Welcome to XML DOM School

XML DOM School

At XML DOM School you will learn what DOM is. The XML DOM is a programming interface for XML documents. It defines the way an XML document can be accessed and manipulated.Start Learning DOM!

XML DOM Objects Reference

At W3Schools you will find complete DOM objects reference, with all the objects and their properties and methods. DOM References.

XML DOM Examples

Learn by 50 examples! With our editor, you can edit the source, and click on a test button to view the result. Try-It-Yourself!

DOM Resources

A list of important DOM resources found on the Internet. DOM Resources

Table of Contents

Introduction to the XML DOM

An introduction to the XML Document Object Model.

Parsing the DOM

How to parse XML Document Objects using Microsoft XML Parser.

Parsing Errors

The parseError object and its properties. How to test for valid XML and display the error.

XML Validator

The parseError object is used to create a validator for xml files.

Accessing the DOM

How to access the elements of an XML Document.

HttpRequest

The httpRequest object and its properties and methods.

XML DOM Objects

The Node Types

Description of the node types, with examples.

The Node Object

Properties and methods of the node object, with examples,

The NodeList Object

Properties and methods of the nodeList object, with examples.

The Document Object

Properties and methods of the document object, with examples.

The Element Object

Properties and methods of the element object, with examples.

The Attr Object

Properties of the attr object, with examples.

The Text Object

Method of the text object, with examples.

The CDATASection Object

Description of the CDATASection object, with examples.

The Comment Object

Description of the comment object, with examples.

XML DOM Examples

DOM Examples

Lots of DOM Examples !!!

DOM Resources

DOM Resources

A list of important DOM resources found on the Internet.

Introduction to the XML DOM

The XML Document Object Model (DOM) is a programming interface for XML documents. It defines the way an XML document can be accessed and manipulated.

Introduction

As a W3C specification, the objective for the XML DOM has been to provide a standard programming interface to a wide variety of applications. The XML DOM is designed to be used with any programming language and any operating system.

With the XML DOM, a programmer can create an XML document, navigate its structure, and add, modify, or delete its elements.

The Node Interface

As you will see in the next section, a program called an XML parser can be used to load an XML document into the memory of your computer. When the document is loaded, its information can be retrieved and manipulated by accessing the DOM.

The DOM represents a tree view of the XML document. The documentElement is the top-level of the tree. This element has one or many childNodes that represent the branches of the tree.

A Node Interface Model is used to access the individual elements in the node tree. As an example, the childNodes property of the documentElement can be accessed with a for/each construct to enumerate each individual node.

The Microsoft XML parser supports all the necessary functions to traverse the node tree, access the nodes and their attribute values, insert and delete nodes, and convert the node tree back to XML.

Most of the parser functions, demonstrated in this school, are from the W3C XML DOM recommendation, apart from the document load and error functions. (Believe it or not: The official DOM does not include standard functions for loading XML documents !!)

The following table lists the most commonly used node types supported by the Microsoft XML parser:

Node Type			Example	

Document type			<!DOCTYPE food SYSTEM "food.dtd">	

Processing instruction		<?xml version="1.0"?>	

Element			<drink type="beer">Carlsberg</drink>	

Attribute			 type="beer"	

Text			 	 Carlsberg	

Parsing the DOM

The Microsoft XML parser is a COM component that comes with Microsoft Internet Explorer 5.0. Once you have installed IE 5.0, the parser is available to scripts inside HTML documents and ASP files.

The Microsoft XML Parser

To read and update - create and manipulate - an XML document, you need an XML parser.

