VB SCRIPTING DOCUMENTATION

1. Vb Script How To ...

How to put a VBScript into an HTML document

<html>

<head>

</head>

<body>

<script language="VBScript">

document.write("I am written using VBScript!")

</script>

</body>

</html>	

And it produces this output:

I am written using VBScript!

To insert a script in an HTML document, use the <script> tag. Use the language attribute to define the scripting language.

<script language="VBScript">

Then comes the VBScript: The command for writing some text on a page is document.write:

document.write("I am written using VBScript!")

The script ends:

</script>

EXAMPLES

1. How to write text on a page

Coding

<html>

<body>

<script language="VBScript">

document.write("I am written using VBScript!")

</script>

</body>

</html>

Output

I am written using VBScript!

2. How to format the text on your page with HTML tags

Coding

<html>

<body>

<script language="VBScript">

document.write("<h1>I am written using VBScript!</h1>")

document.write("<h2>I am written using VBScript!</h2>")

</script>

</body>

</html>

Output

I am written using VBScript!

I am written using VBScript!

2. VBScript Where To ...

Where to put the VBScript

Scripts in a page will be executed immediately while the page loads into the browser. This is not always what we want. Sometimes we want to execute a script when a page loads, other times when a user trigger an event.

Scripts in the head section: Scripts to be executed when they are called or when an event is triggered, goes in the head section. When you place a script in the head section you will assure that the script is loaded before anyone use it.

<html>

<head>

<script language="VBScript">

 some statements

</script>

</head>

Scripts in the body section: Scripts to be executed when the page loads, goes in the body section. When you place a script in the body section it generates the content of the page.

<html>

<head>

</head>

<body>

<script language="VBScript">

 some statements

</script>

</body>

Scripts in both the body and the head section: You can place an unlimited number of scripts in your document, so you can have scripts in both the body and the head section.

<html>

<head>

<script language="VBScript">

 some statements

</script>

</head>

<body>

<script language="VBScript">

 some statements

</script>

</body>

EXAMPLES

1. Script that contains functions goes in the head section of the document, then we can be sure

that the script is loaded before the function is called.

Coding

<html>

<head>

<script language="VBScript">

function headsection()

msgbox("A function is usually placed in the head section")

end function

</script>

</head>

<body>

<form>

<input type="button" onclick="headsection()" value="Execute script">

</form>

</body>

</html>

2. Execute a script that is placed in the body section.

Coding

<html>

<body>

<script language="VBScript">

msgbox "Scripts in the body section is executed when the page is loading"

</script>

</body>

</html>

3. VBScript Variables ...

What is a Variable?

A variable is a "container" for information you want to store. A variables value can change during the script. You can refer to a variable by name to see its value or to change its value. In VBScript, all variables are of type variant, that can store different types of data.

Rules for Variable names:

Must begin with a letter

Can not contain a period (.)

Must not exceed 255 characters

Declaring Variables

You can declare variables with the Dim, Public or the Private statement. Like this:

dim name name = some value	

Now you have created a variable. The name of the variable is "name".

You can also declare variables by using its name in your script. Like this:

name = some value	

Now you have also created a variable. The name of the variable is "name".

However, the last method is not a good practice, because you can misspell the variable name later in your script, and that can cause strange results when your script is running. This is because when you misspell for example the "name" variable to "nime" the script will automatically create a new variable called "nime". To prevent your script from doing this you can use the Option Explicit statement. When you use this statement you will have to declare all your variables with the dim, public or private statement. Put the Option Explicit statement on the top of your script. Like this:

option explicit dim name name = some value	

Assigning Values to Variables

You assign a value to a variable like this:

name = "Hege" i = 200	

The variable name is on the left side of the expression and the value you want to assign to the variable is on the right. Now the variable "name" has the value "Hege".

Lifetime of Variables

How long a variable exists is its lifetime.

When you declare a variable within a procedure, only code within that procedure can access or change the value of that variable. When the procedure exits, the variable is destroyed. These variables are called local variables. You can have local variables with the same name in different procedures, because each is recognized only by the procedure in which it is declared.

If you declare a variable outside a procedure, all the procedures in your script will recognize it. These variables exists from the time they are declared until the time the script is finished running.

