax

recordsetobj.Update fields, values	

Part		Description	

fields 		Optional. Specifies a single field name, or an array containing field names or

		field positions you wish to update	

values 		Optional. Specifies a single value, or an array containing values for the field or

		fields in the new record	

The UpdateBatch Method

The UpdateBatch method saves all changes in a Recordset to the database. This method is used when you are working on a Recordset in batch update mode.

If the save operation fails, a run-time error occurs and the errors are stored in the Errors collection. To locate records with errors, use the Filter property and the Status property.

Tip: The CancelBatch method cancels all batch updates.

Note: Not all Recordset objects supports batch updating.

Syntax

recordsetobj.UpdateBatch affectrecords	

Part		Description	

affectrecords 	Optional. Specifies which records this method will affect. Can be an

		AffectEnum value. Note: If you specify the value adAffectGroup it will

		generate an error when there are no visible records in the current Recordset	

Properties

The AbsolutePage Property

The AbsolutePage property specifies on which page the current record is located. It sets or returns a value from 1 to the number of pages in the Recordset, or it returns a PositionEnum value.

Tip: To get the number of pages in the Recordset, you can use the PageCount property.

Tip: To divide the Recordset into a series of pages, you can use the PageSize property.

Note: This property's value is 1 when the current record is the first record in the Recordset.

Syntax

rsobj.AbsolutePage	

The AbsolutePosition Property

The AbsolutePosition property specifies the ordinal position of the current record in a Recordset. It sets or returns a value from 1 to the number of records in the Recordset, or it returns a PositionEnum value.

Tip: To get the number of records in the Recordset, you can use the RecordCount property.

Note: This property's value is 1 when the current record is the first record in the Recordset.

Syntax

rsobj.AbsolutePosition	

The ActiveCommand Property

The ActiveCommand property returns the Command Object associated with the Recordset.

Note: This property is read-only.

Note: A Null object reference is returned if the Recordset is not created by a Command Object.

Syntax

rsobj.ActiveCommand	

The ActiveConnection Property

The ActiveConnection property tells which Connection Object the Recordset belongs to.

If the connection is closed, this property sets or returns a definition for a connection.

If the connection is open this property sets or returns the current Connection Object.

Syntax

rsobj.ActiveConnection	

The BOF and EOF Properties

The BOF property returns True (-1) if the current record position is before the first record in a Recordset, otherwise it returns False (0).

The EOF property returns True (-1) if the current record position is after the last record in a Recordset, otherwise it returns False (0).

Note: The BOF and EOF properties are set to True if you open an empty Recordset. RecordCount property is zero.

Note: If a Recordset holds at least one record, the first record is the current and the BOF and EOF properties are False.

Syntax

rsobj.BOF

or

rsobj.EOF	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

%>

<table border="1" width="100%">

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td>

<%Response.Write(x.value)%></td>

<%next rs.MoveNext%>

</tr>

<%loop rs.close conn.close %>	

The Bookmark Property

The Bookmark property specifies a bookmark. The bookmark saves the position of the current record.

To save the bookmark for the current record, assign the value of the Bookmark property to a variable. To return to the "bookmarked" record, set the Bookmark property to the value of that variable.

Note: The Bookmark property is available only in Recordset objects that support bookmarks.

Syntax

rsobj.Bookmark	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers" rs.Open sql, conn

rs.MoveFirst 'Store bookmark of the current record

bkmark = rs.Bookmark

rs.MoveLast 'Go to the bookmarked record

rs.Bookmark = bkmark

rs.Close

conn.Close

%>	

The CacheSize Property

The CacheSize property sets or returns the number of records that are cached locally in memory. The value must be greater than 0. Default is 1.

If the CacheSize property is 10, the provider retrieves 10 records into local memory. When you move through the Recordset, the provider returns the data from the local memory buffer. When you move past the last record in the cache, the provider retrieves the next 10 records into the cache, and so on.

Syntax

rsobj.CacheSize	

The CursorLocation Property

The CursorLocation property sets or returns the location of the cursor service. Can take a CursorLocationEnum value.

A cursor is used to:

control record navigation

control the visibility of changes in the database

control the updatability of data

Note: A Recordset inherits this setting from the associated Connection.

Note: This property is read-only on an open Recordset, and read/write on a Connection or on a closed Recordset.

Syntax

connobj.CurserLocation

rsobj.CurserLocation	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation = adUseClient

rs.CursorType = adOpenStatic

rs.LockType = adLockBatchOptimistic

rs.Open sql, conn

%>	

The CursorType Property

The CursorType property sets or returns the cursor type of a Recordset. This property can take a CursorTypeEnum value. Default is adOpenForwardOnly.

Note: If the CursorLocation property is set to adUseClient, the only valid setting for the CursorType property is adOpenStatic.

Note: If an unsupported value is set, no error will occur, the closest supported CursorType will be used instead.

Syntax

rsobj.CurserType	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers"

rs.CursorLocation = adUseClient

rs.CursorType = adOpenStatic

rs.LockType = adLockBatchOptimistic

rs.Open sql, conn

%>	

The DataMember Property

The DataMember property sets or returns the name of the data member referenced by the DataSource property. The name is not case sensitive.

Syntax

rsobj.DataMember	

The DataSource Property

The DataSource property specifies an object containing data to be represented as a Recordset object

Syntax

rsobj.DataSource	

The EditMode Property

The EditMode property returns an EditModeEnum value that specifies the editing status of the current record.

Syntax

rsobj.EditMode	

Examples

1. GetRows

This example demonstrates how to use the GetRows method.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy

'The second number indicates what recordnumber to start on

p=rs.GetRows(2,0)

response.write("<p>This example returns the value of the first column in the first two records:</p>")

response.write(p(0,0))

response.write("
")

response.write(p(0,1))

response.write("<p>This example returns the value of the first three columns in the first record:</p>")

response.write(p(0,0))

response.write("
")

response.write(p(1,0))

response.write("
")

response.write(p(2,0))

rs.close

conn.close

%>

</body>

</html

Output

This example returns the value of the first column in the first two records:

ALFKI

ANTON

This example returns the value of the first three columns in the first record:

ALFKI

Alfreds Futterkiste

Maria Anders

27. 5. ADO Display

The most common way to display data from a recordset, is to display the data in an html table.

Display Records from a database

After a recordset is opened, we can display the data from the recordset on an HTML page.

Suppose we have a database named "Northwind", we can display the data from the "Customer" table with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

do until rs.EOF

for each x in rs.Fields

Response.Write(x.name)

Response.Write(" = ")

Response.Write(x.value & "
")

next

rs.MoveNext

loop

rs.close

conn.close

%>	

Display Records in a Table

We can also display the data from the "Customer" table inside an HTML table with the following lines:

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>

<table border="1" width="100%">

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td>

<%Response.Write(x.value)%>

</td>

<%

next

rs.MoveNext

%>

</tr>

<%loop rs.close conn.close %>

</table>	

Examples

1. Display Records

This example demonstrates how to first create a database connection, then create a recordset, and then display the data on an HTML page.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

do until rs.EOF

for each x in rs.Fields

Response.Write(x.name)

Response.Write(" = ")

Response.Write(x.value & "
")

next

Response.Write("
")

rs.MoveNext

loop

rs.close

conn.close

%>

</body>

</html>

Output

CustomerID = ALFKI

CompanyName = Alfreds Futterkiste

ContactName = Maria Anders

ContactTitle = Sales Representative

Address = Obere Str. 57

City = Berlin

PostalCode = 12209

Country = Germany

CustomerID = ANTON

CompanyName = Antonio Moreno Taquería

ContactName = Antonio Moreno

ContactTitle = Owner

Address = Mataderos 2312

City = México D.F.