The Microsoft XMLDOM parser features a programming model that:

Supports JavaScript, VBScript, Perl, VB, Java, C++ and more

Supports W3C XML 1.0 and XML DOM

Supports DTD and validation

If you are using JavaScript in IE 5.0, you can create an XML document object with the following code:

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")	

If you are using VBScript you create an XML document object with the following code:

set xmlDoc = CreateObject("Microsoft.XMLDOM")	

If you are using VBScript in an Active Server Page (ASP), you can use the following code:

set xmlDoc = Server.CreateObject("Microsoft.XMLDOM")	

Loading an XML file into the parser

The following code loads an existing XML document (note.xml) into the XML parser:

<script language="JavaScript">

 var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

 xmlDoc.async="false" xmlDoc.load("note.xml")

// processing the document goes here

</script>	

The first line of the script creates an instance of the Microsoft XML parser. The third line tells the parser to load an XML document called note.xml. The second line assures that the parser will halt execution until the document is fully loaded.

Loading pure XML text into the parser

The following code loads a text string into the XML parser:

<script language="JavaScript">

 var text="<note>" text=text+"<to>Tove</to><from>Jani</from>" text=text+"<heading>Reminder</heading>"

text=text+"<body>Don't forget me this weekend!</body>" text=text+"</note>"

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.loadXML(text)

// processing the document goes here

</script>	

Note that the "loadXML" method (instead of the "load" method) is used to load a text string.

Parser Errors

The parseError object can be used to extract error information from the Microsoft XML parser.

The parseError Object

If you try to open an XML document, the XML Parser might generate an error. By accessing the parseError object, the exact error code, the error text, and even the line that caused the error can be retrieved.

The parseError object is not a part of the W3C DOM standard.

File Error

With this code we can try to load a non existing file, and display some of its error properties:

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("ksdjf.xml")

document.write("
Error Code: ") document.write(xmlDoc.parseError.errorCode)

document.write("
Error Reason: ") document.write(xmlDoc.parseError.reason)

document.write("
Error Line: ") document.write(xmlDoc.parseError.line)	

XML Error

With this code we let the parser load an XML document that is not well formed.

(You can study more about Well Formed and Valid XML at our XML School)

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false" xmlDoc.load("note_error.xml") document.write("
Error Code: ") document.write(xmlDoc.parseError.errorCode)

document.write("
Error Reason: ") document.write(xmlDoc.parseError.reason)

document.write("
Error Line: ") document.write(xmlDoc.parseError.line)	

The parseError Properties

Property			Description	

errorCode			Returns a long integer error code	

reason				Returns a string explaining the reason for the error	

line				Returns a long integer representing the line number for the error	

linePos				Returns a long integer representing the line position for the error	

srcText				Returns a string containing the line that caused the error	

url				Returns the url pointing the loaded document	

filePos				Returns a long integer file position of the error	

DOM Validate XML

Validating your XML

To help you validate your xml, we have used The Microsoft's XML parser to create an xml validator. Paste your xml in the text area, and validate it by pressing the validate button

<?xml version="1.0" ?>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</HEADING>

<body>Don't forget me this weekend!</body>

</note>

Validating your XML file

You can also validate your xml files, simply by typing the url of your xml file and press the submit button

File Name: http://www.w3schools.com/dom/note_error.xml

If you want to validate an error free XML file you can paste this address into the name field: http://www.w3schools.com/dom/cd_catalog.xml

NOTE: If you get an error message saying "Access denied" when accessing this file, it is because your Internet Explorer security setting do not allow access across domains.

Accessing the DOM

XML elements can be extracted from an XML document by traversing the node tree, by accessing the elements by number, or by accessing the elements by name.

Traversing the node tree

One common way to extract XML elements from an XML document is to traverse the node tree and extract the text value of each element. A small snippet of programming code like a VBScript for/each construct can be written to demonstrate this.

The following VBScript code traverses an XML node tree, and displays the XML elements in the browser:

set xmlDoc=CreateObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("note.xml")

for each x in xmlDoc.documentElement.childNodes document.write(x.nodename)

document.write(": ")

document.write(x.text)

next	

Providing HTML content from XML files

One of the great promises of XML is the possibility to separate HTML documents from their data. By using an XML parser inside the browser, an HTML page can be constructed as a static document, with an embedded JavaScript to provide dynamic data.