Array Variables

Some times you want to assign more than one value to a single variable. Then you can create a variable that can contain a series of values. This is called an array variable. The declaration of an array variable uses parentheses () following the variable name. In the following example, an array containing 3 elements is declared:

dim names(2)	

The number shown in the parentheses is 2. We start at zero so this array contains 3 elements. This is a fixed-size array. You assign data to each of the elements of the array like this:

names(0) = "Tove"

names(1) = "Jani"

names(2) = "Ståle"	

Similarly, the data can be retrieved from any element using an index into the particular array element you want. Like this:

mother = names(0)	

You can have up to 60 dimensions in an array. Multiple dimensions are declared by separating the numbers in the parentheses with commas. Here we have a two-dimensional array consisting of 5 rows and 7 columns:

dim table(4, 6)	

EXAMPLES

1. Variables are used to store information. This example demonstrates how you can create a variable, and assign a value to it.

Coding

<html>

<body>

<script language="VBScript">

Dim name

name="Jan Egil"

document.write(name)

</script>

</body>

</html>

Output

Jan Egil

2. This example demonstrates how you can insert a variable value in a text.

Coding

<html>

<body>

<script language="VBScript">

Dim name

name="Jan Egil"

document.write("My name is: " & name)

</script>

</body>

</html>

Output

My name is: Jan Egil

3. Arrays are used to store a series of related data items. This example demonstrates how you can make an array that store names.

Coding

<html>

<body>

<script language="VBScript">

Dim famname(5)

famname(0) = "Jan Egil"

famname(1) = "Tove"

famname(2) = "Hege"

famname(3) = "Ståle"

famname(4) = "Kai Jim"

famname(5) = "Børge"

For i = 0 to 5

	document.write(famname(i) & "
")

Next

</script>

</body>

</html>

Output

Jan Egil

Tove

Hege

Ståle

Kai Jim

Børge

4. VBScript Procedures

VBScript Procedures

We have two kinds of procedures: The Sub procedure and the Function procedure.

A Sub Procedure:

Is a series of statements, enclosed by the Sub and End Sub statements

Perform actions, but do not return a value

Can take arguments that are passed to it by a calling procedure

Without arguments, must include an empty set of parentheses ()

Sub mysub() 	

some statements

End Sub 	

The Function Procedure

Is a series of statements, enclosed by the Function and End Function statements

Perform actions, but can also return a value

Can take arguments that are passed to it by a calling procedure

Without arguments, must include an empty set of parentheses ()

Returns a value by assigning a value to its name

Function myfunction() 	

some statements 	

myfunction = some value

End Function	

Using Sub and Function Procedures in Code

When you call a Function in your code, you do like this:

name = findname()	

Here you call a Function called "findname", the Function returns a value that will be stored in the variable "name".

Or, you can do like this:

msgbox "Your name is " & findname()	

Here you also call a Function called "findname", the Function returns a value that will be displayed in the message box.

When you call a Sub procedure you can just type the name of the procedure. You can use the Call statement, like this:

Call MyProc(argument)	

Or, you can omit the call statement, like this:

MyProc argument	

Examples

1. This procedure does not return a value.

Coding

<html>

<head>

<script language="VBScript">

sub yourcar()

	msgbox("You are driving a Ford")

end sub

</script>

</head>

<body>

<script language="VBScript">

call yourcar()

</script>

</body>

</html>

2. Use this procedure if you want to return a value.

Coding

<html>

<head>

<script language="VBScript">

function mycar()

	mycar = "Volvo"

end function

</script>

</head>

<body>

<script language="VBScript">

msgbox "I am driving a " & mycar()

</script>

</body>

</html>

5. VBScript Conditional Statements

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions. You can use conditional statements in your code to do this.

In VBScript we have two conditional statements:

If...Then...Else statement - use this statement if you want to select one of two sets of lines to execute

Select Case statement - use this statement if you want to select one of many sets of lines to execute

If....then.....else

You should use the IF statement if you want to execute some code if a condition is true, or if you want to select one of two blocks of code to execute.

If you want to execute only one statement when a condition is true, use this syntax for the if...then...else statement, like this:

If i = 10 Then msgbox "Hello"	

Notice that there is no ..else.. in this syntax. You just tell the code to perform one action if the condition (i) is equal to some value (in this case the value is 10).

If you want to execute more than one statement when a condition is true, use this syntax for the if...then...else statement, like this:

If i = 10 Then

 msgbox "Hello"

 i = 11

 more statements

End If	

There is no ..else.. in this syntax either. You just tell the code to perform multiple actions if the condition (i) is equal to some value (in this case the value is 10).

If you want to execute some statements if a condition is true and execute others if a condition is false, use this syntax for the if...then...else statement, like this:

If i = 10 Then

 msgbox "Hello"

 i = 11

Else

 msgbox "Goodbye"

End If	

The first block of code will be executed if the condition is true (if i is equal to 10), the other block will be executed if the condition is false (if i is not equal to 10).