PostalCode = 05023

Country = Mexico

CustomerID = BERGS

CompanyName = Berglunds snabbköp

ContactName = Christina Berglund

ContactTitle = Order Administrator

Address = Berguvsvägen 8

City = Luleå

PostalCode = S-958 22

Country = Sweden

CustomerID = BOTTM

CompanyName = Bottom-Dollar Markets

ContactName = Elizabeth Lincoln

ContactTitle = Accounting Manager

Address = 23 Tsawassen Blvd.

City = Tsawassen

PostalCode = T2F 8M4

Country = Canada

2. Display Records in a Table

This example demonstrates how to display the data from the database table in an HTML table.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

%>

<table border="1" width="100%">

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next

rs.MoveNext%>

</tr>

<%loop

rs.close

conn.close

%>

</table>

</body>

</html>

Output

Alfreds Futterkiste		Maria Anders	

Antonio Moreno Taquería	Antonio Moreno	

Berglunds snabbköp		Christina Berglund	

Bottom-Dollar Markets		Elizabeth Lincoln	

Centro comercial Moctezuma	Francisco Chang	

Drachenblut Delikatessen	Sven Ottlieb	

Ernst Handel			Roland Mendel	

FISSA Fabrica Inter. 		Salchichas S.A.	Diego Roel	

Galería del gastrónomo		Eduardo Saavedra	

Island Trading			Helen Bennett	

Königlich Essen		Philip Cramer	

Laughing Bacchus 		Wine CellarsYoshi Tannamuri	

3. Add Headers to the Table

This example demonstrates how to add headers to the HTML table to make it more readable.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers"

rs.Open sql, conn

%>

<table border="1" width="100%">

<tr>

<%for each x in rs.Fields

response.write("<th>" & x.name & "</th>")

next%>

</tr>

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next

rs.MoveNext%>

</tr>

<%loop

rs.close

conn.close

%>

</table>

</body>

</html>

Output

Companyname			Contactname	

Alfreds Futterkiste			Maria Anders	

Antonio Moreno Taquería		Antonio Moreno	

Berglunds snabbköp			Christina Berglund	

Bottom-Dollar Markets	Elizabeth 	Lincoln	

Centro comercial Moctezuma		Francisco Chang	

27. 6. ADO and SQL

With SQL, data to displayed in an HTML page can be filtered and sorted.

Display Selected Data

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers WHERE CompanyName LIKE 'A%'"

rs.Open sql, conn

%>

<table border="1" width="100%">

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next rs.MoveNext%>

</tr>

<%loop rs.close conn.close %>

</table>	

Sort the Data

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

sql="SELECT * FROM Customers ORDER BY CompanyName"

rs.Open sql, conn

%>

<table border="1" width="100%">

<%do until rs.EOF%> <tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next rs.MoveNext%> </tr>

<%loop rs.close conn.close %>

</table>	

Examples

1. Display Selected Records

This example demonstrates how to display data that matches a certain criteria.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers WHERE CompanyName LIKE 'A%'"

rs.Open sql, conn

%>

<table border="1" width="100%">

<tr>

<%for each x in rs.Fields

response.write("<th>" & x.name & "</th>")

next%>

</tr>

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next

rs.MoveNext%>

</tr>

<%loop

rs.close

conn.close

%>

</table>

</body>

</html>

Output

Companyname		Contactname	

Alfreds Futterkiste		Maria Anders	

Antonio Moreno Taquería	Antonio Moreno	

2. Sort Records

This example demonstrates how to sort the data on a specified fieldname.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

sql="SELECT Companyname, Contactname FROM Customers ORDER BY CompanyName"

rs.Open sql, conn

%>

<table border="1" width="100%">

<tr>

<%for each x in rs.Fields

response.write("<th>" & x.name & "</th>")

next%>

</tr>

<%do until rs.EOF%>

<tr>

<%for each x in rs.Fields%>

<td><%Response.Write(x.value)%></td>

<%next

rs.MoveNext%>

</tr>

<%loop

rs.close

conn.close

%>

</table>

</body>

</html>

Output

Companyname		Contactname	

Alfreds Futterkiste		Maria Anders	

Antonio Moreno Taquería	Antonio Moreno	

Berglunds snabbköp		Christina Berglund	

Centro comercial Moctezuma	Francisco Chang	

Drachenblut Delikatessen	Sven Ottlieb	

Ernst Handel			Roland Mendel	

27. 7. ADO Demonstration

Do demonstrate a small real life ADO application, we have put together a few ADO demos.

Listing Database Records

Listing database records

Coding

<html>

<head><title>List Database</title></head>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.provider="Microsoft.Jet.OLEDB.4.0;"

conn.open server.mappath("database.mdb")

set rs = Server.CreateObject("ADODB.Recordset")

rs.open "Select * from tblGuestBook" , conn

%>

<h2>List Database (click on button to edit)</h2>

<table border="1" width="100%">

<tr>

<%

for each x in rs.Fields

response.write("<th>" & x.name & "</th>")

next

%>

</tr>

<%do until rs.EOF%>

<tr>

<%

for each x in rs.Fields

if x.name="no" then%>

<form method="post" action="demo_db_edit.asp">

<td><input type="submit" name="no" value="<%=x.value%>"></td>

</form>

<%else%>

<td><%Response.Write(x.value)%></td>

<%end if

next

rs.MoveNext

%>

</tr>

<%

loop

rs.close

set rs=nothing

conn.close

set conn=nothing

%>

</table>

<p>Return</p>

<p>View source code</p>

</body>

</html>

Adding Database Records

Adding database records

Coding

<html>

<head>

<title>Add DataBase</title>

</head>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & server.mappath("database.mdb")

conn.open

set rs = Server.CreateObject("ADODB.Recordset")

rs.Open "tblGuestBook", conn , 1 , ,&H0002

%>

<h2>Adding Records</h2>

<form method="POST" action="demo_db_submit.asp">

<table>

<%

for each x in RS.Fields

if x.name <> "no" and x.name <> "dateadded" then%>

<tr>

<td><%=x.name%></td>

<td><input name="<%=x.name%>" value="N/A"></td>

<%

end if

next

%>

</tr></table>

<p><input type="SUBMIT" name="action" value="Add Record"> </p>

</form>

<p>Return</p>

<p>View source code.</p>

</body>

</html>

27. 8. ADO Objects

27. 8. 1 ADO Command Object

Command Object

The Command object is used to execute a query against a data source. The query can perform actions like creating, adding, retrieving, deleting or updating records. The Command object can also use stored queries and procedures with parameters.

Syntax

objectname.method

objectname.property	

Methods

Method		Description	

Cancel			Cancels an execution of a method	

CreateParameter	Creates a new Parameter object	

Execute		Executes the query, SQL statement or procedure in the CommandText

			property	

Properties

Property		Description	

ActiveConnection	Sets or returns a definition for a connection if the connection is closed,

			or the current Connection object if the connection is open	

CommandText		Sets or returns a provider command	

CommandTimeout	Sets or returns the number of seconds to wait while attempting to

			execute a command	

CommandType		Sets or returns the type of a Command object	

Name			Sets or returns the name of a Command object	

Prepared		Sets or returns a Boolean value that, if set to True, indicates that the

			command should save a prepared version of the query before the first

			execution	

State			Returns a value that describes if the Command object is open, closed,

			connecting, executing or retrieving data	

Collections

Collection		Description	

Parameters		Contains all the Parameter objects of a Command Object	

Properties		Contains all the Property objects of a Command Object	

Methods

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object		Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The CreateParameter Method

The CreateParameter method creates a new Parameter object with specified properties like name, type, direction, size, and value.