The following JavaScript reads XML data from an XML document and writes the XML data into (waiting) HTML elements.

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("note.xml")

nodes = xmlDoc.documentElement.childNodes

to.innerText = nodes.item(0).text

from.innerText = nodes.item(1).text

header.innerText = nodes.item(2).text

body.innerText = nodes.item(3).text	

Accessing XML elements by name

Addressing elements by number is not the preferred way to extract XML elements from an XML document. Using names is a better way.

The following JavaScript reads XML data from an XML document and writes the XML data into (waiting) HTML elements.

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("note.xml")

to.innerText= xmlDoc.getElementsByTagName("to").item(0).text from.innerText= xmlDoc.getElementsByTagName("from").item(0).text header.innerText= xmlDoc.getElementsByTagName("heading").item(0).text body.innerText= xmlDoc.getElementsByTagName("body").item(0).text	

Important: Make sure that you notice that the text element of a node is the child node of the element. To extract the text (Jani) from an element like this: <from>Jani</from>, you must address the child node like this: getElementsByTagName("from").item(0).text, and not like this: getElementsByTagName("from").text

The HttpRequest object

The HttpRequest object provides client-side communication with a server.

Examples

readyState

How to return the state of the document. This property changes as the document is being loaded.

responseText

How to return the request as a string.

status

How to return the status of the operation, as a code.

statusText

How to return the status of the operation, as a string.

The HttpRequest object

With the httpRequest object you can send a request from the client to the server.

If you are using JavaScript in IE 5.0, you can create the httpRequest object with the following code:

var xmlHTTP = new ActiveXObject("Microsoft.XMLHTTP")	

If you are using VBScript you create the httpRequest object with the following code:

set xmlHTTP = CreateObject("Microsoft.XMLHTTP")	

The httpRequest object is not a part of the W3C DOM standard.

Get XML

How to get an xml file from the server using the httpRequest object.

var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP")

xmlHttp.open("GET", "note.xml", false)

xmlHttp.send()

xmlDoc=xmlHttp.responseText	

Send XML

You can also send an xml document to an ASP page on the server, analyze the request, and send back the result.

var xmlHttp = new ActiveXObject("Microsoft.XMLHTTP") xmlHttp.open("POST", "demo_dom_http.asp", false)

xmlHttp.send(xmlDoc)

document.write(xmlHttp.responseText)	

The ASP page, written in VBScript:

set xmldoc = Server.CreateObject("Microsoft.XMLDOM")

xmldoc.async=false

xmldoc.load(request)

for each x in xmldoc.documentElement.childNodes

if x.NodeName = "to" then

name=x.text

next

response.write(name)	

You send the result back to the client using the response.write property.

Important Note

At the moment, the Microsoft XMLHTTP object can only be run in the BROWSER.

SERVER code that attempts to use the XMLHTTP to communicate with other Web servers, may function incorrectly or perform poorly.

This is a bug in the HTTPRequest object. For more information read Microsoft's Knowledge Base article Q237906.

The rumor is that Microsoft will have this bug fixed in an upcoming release of the XML Library. In the meantime, you may have to use a commercially available ASPHTTP component.

The httpRequest Properties

Property				Description	

readyState Returns the state of the document	

responseBody				Returns the response as an array of unsigned bytes	

responseStream			Returns the response as an IStream	

responseText				Returns the response as a string	

responseXML				Returns the response as an xml document	

status					Returns the status code as a number	

statusText				Returns the status as a string	

The httpRequest Methods

Property					Description	

abort()						Cancel the current http request	

getAllResponseHeaders()			Returns the value of the http headers	

getResponseHeader(headerName)		Returns the value of one specified http header	

open(method, url, async, userid, password)	Opens http request, and specifies the informationsend()				Send the http request to the server	

setRequestHeader(headerName,headerValue)	Specifies the name of a http header	

DOM NodeTypes

Take a look at the XML file used in the examples: note_special.xml

Examples

NodeType

We traverse the file note_special.xml to get the nodeType of the nodes.