Select case

You should use the SELECT statement if you want to select one of many blocks of code to execute.

Select Case payment

 Case "Cash"

 msgbox "You are going to pay cash"

 Case "Visa"

 msgbox "You are going to pay with visa"

 Case Else

 msgbox "Unknown method of payment"

End Select	

This is how it works: First we have a single expression (most often a variable), that is evaluated once. The value of the expression is then compared with the values for each Case in the structure. If there is a match, the block of code associated with that Case is executed.

Examples

1.This example demonstrates how to write the if...then statement.

Coding

<html>

<head>

<script language="VBScript">

function greeting()

i=hour(time)

if i < 10 then

	msgbox("Good morning")

else

	msgbox("Hello")

end if

end function

</script>

</head>

<body onload="greeting()">

</body>

</html>

2. This example demonstrates hoe to write the select case statement.

Coding

<html>

<head>

<script language="VBScript">

function buy()

payment="Cash"

Select Case payment

	Case "Cash"

		msgbox "You are going to pay cash"

	Case "Visa"

		msgbox "You are going to pay with visa"

	Case Else

		msgbox "Unknown method of payment"

End Select

end function

</script>

</head>

<body onload="buy()">

</body>

</html>

6. VBScript Looping Statements

Looping Statements

Very often when you write code, you want allow the same block of code to run a number of times. You can use looping statements in your code to do this.

In VBScript we have four looping statements:

Do...Loop statement - loops while or until a condition is true

While...Wend statement - use Do...Loop instead

For...Next statement - run statements a specified number of times.

For Each...Next statement - run statements for each item in a collection or each element of an array

Do...Loop

You can use Do...Loop statements to run a block of code when you do not know how many repetitions you want. The block of code are repeated while a condition is true or until a condition becomes true.

Repeating Code While a Condition is True

You use the While keyword to check a condition in a Do...Loop statement.

Do While i > 10

 some code

Loop	

Notice that if i is for example 9, the code inside the loop will never be executed.

Do

 some code

Loop While i > 10	

Notice that in this example the code inside this loop will be executed at least one time, even if i is less than 10.

Repeating Code Until a Condition Becomes True

You use the Until keyword to check a condition in a Do...Loop statement.

Do Until i = 10

 some code	

Loop	

Notice that if i is equal to 10, the code inside the loop will never be executed.

Do

 some code

Loop Until i = 10	

Notice that in this example the code inside this loop will be executed at least one time, even if i is equal to 10.

Exiting a Do...Loop

You can exit a Do...Loop statement with the Exit Do keyword.

Do Until i = 10

 i = i - 1

 If i < 10 Then Exit Do

Loop	

Notice that the code inside this loop will be executed as long i is different from 10, and as long as i is greater than 10.

For...Next

You can use For...Next statements to run a block of code when you know how many repetitions you want.

You can use a counter variable that increases or decreases with each repetition of the loop, like this:

For i = 1 to 10

 some code

Next	

The For statement specifies the counter variable i and its start and end values. The Next statement increases i by 1.

Using the Step keyword, you can increase or decrease the counter variable by the value you specify.

For i = 2 To 10 Step 2

 some code

Next	

In the example above, i is increased by 2 each time the loop repeats. When the loop is finished, total is the sum of 2, 4, 6, 8, and 10.

To decrease the counter variable, you use a negative Step value. You must specify an end value that is less than the start value.

For i = 10 To 2 Step -2

 some code

Next	

In the example above, i is decreased by 2 each time the loop repeats. When the loop is finished, total is the sum of 10, 8, 6, 4, and 2.

Exiting a For...Next

You can exit a For...Next statement with the Exit For keyword.

For Each...Next

A For Each...Next loop repeats a block of code for each item in a collection, or for each element of an array.

The For Each...Next statement looks almost identical to the For...Next statement. The difference is that you do not have to specify the number of items you want to loop through.

dim names(3)

 names(0) = "Tove"

 names(1) = "Jani"

 names(2) = "Hege"

For Each item in names

 some code

Next	

Examples

1. This example demonstrates how to make a simple For.....Next loop.

Coding

<html>

<body>

<script language="VBScript">

for i = 0 to 5

	document.write("The number is " & i)

	document.write("
")

next

</script>

</body>

</html>

Output

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

2. This example demonstrates how you can loop through the 6 headers in html.

Coding

<html>

<body>

<script language="VBScript">

for i = 1 to 6

	document.write("<h" & i & ">This is header " & i & "</h" & i & ">")

next

</script>

</body>

</html>

Output

This is header 1

This is header 2

This is header 3

This is header 4

This is header 5

This is header 6

7. VBScript Functions

Examples

1. This example demonstrates how you can use the UCase and LCase functions. These functions returns a string that has been converted to uppercase or lowercase characters.