Syntax

Set parameter = commobjectname.CreateParameter (name, type, direction, size, value)	

Part		Description	

name 		Optional. The name of the Parameter object	

type 		Optional. The data type of the Parameter object 	

direction 	Optional. The type of Parameter object 	

size 		Optional. The max length for the parameter value (in characters or bytes)	

value 		Optional. The value of the Parameter object	

The Execute Method

The Execute method executes the query, SQL statement or procedure in the CommandText property.

Syntax

Set rs = command.Execute(recaffected, parameters, options)	

Part		Description	

recaffected 	Optional. Returns the number of records affected	

parameters 	Optional. Parameter values passed with an SQL statement 	

options 	Optional. Sets how the provider should evaluate the CommandText property.

		Can be one or more CommandTypeEnum or ExecuteOptionEnum values 	

The ActiveConnection Property

The ActiveConnection property tells which Connection object the Command object belongs to.

If the connection is closed, it sets or returns a definition for a connection. If the connection is open it sets or returns the current Connection object.

Syntax

commandobj.ActiveConnection	

The CommandText Property

The CommandText property sets or returns a string that contains a provider command, like a SQL statement, a table name, a relative URL, or a stored procedure call.

Syntax

commandobj.CommandText	

The CommandTimeout Property

The CommandTimeout property sets or returns the number of seconds to wait while attempting to execute a command, before canceling the attempt and generate an error. Default is 30.

Syntax

object.CommandTimeout	

The CommandType Property

The CommandType property sets or returns the type of a Command object. Can be one or more CommandTypeEnum values.

This property can be used to optimize evaluation of the CommandText property.

Syntax

commandobj.CommandType	

The Name Property

The Name property sets or returns the name of a Command, Property, Field, or Parameter object.

Syntax

object.Name	

The Prepared Property

The Prepared property sets or returns a Boolean value that, if set to True, indicates that the command should save a prepared version of the query specified in the CommandText property before execution. This could slow down the command's first execution, but after the first execution the provider will use the compiled version, which results in a faster execution.

Syntax

commandobj.Prepared = true_or_false	

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

object.State	

27. 8. 2 ADO Connection Object

ref to 3. ADO Database Connection

27. 8. 3 ADO Error Object

Error Object

The Error object contains details about data access errors that have been generated during a single operation.

ADO generates one Error object for each error. Each Error object contains details of the specific error, and are stored in the Errors collection. To access the errors, you must refer to a specific connection.

To loop through the Errors collection:

For Each ErrObj in ConnObj

Response.Write(ErrObj.Description & "
")

Next	

Syntax

objectname.property	

Properties

Property	Description	

Description	Returns an error description	

HelpContext	Returns a context ID from a help file	

HelpFile	Returns the full path to a help file	

NativeError	Returns an error code	

Number	Returns a unique number that identifies an Error object	

Source		Returns the name of an object or application that generated the error	

SQLState	Returns a SQL error code	

The Description Property

The Description property returns an error description.

Syntax

errobj.Description	

Example

<%

For Each err in Conn.Errors

Response.Write(err.Description & "
")

Next

%>	

The HelpContext Property

The HelpContext property returns a context ID from a Help file.

If a help file is specified in the HelpFile property, the HelpContext property is used to automatically display the Help topic it identifies.

Syntax

errobj.HelpContext	

Example

<%

For each err in conn.Errors

Response.Write("<p>HelpContext= ")

Response.Write(err.HelpContext & "</p>")

next

%>	

The HelpFile Property

The HelpFile property returns the full path to a help file.

If a help file is specified in the HelpFile property, the HelpContext property is used to automatically display the Help topic it identifies.

Syntax

errobj.HelpFile	

Example

<%

For each err in conn.Errors

Response.Write("<p>HelpFile= ")

Response.Write(err.HelpFile & "</p>")

next

%>	

The NativeError Property

The NativeError property returns an error code.

Syntax

errobj.NativeError	

Example

<%

For each err in conn.Errors

Response.Write("<p>NativeError= ")

Response.Write(err.NativeError & "</p>")

next

%>	

The Number Property

The Number property returns a unique number that identifies an Error object. The number may be one of these values.

Syntax

errobj.Number	

Example

<%

For each err in conn.Errors

Response.Write("<p>Error number: ")

Response.Write(err.Number & "</p>")

next

%>	

The Source Property

The Source property returns the name of the object or application that generated the error.

Syntax

errobj.Source	

Example

<%

For each err in conn.Errors

Response.Write("<p>Source: ")

Response.Write(err.Source & "</p>")

next

%>	

The SQLState Property

The SQLState property returns a 5 character SQL error code.

Syntax

errobj.SQLState	

Example

<%

For each err in conn.Errors

Response.Write("<p>SQL State: ")

Response.Write(err.SQLState & "</p>")

next

%>	

27. 8. 4 ADO Field Object

Field Object

The Field object contains information about a column in a Recordset. There is one Field object for each column in the Recordset.

Syntax

objectname.method

objectname.property	

Methods

Method	Description	

AppendChunk	Appends data to a Field object	

GetChunk	Returns a part or all of a Field object's long binary or character data	

Properties

Property	Description	

ActualSize	Returns the actual length of a field's value	

Attributes	Sets or returns the attributes of a Field object	

DefinedSize	Returns the defined size of a field	

Name		Sets or returns a the name of a Field object	

NumericScale	Sets or returns the number of decimal places allowed for numeric values in a

		Field object	

OriginalValue	Returns the original value of a field	

Precision	Sets or returns the maximum number of digits allowed when representing values

		in a numeric Field object	

Status		Returns the status of a Field object	

Type		Sets or returns the type of a Field object	

UnderlyingValue	Returns the database value of a field	

Value		Sets or returns the value of a Field object 	

Methods

The AppendChunk Method

The AppendChunk method is used to append data to an object to fill it with long binary or character data.

This method can divide long values into small portions, so if the system memory is limited and can't deal with long values, this method can be used.

Field object

You can use the AppendChunk method for a field if the Attributes property of a Field object is set to adFldLong.

Note that this method does not work on Field objects of a Record object.

Parameter object

You can use the AppendChunk method for a parameter if the Attributes property of a Parameter object is set to adFldLong.

Syntax

object.AppendChunk data	

Part	Description	

object 	A Field or Parameter object	

data 	The data to append 	

The GetChunk Method

The GetChunk method returns a part or all of a Field object's long binary or character data. The data returned is assigned to a variable.

This method can divide long values into small portions, so if the system memory is limited and can't deal with long values, this method can be used.

When the GetChunk method is called, it starts to retrieve data from where the previous GetChunk call ended, as long as you stay on the same field in the current record.

You can use the GetChunk method for a field if the Attributes property of a Field object is set to adFldLong.

Note: This method does not work on Field objects of a Record object.

Syntax

variable = field.GetChunk(size)	

Part	Description	

size 	The number of bytes or characters to be returned 	

Properties

The ActualSize Property

The ActualSize property returns the actual length of a field's value.

The Attributes Property

The Attributes property sets or returns the attributes of an object.

Note: When setting multiple attributes, it is possible to sum the values.

Syntax

object.Attributes	

Object		Description of the Attributes Property	

Connection 	The Attributes property is read/write. The value can be one or more

		XactAttributeEnum values. Default is 0	

Parameter 	The Attributes property is read/write. The value can be one or more

		ParameterAttributesEnum values. Default is adParamSigned 	

Field 		The Attributes property is normally read-only. The value can be one or more

		FieldAttributeEnum values 	

Property 	The Attributes property is read-only. The value can be one or more

		PropertyAttributesEnum values 	

The DefinedSize Property

The DefinedSize property returns the defined size of a field (in bytes).