NodeName

We traverse the file note_special.xml to get the nodeName of the same nodes.

NodeValue

We traverse the file note_special.xml to get the nodeValue of the same nodes.

NodeTypeString

In IE5, you can also get the nodeType as a string, with the .nodeTypeString property.

Node Types

All nodes are separated in different types. Below there is a list of the types, and what the .nodeName and the .nodeValue properties will return. In Internet Explorer 5, you can use the .nodeTypeString property to return the nodeType as a string.

nodeType	nodeTypeString	nodeName		nodeValue	

1		element	tagName	null	

2		attribute		name			value	

3		text			#text			content of node	

4		cdatasection		#cdatasection		content of node	

5		entityreference		entity reference name	null	

6		entity			entity name		null	

7		processinginstruction	target			content of node	

8		comment		#comment		comment text	

9		document		#document		null	

10		documenttype		doctype name		null	

11		documentfragment	#document fragment	null	

12		notation		notation name		null	

NodeTypes - Named Constants

NodeType		Named Constant	

1			ELEMENT_NODE	

2			ATTRIBUTE_NODE	

3			TEXT_NODE	

4			CDATA_SECTION_NODE	

5			ENTITY_REFERENCE_NODE	

6			ENTITY_NODE	

7			PROCESSING_INSTRUCTION_NODE	

8			COMMENT_NODE	

9			DOCUMENT_NODE	

10			DOCUMENT_TYPE_NODE	

11			DOCUMENT_FRAGMENT_NODE	

12			NOTATION_NODE	

DOM - The Node object

Take a look at the XML file used in the examples: note.xml

Examples

nodeName

How to return the name of a node.

nodeValue

How to return the value of a node.

nextSibling

How to return the name of the nextSibling node.

Text

In IE5 you can return the text from a node and all its child nodes.

xml

In IE5 you can return the xml from a node and all its child nodes.

appendChild

How to create an element node with a text node and then appending it as a child node.

insertBefore

How to create a text node and then inserting it before a specified node.

The Node Object

The node object represents any node in the node tree. A node can be an element node, a text node, or any other of the node types explained in the DOM nodeType chapter. All of these node types has properties and methods. Listed below are the general properties and methods for all node types.

Node Properties

Name			Description	

attributes		Returns a NamedNodeMap containing all attributes for this node	

childNodes		Returns a NodeList containing all the child nodes for this node	

firstChild		Returns the first child node for this node	

lastChild		Returns the last child node for this node	

nextSibling		Returns the next sibling node. Two nodes are siblings if they have the

			same parent node	

nodeName		Returns the nodeName, depending on the type	

nodeType		Returns the nodeType as a number	

nodeValue		Returns, or sets, the value of this node, depending on the type	

ownerDocument	Returns the root node of the document	

parentNode		Returns the parent node for this node	

previousSibling		Returns the previous sibling node. Two nodes are siblings if they have

			the same parent node	

Node Methods

Name					Description	

appendChild(newChild)		Appends the node newChild at the end of the child 					nodes for this node	

cloneNode(boolean)			Returns an exact clone of this node. If the boolean value 					is set to true, the cloned node contains all the child 					nodes as well	

hasChildNodes()			Returns true if this node has any child nodes	

insertBefore(newNode,refNode)	Inserts a new node, newNode, before the existing 					node, refNode	

removeChild(nodeName)		Removes the specified node, nodeName	

replaceChild(newNode,oldNode)	Replaces the oldNode, with the newNode	

IE5 Node Properties

The node object has some properties and methods that is defined in Internet Explorer 5 only.