The Name Property

The Name property sets or returns the name of a Command, Property, Field, or Parameter object.

Syntax

object.Name	

The NumericScale Property

The NumericScale property sets or returns how many digits to the right of the decimal point that will be used to represent numeric values in an object.

Syntax

object.NumericScale	

The OriginalValue Property

The OriginalValue property returns the original value of a field, before any changes were made.

There are two different update modes:

Immediate update mode - returns the field value that existed before the last Update method call

Batch update mode - returns the field value that existed before the last UpdateBatch method call

Syntax

fieldobj.OriginalValue	

The Precision Property

The Precision property sets or returns the maximum number of digits allowed when representing values in a numeric Parameter or Field object.

Syntax

objectname.Precision	

The Status Property

The Status property returns the status of a Field object.

It can be a FieldStatusEnum value. Default is adFieldOK.

This property always returns adFieldOK for fields of a Recordset object.

If any updates fail then an error is returned and the Status property indicates the combined values of the operation and error status code. The Status property for each Field can be used to determine why the Field was not added, modified, or deleted. Status is only meaningfully exposed on the Record.Fields collection and not the Recordset.Fields collection.

Syntax

fieldobj.Status	

The Type Property

The Type property sets or returns the type of an object.

Can be one of the DataTypeEnum values.

Parameter object - This property is read/write

Field object - This property is read/write, with one exception; for new Field objects that are added to the Fields collection of a Record, this property is read-only before the Value property has been set and before the provider has called the Update method of the Fields collection

Property object - This property is read-only

Syntax

objectname.Type	

The UnderlyingValue Property

The UnderlyingValue property returns the database value of a field.

Tip: This property can be used with the OriginalValue property to prevent update conflicts.

Syntax

fieldobj.UnderlyingValue	

The Value Property

The Value property sets or returns the value of an object.

Parameter object - This property sets or returns parameter values

Field object - This property sets or returns data. Note that for new Field objects that are added to the Fields collection of a Record, this property must be set before other Field properties

Property object - This property sets or returns property settings

Syntax

objectname.Value	

27. 8. 5 ADO Parameter Object

Parameter Object

The Parameter object contains information about a parameter used in a stored procedure or query.

Syntax

objectname.method

objectname.property	

Methods

Method	Description	

AppendChunk	Appends data to a Parameter object	

Delete		Deletes an object from the Parameters Collection	

Properties

Property	Description	

Attributes	Sets or returns the attributes of a Parameter object	

Direction	Sets or returns how a parameter is passed to or from a procedure	

Name		Sets or returns a the name of a Parameter object	

NumericScale	Sets or returns the number of decimal places allowed for numeric values in a

		Parameter object	

Precision	Sets or returns the maximum number of digits allowed when representing values

		in a Parameter object	

Size		Sets or returns the maximum size of a value in a Parameter object	

Type		Sets or returns the type of a Parameter object	

Value		Sets or returns the value of a Parameter object 	

Methods

The AppendChunk Method

The AppendChunk method is used to append data to an object to fill it with long binary or character data.

This method can divide long values into small portions, so if the system memory is limited and can't deal with long values, this method can be used.

Field object

You can use the AppendChunk method for a field if the Attributes property of a Field object is set to adFldLong.

Note that this method does not work on Field objects of a Record object.

Parameter object

You can use the AppendChunk method for a parameter if the Attributes property of a Parameter object is set to adFldLong.

Syntax

object.AppendChunk data	

Part	Description	

object 	A Field or Parameter object	

data 	The data to append 	

The Delete Method

The Delete method removes an object from the Parameters collection.

Note: This method works only with the Parameters collection of a Command object.

Syntax

parameterobj.Delete index	

Part	Description	

index 	The name or index of the object you want to delete	

Properties

The Attributes Property

The Attributes property sets or returns the attributes of an object.

Note: When setting multiple attributes, it is possible to sum the values.

Syntax

object.Attributes	

Object		Description of the Attributes Property	

Connection 	The Attributes property is read/write. The value can be one or more

		XactAttributeEnum values. Default is 0	

Parameter 	The Attributes property is read/write. The value can be one or more

		ParameterAttributesEnum values. Default is adParamSigned 	

Field 		The Attributes property is normally read-only. The value can be one or more

		FieldAttributeEnum values 	

Property 	The Attributes property is read-only. The value can be one or more

		PropertyAttributesEnum values 	

The Direction Property

The Direction property sets or returns how a parameter is passed to or from a procedure. Is it an input parameter, an output parameter, an input and an output parameter, or a return value from a procedure?

Can take a ParameterDirectionEnum value.

Syntax

parameterobj.Direction	

The Name Property

The Name property sets or returns the name of a Command, Property, Field, or Parameter object.

Syntax

object.Name	

The NumericScale Property

The NumericScale property sets or returns how many digits to the right of the decimal point that will be used to represent numeric values in an object.

Syntax

object.NumericScale	

The Precision Property

The Precision property sets or returns the maximum number of digits allowed when representing values in a numeric Parameter or Field object.

Syntax

objectname.Precision	

The Size Property

The Size property sets or returns the maximum size, in bytes or characters, of a value in a Parameter object.

Syntax

parameterobj.Size	

The Type Property

The Type property sets or returns the type of an object.

Can be one of the DataTypeEnum values.

Parameter object - This property is read/write

Field object - This property is read/write, with one exception; for new Field objects that are added to the Fields collection of a Record, this property is read-only before the Value property has been set and before the provider has called the Update method of the Fields collection

Property object - This property is read-only

Syntax

objectname.Type	

The Value Property

The Value property sets or returns the value of an object.

Parameter object - This property sets or returns parameter values

Field object - This property sets or returns data. Note that for new Field objects that are added to the Fields collection of a Record, this property must be set before other Field properties

Property object - This property sets or returns property settings

Syntax

objectname.Value	

27. 8. 6 ADO Property Object

Property Object

The Property object represents a dynamic characteristic of an ADO object that is defined by the provider.

Syntax

objectname.property	

Properties

Property	Description	

Attributes	Sets or returns the attributes of a Property object	

Name		Sets or returns a the name of a Property object	

Type		Returns the type of a Property object	

Value		Sets or returns the value of a Property object 	

Properties

The Attributes Property

The Attributes property sets or returns the attributes of an object.

Note: When setting multiple attributes, it is possible to sum the values.

Syntax

object.Attributes	

Object	Description of the Attributes Property	

Connection 	The Attributes property is read/write. The value can be one or more

		XactAttributeEnum values. Default is 0	

Parameter 	The Attributes property is read/write. The value can be one or more

		ParameterAttributesEnum values. Default is adParamSigned 	

Field 		The Attributes property is normally read-only. The value can be one or more

		FieldAttributeEnum values 	

Property 	The Attributes property is read-only. The value can be one or more

		PropertyAttributesEnum values 	

The Name Property

The Name property sets or returns the name of a Command, Property, Field, or Parameter object.

Syntax

object.Name	

The Type Property

The Type property sets or returns the type of an object.

Can be one of the DataTypeEnum values.

Parameter object - This property is read/write

Field object - This property is read/write, with one exception; for new Field objects that are added to the Fields collection of a Record, this property is read-only before the Value property has been set and before the provider has called the Update method of the Fields collection

Property object - This property is read-only

Syntax

objectname.Type	

The Value Property

The Value property sets or returns the value of an object.

Parameter object - This property sets or returns parameter values

Field object - This property sets or returns data. Note that for new Field objects that are added to the Fields collection of a Record, this property must be set before other Field properties

Property object - This property sets or returns property settings

Syntax

objectname.Value	

27. 8. 7 ADO Record Object

Record Object

The Record object is used to hold a row in a Recordset, or a directory or file in a file system.

Syntax

objectname.method

objectname.property	

Methods

Method	Description	

Cancel		Cancels an execution	

Close		Closes a Record object	

CopyRecord	Copies a file or directory	

DeleteRecord	Deletes a file or directory	

GetChildren	Returns a Recordset object where each row represents the files in the directory	

MoveRecord	Moves a file or a directory	

Open		Opens an existing Record object, creates a new file, or creates a new directory	

Properties

Property		Description	

ActiveConnection	Sets or returns a definition for a connection if the connection is closed,

			or the current Connection object if the connection is open	

Mode			Sets or returns the provider access permission	

ParentURL		Returns the absolute url of the parent Record	

RecordType		Returns the type of Record object	

Source			Returns the src argument of the Record object's Open method	

State			Returns a value describing if the Record object is open or closed	

Collections

Collection	Description	

Fields		Contains all the Field objects of a Record object	

Methods

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object		Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The Close Method

The Close method is used to close a Connection, a Record, a Recordset, or a Stream object to free system resources.

When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

object.Close	

The CopyRecord Method

The CopyRecord method copies a file or directory to another location.

Note: If the dest part specifies an existing file or directory, this method will fail. To prevent this, set the opt to adCopyOverWrite.

Syntax

CopyRecord(src, dest, username, psword, opt, async)	

Part		Description	

src 		Optional. The url of the file or directory that will be copied	

dest 		Optional. The url to the location where src will be copied 	

username 	Optional. The user ID that authorizes access to dest 	

psword 	Optional. The password that verifies username 	

opt 		Optional. A value that specifies the behavior of this method. Default is

		adCopyUnspecified 	

async 		Optional. A Boolean value that, when True, sets this operation to be

		asynchronous 	

The DeleteRecord Method

The DeleteRecord method deletes a file or directory.

Tip: Close the Record object after calling this method to prevent unpredictable behaviors of the Record.

Syntax

DeleteRecord(src, async)	

Part	Description	

src 	Optional. The url of the file or directory that will be deleted	

async 	Optional. A Boolean value that, when True, sets the delete operation to be

	asynchronous 	

The GetChildren Method

The GetChildren method returns a Recordset object where each row represents the files in the directory represented by this Record.

Syntax

Set recordsetobj = recordobj.GetChildren	

The MoveRecord Method

The MoveRecord method moves a file or directory to another location.

This method updates all links in the moved files.

Note: If the dest part specifies an existing file or directory, this method will fail. To prevent this, set the opt to adMoveOverWrite.

Syntax

MoveRecord(src, dest, username, psword, opt, async)	

Part		Description	

src 		Optional. The url of the file or directory that will be moved	

dest 		Optional. The url to the location where src will be moved 	

username 	Optional. The user ID that authorizes access to dest 	

psword 	Optional. The password that verifies username 	

opt 		Optional. A value that specifies the behavior of this method. Default is

		adMoveUnspecified 	

async 		Optional. A Boolean value that, when True, sets this operation to be

		asynchronous 	

The Open Method

The Open method opens an existing Record object, creates a new file, or creates a new directory.

Syntax Open(src, actconn, mode, createopt, opt, username, psword)	

Part		Description	

src 		Optional. A url of the entity to be represented by the Record object, or a row

		of an open Recordset object. src may be one of the following: An absolute url

		A relative url An open Recordset object. The Record object is the current row

		in the Recordset 	

actconn 	Optional. A connect string or open Connection object that specifies the context

		over which Record operations apply 	

mode 		Optional. An access mode for the resultant Record object. Default is

		adModeUnknown 	

createopt 	Optional. A value, that specifies whether an existing file or directory should be

		opened, or a new file or directory should be created. Default is

		adFailIfNotExists 	

opt 		Optional. A value, or a combination of values, that specifies the options for

		opening the Record. Default is adOpenRecordUnspecified 	

username 	Optional. The user ID that authorizes access to src 	

psword 	Optional. The password that verifies username 	

Example

1. Example - src is the url of a folder:

Set rec = Server.CreateObject("ADODB.record")

rec.Open "http://www.w3schools.com/ado/"

2. Example - src is a relative url in the open Connection object: Set conn=Server.CreateObject("ADODB.Connection")

Set rec = Server.CreateObject("ADODB.record")

conn.Open "URL=http://www.w3schools.com/ado/"

rec.Open "test.doc", conn

3. Example - src is a row in the open Recordset object: Set rs = Server.CreateObject("ADODB.recordset")

Set rec = Server.CreateObject("ADODB.record")

rs.Open "test.doc", "URL=http://www.w3schools.com/ado/",,,adCmdTableDirect

rs.MoveLast()

rec.Open rs 	

Properties

The ActiveConnection Property

The ActiveConnection property tells which Connection object the Record object belongs to.

If the connection is closed, it sets or returns a definition for a connection. If the connection is open it sets or returns the current Connection object.

Syntax

recobj.ActiveConnection	

The Mode Property

The Mode property sets or returns the permissions for modifying data in a Connection, Record, or Stream object.

Can take one of the ConnectModeEnum values.

Connection object - Default is adModeUnknown

Record object - Default is adModeRead

Stream object - Default is adReadOnly or adModeUnknown

Note: This property can be set only when the Connection object is closed.

Syntax

object.Mode	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Mode = adModeReadWrite

conn.Open "northwind"

%> 	

The ParentURL Property

The ParentURL property returns the absolute url of the parent Record.

The value of the ParentURL property depends on the src used to open the Record object:

Syntax

parent = recobj.ParentURL	

The RecordType Property

The RecordType property returns the type of Record object.

Can take a RecordTypeEnum value.

Syntax

rectype = recobj.RecordType	

The Source Property

The Source property returns the src argument of the Record object's Open method. The Source property can also hold a reference to an open Recordset, which opens a Record object that holds the current row in the Recordset.

This property is read/write when the Record object is closed, and read-only when the Record object is open.

Syntax

recobj.Source	

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

object.State	

27. 8. 8 ADO Recordset Object

Recordset Object

The Recordset Object is used to hold a set of records from a database table.

Syntax

objectname.method objectname.property	

Methods

Method		Description	

AddNew		Creates a new record	

Cancel			Cancels an execution	

CancelBatch		Cancels a batch update. Must happen in batch update mode	

CancelUpdate		Cancels any changes. Must be done before an Update	

Clone			Creates a copy of a Recordset	

Close			Closes a Recordset	

CompareBookmarks	Compares two bookmarks	

Delete			Deletes a record or a group of records	

Find			Searches for a record in a Recordset	

GetRows		Copies records into an array	

GetString		Returns a Recordset as a string	

Move			Moves the position of the current record	

MoveFirst		Moves to the first record	

MoveLast		Moves to the last record	

MoveNext		Moves to the next record	

MovePrevious		Moves to the previous record	

NextRecordset		Clears the current Recordset and returns the next Recordset	

Open			Opens a Recordset	

Requery		Updates the data in a Recordset by executing the query again	

Resync			Refreshes the data in the current Recordset from the original database	

Save			Saves the Recordset to a file	

Seek			Searches the index of a Recordset to locate the row that matches the

			specified values	

Supports		Defines whether or not a Recordset supports a specific type of

			functionality	

Update			Saves any changes of the current record	

UpdateBatch		Saves all changes in a Recordset to the database. Used when working

			on a Recordset in batch update mode	

Properties

Property		Description	

AbsolutePage		Specifies on which page the current record is located	

AbsolutePosition	Specifies the ordinal position of the current record in a Recordset	