Name				Description	

basename			Returns the nodeName without the namespaces	

dataType			Returns, or sets, the dataType for this node definition		

nodeTypeString		Returns the nodeType as a string	

nodeTypedValuespecified	Returns whether the nodeValue is specified in the DTD/Schema 				or not	

text				Returns, or sets, the text for this node and all its child nodes	

xml				Returns, or sets, the xml for this node and all its child nodes	

IE5 Node Methods

Name				Description	

selectNodes(pattern)		

selectSingleNode(pattern)		

transformNode(stylesheet)	Processes the node and its childNodes with the specified XSL

stylesheet, and returns the result	

DOM - The NodeList object

Take a look at the XML file used in the examples: note.xml

Examples

length

How to return the number of nodes in a nodeList.

item

How to return a specific node in the nodeList.

nextNode()

IE5 allows you to return the next node in the nodeList.

reset()

IE5 allows you to reset the pointer to the first node in the nodeList.

The NodeList object

The nodeList object represents a node and its child nodes as a node tree. Listed below are the property and method made for the nodeList object.

NodeList Property

Name		Description	

length		Returns the number of node in a nodeList	

NodeList Method

Name		Description	

item		Returns a specific node in the nodeList	

IE5 NodeList Methods

The nodeList object has some methods that is defined in Internet Explorer 5 only.

Name		Description	

nextNode()	Returns the next object in the node list	

reset()		Resets the pointer to the first node in the nodeList	

DOM - The Document object

Take a look at the XML file used in the examples: note.xml

Examples

documentElement

How to return the node name of the root element.

createCDATASection

How to create a CDATA node and then appending it to the nodeList.

createComment

How to create a comment node and then appending it to the nodeList.

createElement

How to create an element and then appending it to the nodeList.

createTextNode

How to create a text node then appending the text node to the nodeList.

getElementsByTagName

How to return the value of a specified node.

The Document object

The document object is the root element in the node tree. All nodes in the node tree are childNodes of the document element. The document element is required in all XML documents. Listed below are the properties and methods made for the document object.

Document Properties

Name			Description	

documentElement	Returns the root element of the document	

doctype		Returns the DTD or Schema for the document. 	

implementation		Returns the implementation object for this particular document	

Document Methods

Name					Description	

createAttribute(attributeName)		Creates an attribute node with the specified attribute 					name	

createCDATASection(text)		Creates a CDATASection, containing the specified text	

createComment(text)			Creates a comment node, containing the specified text	

createDocumentFragment()		Creates an empty documentFragment object	

createElement(tagName)		Creates an element with the specified tagName	

createEntityReference(referenceName)	Creates an entityReference with the specified 					referenceName	

createProcessingInstruction(target,text)	Creates a processingInstruction node, containing the 					specified target and text	

createTextNode(text)			Creates a text node, containing the specified text	

getElementsByTagName(tagName)	Returns the specified node, and all its child nodes, as a 					nodeList	

DOM - The Element object

Take a look at the XML file used in the examples: note.xml

Examples

tagName

How to return the tag name of a node.

getElementsByTagName

How to return the value of a specified node.

getAttribute

How to return a attributes value.

setAttribute

How to change an attribute's value.

setAttribute 2

How to set a new attribute and its value.

The Element object

The element object represents the element nodes in the document. If the element node contains text, this text is represented in a text node. Listed below are the property and methods made for the element object.

Element Properties

Name		Description	

tagName	Returns, or sets the name of the node	

Element Methods

Name					Description	

getAttribute(attributeName)			Returns the value of the specified attribute	

getAttributeNode(attributeName)		Returns the specified attribute node as an 						object	

getElementsByTagName(tagName)		Returns the specified node, and all its child 						 as a nodeList	

normalize()					Puts the text nodes for this element, and its child 						nodes, 	into one text node, returns nothing	

removeAttribute(attributeName)		Removes the specified attribute's value. If the 						attribute has a default value this value is inserted	

removeAttributeNode(attributeNode)		Removes the specified attribute node. If the 						attribute node has a default value, this attribute 						is inserted	

setAttribute(attributeName, attributeValue)	Inserts a new attribute	

setAttributeNode(attributeNodeName)		Inserts a new attribute node	

DOM - The Attr object

Take a look at the XML file used in the examples: note.xml

Examples

name

How to return the name of an attribute.

value

How to return the value of an attribute.

specified

Returns True if the value is set in the document, False if the value is a default value in the DTD/Schema.