ActiveCommand	Returns the Command Object associated with the Recordset	

ActiveConnection	Sets or returns a definition for a connection if the connection is closed,

			or the current Connection object if the connection is open	

BOF			Returns true if the current record position is before the first record,

			otherwise false	

Bookmark		Sets or returns a bookmark. The bookmark saves the position of the

			current record	

CacheSize		Sets or returns the number of records that are cached	

CursorLocation		Sets or returns the location of the cursor service	

CursorType		Sets or returns the type of cursor	

DataMember		Sets or returns the name of the data member referenced by the

			DataSource property	

DataSource		Specifies an object containing data to be represented as a Recordset

			object	

EditMode		Defines the editing status of the current record	

EOF			Returns true if the current record position is after the last record,

			otherwise false	

Filter			Sets or returns a filter for the data in the Recordset	

Index			Sets or returns the name of the index in effect	

LockType		Sets or returns the type of locking on records	

MarshalOptions	Sets or returns which records are to be transferred back to the server	

MaxRecords		Sets or returns the maximum number of records to return to a

			Recordset object from a query	

PageCount		Returns the number of pages in a Recordset object	

PageSize		Sets or returns how many records are on one page	

RecordCount		Returns how many records there are in a Recordset object	

Sort			Specifies a comma-separated list of field names the Recordset is sorted

			on	

Source			Indicates the source for the data in a Recordset object	

State			Indicates if the Recordset object is open, closed or executing	

Status			Indicates the status of the current record	

StayInSync		Indicates whether the parent row should change when set of underlying

			child records changes	

Events

Event	Description	

EndOfRecordset	Triggered when you try to move to a record after the last record	

FetchComplete		Triggered after all records in an asynchronous operation have been

			fetched	

FetchProgress		Triggered periodically in an asynchronous operation, to state how many

			more records that have been fetched 	

FieldChangeComplete	Triggered after the values of one or more Field objects have been

			changed	

MoveComplete		Triggered after the current position in the Recordset has changed	

RecordChangeComplete	Triggered after one or more records have been changed	

RecordsetChangeComplete	Triggered after the Recordset has changed	

WillChangeField	Triggered before the values of one or more Field objects are changing	

WillChangeRecord	Triggered before one or more record changes	

WillChangeRecordset	Triggered before the Recordset changes	

WillMove		Triggered before the current position in the Recordset changes	

Collections

Collection	Description	

Fields		Contains all the Field objects of the Recordset object	

Properties	Contains all the Property objects of the Recordset object	

Methods

The AddNew Method

The AddNew method creates a new record for an updateable Recordset object.

After you call this method, the new record will be the current record.

Syntax

recordsetobj.AddNew fieldlist, values	

Part		Description	

fieldlist 	Optional. A name, or an array of names or ordinal positions of the fields in the

		new record 	

values 		Optional. A value, or an array of values for the fields in the new record 	

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object	Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The CancelBatch Method

The CancelBatch method cancels a batch update. Must happen in batch update mode.

Syntax

recordsetobj.CancelBatch affectrec	

Part		Description	

affectrec 	Optional. A value that specifies how many records this method will affect 	

The CancelUpdate Method

The CancelUpdate method cancels any changes made to the new row, current row, or the Fields collection. Must be done before calling the Update method.

Recordset object

Use this method to cancel any changes made to the current row or to delete a newly added row.

Record object

Use this method to cancel any changes of Field objects, and to cancel updates of existing fields.

Syntax

recordsetobj.CancelUpdate recordobj.Fields.CancelUpdate	

The Clone Method

The Clone method creates a copy of a Recordset object and returns a Recordset object reference.

Syntax

Set rscopy = rsoriginal.Clone(locktype)	

Part		Description	

rscopy		The duplicate Recordset object to be created	

rsoriginal	The Recordset object to be duplicated	

locktype	Optional. A value that specifies the lock type of the original Recordset, or a read-only 	Recordset. The valid values are adLockUnspecified or adLockReadOnly	

The Close Method

The Close method is used to close a Connection, a Record, a Recordset, or a Stream object to free system resources.

When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

object.Close	

The CompareBookmarks Method

The CompareBookmarks method compares two bookmarks. This method returns a value that indicates the bookmark's relative values.

Note: The two bookmarks must be within the same Recordset object, or within a Recordset object and its clone.

Syntax

result = recordsetobj.CompareBookmarks(bookmark1, bookmark2)	

Part		Description	

bookmark1	The bookmark of the first row	

bookmark2	The bookmark of the second row	

The Delete Method

The Delete method is used to delete the current record or a group of records.

Note: To use this method assure that the Recordset object allows record deletion.

Syntax

recordsetobj.Delete affectrecords	

Part		Description	

affectrecords	A value that specifies how many records this method will affect. Default is

		adAffectCurrent. Note that the values adAffectAll and adAffectAllChapters are

		not valid arguments to this method	

The Find Method

The Find method searches for a record in a Recordset that satisfies a specified criteria.

Note: A current row position must be set before calling this method.

Syntax

recordsetobj.Find(criteria, skiprows, direction, start)	

Part		Description	

criteria		The column name, comparison operator, and value to use in the search.

		Example: "country='Norway'", "date > #7/22/97#" and "country like N*"

skiprows	Optional. Specifies the row offset from the current row or start bookmark to

		begin the search	

direction	Optional. A value that specifies if the search should begin on the current record

		or on the next record in the direction of the search	

start		Optional. The starting position for the search	

The GetRows Method

The GetRows method copies multiple records into a two-dimensional array.

Syntax

vararray = recordsetobj.GetRows(rows, start, fields)	

Part		Description	

rows		Optional. The number of rows to retrieve. Default is adGetRowsRest (or -1),

		which copies the rest of the records in the Recordset If you omit this argument,

		this method will retrieve all the records in the Recordset. If you specify more

		records than are available, this method will return only the number of available

		records	

start		Optional. What record to start on. It can be a number or a BookmarkEnum

		value	

fields		Optional. If you want to specify only the fields that the GetRows call will return,

		it is possible to pass a single field name/number or an array of field

		names/numbers in this argument 	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy

'The second number indicates what recordnumber to start on p=rs.GetRows(2,0)

'This example returns the value of the first

'column in the first two records

response.write(p(0,0))

response.write("
")

response.write(p(0,1))

'This example returns the value of the first

'three columns in the first record

response.write(p(0,0))

response.write("
")

response.write(p(1,0))

response.write("
")

response.write(p(2,0))

rs.close

conn.close

%>	

The GetString Method

The GetString method returns a Recordset as a string.

Syntax

Set var = recordsetobj.GetString (format, num, coldel, rowdel, nullexpr)	

Part		Description	

format		Specifies how the Recordset should be converted to a string. Can be a StringFormatEnum value. coldel, rowdel, and nullexpr are used only if format is adClipString	

num		Optional. The number of rows to be converted in the Recordset	

coldel		Optional. If specified it is s a column delimiter. Otherwise it is the tab character 	

rowdel		Optional. If specified it is a row delimiter. Otherwise it is the carriage return

		character 	

nullexpr	Optional. If specified it is an expression used instead of a null value. Otherwise

		an empty string 	

The Move Method

The Move method moves the current record in a Recordset object.

Note: This method can be used on all Recordset objects.

Syntax

recordsetobj.Move numrec, start	

Part		Description	

numrec	Specifies where to move the current record. This value must be of data type Long. 		Example: If this argument is 3, the current record moves 3 records forward.

		Example: If this argument is -3, the current record moves 3 records backward

start		Optional. Specifies where to start; can be a String value, a Variant that

		evaluates to a bookmark, or a BookmarkEnum value	

The MoveFirst, MoveLast, MoveNext, MovePrevious Method

The MoveFirst method moves to the first record in a Recordset.

The MoveLast method moves to the last record in a Recordset.

The MoveNext method moves to the next record in a Recordset.

The MovePrevious method moves to the previous record in a Recordset.

Syntax

recordsetobj.MoveFirst

recordsetobj.MoveLast

recordsetobj.MoveNext

recordsetobj.MovePrevious	

The NextRecordset Method

The NextRecordset method clears the current Recordset and returns the next Recordset.

Note: Recordset1 and recordset2 can be the same Recordset object.

Tip: Use this method to return the result of the next command, or the next result of a stored procedure that returns multiple results.

Syntax

Set recordset2 = recordset1.NextRecordset(recordsaffected)	

Part			Description	

recordsaffected	Optional. Returns the number of records affected 	

The Open Method

The Open method opens a opens a Recordset that holds records from a table, from a query, or from a saved Recordset.

Tip: Always close the Recordset object (with the Close method) after using it; to free system resources. Set the object to Nothing, to completely eliminate it from memory.

Syntax

recordsetobj.Open src, actconn, cursortyp, locktyp, opt	

Part		Description	

src 		Optional. Specifies a data source	

actconn 	Optional. Specifies in which connection to open the Recordset. Can be a

		Connection object variable name, or ConnectionString parameters 	

cursortyp 	Optional. Specifies the type of cursor. Can be a CursorTypeEnum value.

		Default is adOpenForwardOnly 	

locktyp 	Optional. Specifies the type of locking. Can be a LockTypeEnum value. Default

		is adLockReadOnly 	

opt 		Optional. Specifies how to evaluate the src argument if it is not a Command

		object, or specifies that the Recordset should be restored from a file where it

		was saved. Can be one or more CommandTypeEnum or ExecuteOptionEnum

		values. Default is adCmdFile 	

Example

Create an ADO Table Recordset:

<% set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn %>

Create an ADO SQL Recordset:

<% set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn %>	

The Requery Method

The Requery method updates the data in a Recordset by executing the query again.

Tip: Use this method to refresh the contents of a Recordset.

Syntax

recordsetobj.Requery options	

Part		Description	

options 	Optional. Specifies how to execute this command. Can be an

		ExecuteOptionEnum value	

The Resync Method

The Resync method refreshes the data in a Recordset from the original database.

Tip: Use this method to resynchronize the Recordset with the database. If you want to see changes in the database and you are using a static or forward-only Recordset this method is useful.

Note: This method does not re-execute the Recordset, so new records in the database will be invisible.

Syntax

recordsetobj.Resync affectrecords, resyncvalues	

Part		Description	

affectrecords 	Optional. Specifies how many records this method will affect. Can be an

		AffectEnum value. Default is adAffectAll	

resyncvalues 	Optional. Specifies if underlying values are overwritten. Can be a ResyncEnum

		value. Default is adResyncAllValues	

The Save Method

The Save method saves the Recordset in a file or Stream object.

Syntax

recordsetobj.Save destination, persistformat	

Part		Description	

destination 	Optional. Specifies where to save the Recordset (the path name of a file), or a

		reference to a Stream object	

persistformat 	Optional. Specifies the format of the Recordset (XML or ADTG). Can be a

		PersistFormatEnum value. Default is adPersistADTG (0)	

Example

You can save a Recordset in XML format:

<% set xmlDoc=CreateObject("Microsoft.XMLDOM")

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

'Save the Recordset into a DOM tree

rs.Save xmldoc, 1 %>	

The Seek Method

The Seek method searches the index of a Recordset to locate the row that matches some specified values.

Syntax

recordsetobj.Seek keyvalues, seekoption	

Part		Description	

keyvalues 	Specifies an array of values	

seekoption 	Specifies the type of comparison to be made between the columns of the index

		and the corresponding keyvalues. Can be a SeekEnum value	

The Supports Method

The Supports method Defines whether or not a Recordset supports a specific type of functionality.

This method returns True if the features identified by the cursoroptions argument are supported, False if not.

Syntax

recordsetobj.Supports(cursoroptions)	

Part		Description	

cursoroptions 	Specifies what functionality this method should test for. Can be one or more

		CursorOptionEnum values	

The Update Method

The Update method saves any changes of the current record in a Recordset.

Note: This method will not work if the Recordset object does not support updates.

Syntax

recordsetobj.Update fields, values	

Part	Description	

fields 	Optional. Specifies a single field name, or an array containing field names or field

	positions you wish to update	

values 	Optional. Specifies a single value, or an array containing values for the field or fields in

	the new record	

The UpdateBatch Method

The UpdateBatch method saves all changes in a Recordset to the database. This method is used when you are working on a Recordset in batch update mode.

If the save operation fails, a run-time error occurs and the errors are stored in the Errors collection. To locate records with errors, use the Filter property and the Status property.

Tip: The CancelBatch method cancels all batch updates.

Note: Not all Recordset objects supports batch updating.

Syntax

recordsetobj.UpdateBatch affectrecords	

Part		Description	

affectrecords 	Optional. Specifies which records this method will affect. Can be an

		AffectEnum value. Note: If you specify the value adAffectGroup it will

		generate an error when there are no visible records in the current Recordset	

Properties

ref 27. 4. ADO Recordset Properties

Events

The EndOfRecordset Event

The EndOfRecordset event is triggered when you try to move to a record after the last record in a Recordset.

Note: This event can occur if the MoveNext operation fails.

Syntax

EndOfRecordset moredata, status, rsobj	

Part		Description	

moredata 		

status 		An EventStatusEnum status value. This parameter is set to adStatusOK if the

		operation that caused the event was successful 	

rsobj 		The name of the Recordset Object that triggered this event 	

The FetchComplete Event

The FetchComplete event is triggered after all the records in an asynchronous operation have been fetched into the Recordset.

Syntax

FetchComplete errobj, status, rsobj	

Part		Description	

errobj 		The name of an Error object that describes the error if status is set to

		adStatusErrorsOccurred, otherwise it is not set 	

status 		An EventStatusEnum value. This parameter is set to adStatusOK if the

		operation that caused this event was successful, or to adStatusErrorsOccurred 		if it failed 	

rsobj 		The name of the Recordset Object where the records were fetched 	

The FetchProgress Event

The FetchProgress event is triggered periodically in an asynchronous operation, to state how many more records that have been fetched into the Recordset.

Syntax

FetchProgress progress, maxprogress, status, rsobj	

Part		Description	

progress 	The number of records that have been fetched by the operation 	

maxprogress 	The maximum number of records that are expected to be fetched 	

status 		An EventStatusEnum status value that specifies the status of the execution 	

rsobj 		The name of the Recordset Object where the records were fetched 	

The FieldChangeComplete Event

The FieldChangeComplete event is triggered after the values of one or more Field Objects have been changed.

Syntax

FieldChangeComplete numfields, fields, errobj, status, rsobj	

Part		Description	

numfields 	The number of Field Objects in fields 	

fields 		An array that contains Field Objects with changes 	

errobj 		The name of an Error object that describes the error if status is set to

		adStatusErrorsOccurred, otherwise it is not set 	

status 		An EventStatusEnum value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusErrorsOccurred if it failed 	

rsobj 		The name of the Recordset Object that triggered this event 	

The MoveComplete Event

The MoveComplete event is triggered after the current position in the Recordset has changed.