The Attr object

The attr object returns an attribute of an element object as an attribute node. The attr object has the same properties and methods as nodes in general. The properties made for the attribute object only, are listed below.

Attr Properties

Name				Description	

name				Returns, or sets the name of the attribute	

specified			Returns a boolean value indicating if the node's value is set in 				the document or not	

value				Returns, or sets the value of the attribute	

DOM - The Text object

Take a look at the XML file used in the examples: note.xml

Examples

splitText

The SplitText method splits a text at the given character and returns the rest of the text.

createTextNode

How to create a text node.

The Text object

The text object represents the text inside an element as a node. Listed below is the method for the text object.

Text Method

Name			Description	

splitText(number)	Splits the text at the specified character, and returns the rest of the text	

DOM - The CDATASection object

Take a look at the XML file used in the examples: note.xml

Examples

createCDATASection

How to create a CDATASection node.

The CDATASection object

The CDATASection object represents the CDATASection nodes in a document. The CDATASection node is used to escape parts of text which normally would be recognized as markup.

DOM - The Comment object

Take a look at the XML file used in the examples: note.xml

Examples

createComment

How to create a comment node.

The Comment object

The comment object represents the comment nodes in a document. The comment nodes have no nodeName, but their nodeValue is the comment text.

XML DOM Examples

The XML file used in the examples below: note.xml

The XML Parser

Load an XML file into the parser

Load pure XML text into the parser

Accessing the DOM

Traverse the node tree of note.xml

Providing HTML content from note.xml

Accessing XML elements by name

The XML file used in the example below: note_error.xml

Parser Errors

XML document that is not well formed

The XML file used in the examples below: note_special.xml

Node Types

Traverse the xml file to get the nodeType of the nodes (nodeType)

Traverse the xml file to get the nodeName of the same nodes (nodeName)

Traverse the xml file to get the nodeValue of the same nodes (nodeValue)

Get the nodeType as a string (IE5 nodeTypeString)

The XML file used in the examples below: note.xml

The HTTPRequest Object

Return the state of the document (readyState)

Return the request as a string (responseText)

Return the status of the operation, as a code (status)

Return the status of the operation, as a string (statusText)

The Node Object

Return the name of a node (nodeName)

Return the value of a node (nodeValue)

Return the name of the nextSibling node (nextSibling)

Return the text from a node and all its child nodes (IE5 text)

Return the xml from a node and all its child nodes (IE5 xml)

Create a text node and append it as a child node (appendChild)

Create a text node and insert it before a specified node (insertBefore)

The NodeList Object

Return the number of nodes in a nodeList (length)

Return a specified node in the nodeList (item)

Return the next node in the nodeList (IE5 nextNode())

Reset the pointer to the first node in the nodeList (IE5 reset())

The Document Object

Return the node name of the root element (documentElement)

Create a CDATA node and append it to the nodeList (createCDATASection)

Create a comment node and append it to the nodeList (createComment)

Create an element and append it to the nodeList (createElement)

Create a text node and append it to the nodeList (createTextNode)

Return the value of a specified node (getElementsByTagName)

The Element Object

Return the tag name of a node (tagName)

Return the value of a specified node (getElementsByTagName)

Return an attribute value (getAttribute)

Change an attribute's value (setAttribute)

Set a new attribute and its value (setAttribute)

The Attr Object

Return the name of an attribute (name)

Return the value of an attribute (value)

Is the value set in the document or a default value in the DTD/Schema (specified)

The Text Object

Split a text and return the rest of the text (splitText)

Create a text node (createTextNode)

The CDATASection Object

Create a CDATA section node (createCDATASection)

The Comment Object

Create a comment node (createComment)