Syntax

MoveComplete reason, errobj, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnMoveFirst,

		adRsnMoveLast, adRsnMoveNext, adRsnMovePrevious, adRsnMove, or

		adRsnRequery 	

errobj 		The name of an Error object that describes the error if status is set to

		adStatusErrorsOccurred, otherwise it is not set 	

status 		An EventStatusEnum value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusErrorsOccurred if it failed. Set this parameter to

		adStatusUnwantedEvent to avoid subsequent notifications, before

		MoveComplete returns 	

rsobj 		The name of the Recordset Object that triggered this event 	

The RecordChangeComplete Event

The RecordChangeComplete event is triggered after one or more record have been changed.

Syntax

RecordChangeComplete reason, numrec, errobj, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnAddNew, adRsnDelete,

		adRsnUpdate, adRsnUndoUpdate, adRsnUndoAddNew, adRsnUndoDelete,

		or adRsnFirstChange 	

numrec 	The number of records that have been changed 	

errobj 		The name of an Error object that describes the error if status is set to

		adStatusErrorsOccurred, otherwise it is not set 	

status 		An EventStatusEnum value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusErrorsOccurred if it failed 	

rsobj 		The name of the Recordset Object that triggered this event 	

The RecordsetChangeComplete Event

The RecordsetChangeComplete event is triggered after a Recordset has changed.

Note: This event can occur when calling the Requery method or the Open method.

Syntax

RecordsetChangeComplete reason, errobj, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnRequery, adRsnResynch,

		adRsnClose, adRsnOpen 	

errobj 		The name of an Error object that describes the error if status is set to

		adStatusErrorsOccurred, otherwise it is not set 	

status 		An EventStatusEnum status value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, to

		adStatusErrorsOccurred if it failed, and to adStatusCancel if the operation

		associated with the WillChangeRecordset event is canceled 	

rsobj 		The name of the Recordset Object that triggered this event 	

The WillChangeField Event

The WillChangeField event is triggered before the values of one or more Field Objects are changing.

Syntax

WillChangeField numfields, fields, status, rsobj	

Part		Description	

numfields 	The number of Field Objects in fields 	

fields 		An array that contains Field Objects with changes 	

status 		An EventStatusEnum value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful 	

rsobj 		The name of the Recordset Object that triggered this event 	

The WillChangeRecord Event

The WillChangeRecord event is triggered before one or more record changes.

Syntax

WillChangeRecord reason, numrec, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnAddNew, adRsnDelete,

		adRsnUpdate, adRsnUndoUpdate, adRsnUndoAddNew, adRsnUndoDelete,

		or adRsnFirstChange 	

numrec 	The number of records changing 	

status 		An EventStatusEnum status value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusCantDeny if this event cannot cancel the operation 	

rsobj 		The name of the Recordset Object that triggered this event 	

The WillChangeRecordset Event

The WillChangeRecordset event is triggered before an operation changes the Recordset.

Note: This event can occur when calling the Requery method or the Open method.

Syntax

WillChangeRecord reason, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnRequery, adRsnResynch,

		adRsnClose, adRsnOpen 	

status 		An EventStatusEnum status value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusCantDeny if this event can not cancel the operation 	

rsobj 		The name of the Recordset Object that triggered this event 	

The WillMove Event

The WillMove event is triggered before an operation changes the current position in the Recordset.

Syntax

WillMove reason, status, rsobj	

Part		Description	

reason 		An EventReasonEnum value that specifies the reason for this event. This

		parameter can take one of the following values: adRsnMoveFirst,

		adRsnMoveLast, adRsnMoveNext, adRsnMovePrevious, adRsnMove, or

		adRsnRequery 	

status 		An EventStatusEnum status value that specifies the status of the execution. This

		parameter is set to adStatusOK if the operation was successful, or to

		adStatusCantDeny if this event cannot cancel the operation. Set this parameter

		to adStatusCancel to request cancellation of the operation, before the WillMove

		event returns 	

rsobj 		The name of the Recordset Object that triggered this event 	

Examples

GetRows

This example demonstrates how to use the GetRows method.

Coding

<html>

<body>

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("northwind.mdb"))

set rs = Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

'The first number indicates how many records to copy

'The second number indicates what recordnumber to start on

p=rs.GetRows(2,0)

response.write("<p>This example returns the value of the first column in the first two records:</p>")

response.write(p(0,0))

response.write("
")

response.write(p(0,1))

response.write("<p>This example returns the value of the first three columns in the first record:</p>")

response.write(p(0,0))

response.write("
")

response.write(p(1,0))

response.write("
")

response.write(p(2,0))

rs.close

conn.close

%>

</body>

</html>

Output

This example returns the value of the first column in the first two records:

ALFKI

ANTON

This example returns the value of the first three columns in the first record:

ALFKI

Alfreds Futterkiste

Maria Anders

27. 8. 8 ADO Stream Object

Stream Object

The Stream Object is used to hold a stream of text or binary data.

Syntax

objectname.method

objectname.property	

Methods

Method	Description	

Cancel		Cancels an execution of an Open call	

Close		Closes a Stream object	

CopyTo(deststream, numchars)	Copies a specified number of characters or bytes from

		one Stream object to another Stream object	

Flush(filename)	Sends the contents of the Stream object to the underlying object	

LoadFromFile(filename)	Loads the contents of a file into a Stream object	

Open(source, mode, openoptions, username, password)	Opens a Stream object from a

		URL or Record object	

Read(numbytes)	Reads a specified number of bytes from a binary Stream object	

ReadText(numchars)	Reads a specified number of characters from a text Stream object	

SaveToFile(filename, saveoptions)	Saves the contents of a Stream object to a file	

SetEOS	Sets the value of the EOS property to the current position	

SkipLine	Skips a line when reading a text stream	

Write(buffer)	Writes a specified number of bytes of binary data to a Stream object	

WriteText(data, options)	Writes a specified text string to a Stream object	

Properties

Property	Description	

CharSet	Sets or returns a value that specifies into which character set the contents are to

		be translated	

EOS		Returns True if the current position is at the end of the stream, false if not	

LineSeparator	Sets or returns which binary character to use as the line separator in a text

		Stream object	

Mode		Sets or returns the available permissions for modifying data	

Position	Sets or returns the current position from the beginning of the stream	

Size		Returns the size of a Stream object	

State		Returns a value describing if the Stream object is open or closed	

Type		Sets or returns a value defining if the data is binary or text	

Methods

The Cancel Method

The Cancel method cancels the execution of a method call.

Syntax

object.Cancel	

The Cancel method terminates different tasks for each object. The table below shows what task is terminated when the Cancel method is called:

Object	Terminated method	

Command 	Execute	

Connection 	Execute or Open 	

Record 	CopyRecord, DeleteRecord, MoveRecord, or Open 	

Recordset 	Open 	

Stream 		Open 	

The Close Method

The Close method is used to close a Connection, a Record, a Recordset, or a Stream object to free system resources.

When an object is closed, it will not be removed from the memory. It is possible to change the property settings and open it again later.

Syntax

object.Close	

Properties

The Mode Property

�

The Mode property sets or returns the permissions for modifying data in a Connection, Record, or Stream object.

Can take one of the ConnectModeEnum values.

Connection object - Default is adModeUnknown

Record object - Default is adModeRead

Stream object - Default is adReadOnly or adModeUnknown

Note: This property can be set only when the Connection object is closed.

Syntax

object.Mode	

Example

<%

set conn=Server.CreateObject("ADODB.Connection")

conn.Mode = adModeReadWrite

conn.Open "northwind"

%> 	

The State Property

The State property returns a value that describes if the object is open, closed, connecting, executing or retrieving data. The value returns an ObjectStateEnum value. Default is adStateClosed.

The State property can have a combination of values. If a statement is executing, this property will have a combined value of adStateOpen and adStateExecuting.

Syntax

object.State	