Coding

<html>

<body>

<script language="VBScript">

name="Bill Gates"

document.write(ucase(name))

document.write("
")

document.write(lcase(name))

</script>

</body>

</html>

Output

BILL GATES

bill gates

2. This example demonstrates how you can use the Trim, LTrim and RTrimfunctions. The first function returns a string without leading and trailing spaces, the second function a string without leading spaces, the third function returns a string without trailing spaces.

Coding

<html>

<body>

<script language="VBScript">

name = " Bill "

document.write("Hello" & trim(name) & "Gates
")

document.write("Hello" & rtrim(name) & "Gates
")

document.write("Hello" & ltrim(name) & "Gates
")

</script>

</body>

</html>

Output

HelloBillGates

Hello BillGates

HelloBill Gates

3. This example demonstrates how you can use the StrReverse function. This functions reverse a string.

Coding

<html>

<body>

<script language="VBScript">

sometext = "Hallo Everyone!"

document.write(strReverse(sometext))

</script>

</body>

</html>

Output

!enoyrevE ollaH

4. This example demonstrates how you can use the Round function. This functions round a number.

Coding

<html>

<body>

<script language="VBScript">

i = 48.66776677

j = 48.3333333

document.write(Round(i))

document.write("
")

document.write(Round(j))

</script>

</body>

</html>

Output

49

48

5. This example demonstrates how you can use the Rnd and the Randomize functions. This functions returns a random number.

Coding

<html>

<body>

<script language="VBScript">

randomize()

document.write(Rnd())

</script>

</body>

</html>

Output

0.1347772

6. This example uses the functions: Rnd, Int, and randomize, to return a random number between 0 and 99.

Coding

<html>

<body>

<script language="VBScript">

randomize()

randomNumber=Int(100 * rnd())

document.write("A random number: " & randomNumber & "")

</script>

</body>

</html>

Output

A random number: 19

7. This example demonstrates how you can use the Left and Right functions. These functions returns a specified number of characters from the left or right side of a string.

Coding

<html>

<body>

<script language="VBScript">

sometext="Welcome to our Web Site!!"

document.write(Left(sometext,5))

document.write("
")

document.write(Right(sometext,5))

</script>

</body>

</html>

Output

Welco

ite!!

8. This example demonstrates how you can use the Replace function. This function returns a string in which a specified sub-string has been replaced with another sub string a specified number of times.

Coding

<html>

<body>

<script language="VBScript">

sometext="Welcome to this Web!!"

document.write(Replace(sometext, "Web", "Page"))

</script>

</body>

</html>

Output

Welcome to this Page!!

9. This example demonstrates how you can use the Mid function. This function returns the characters you specify, example: mid(str,9,2) returns two characters from character number 9.

Coding

<html>

<body>

<script language="VBScript">

sometext="Welcome to our Web Site!!"

document.write(Mid(sometext, 9, 2))

</script>

</body>

</html>

Output

to

8. VBScript Date/Time Functions

Examples

1. This example demonstrates how to make the date and time appear on the users screen, with the built-in VBScript Date and Time functions.

Coding

<html>

<body>

<script language="VBScript">

document.write("Today's date is " & date())

document.write("
")

document.write("The time is " & time())

</script>

</body>

</html>

Output

Today's date is 8/7/2000

The time is 10:20:34 PM

2. This example demonstrates how you can get and display the days.

Coding

<html>

<body>

<p>We use the VBScripts built-in WeekdayName function to get a weekday, like this:</p>

<script language="VBScript">

document.write(WeekDayName(1))

document.write("
")

document.write(WeekDayName(2))

document.write("
")

document.write("Here is how you get the abbreviated name of a weekday:")

document.write("
")

document.write(WeekDayName(1,true))

document.write("
")

document.write(WeekDayName(2,true))

document.write("
")

document.write("Here is how you get the current weekday:")

document.write("
")

document.write(WeekdayName(weekday(date)))

document.write("
")

document.write(WeekdayName(weekday(date), true))

</script>

</body>

</html>

Output

We use the VBScripts built-in WeekdayName function to get a weekday, like this:

Sunday

Monday

Here is how you get the abbreviated name of a weekday:

Sun

Mon

Here is how you get the current weekday:

Monday

Mon

3. This example demonstrates how you can get and display the months.

Coding

<html>

<body>

<p>We use the VBScripts built-in MonthName function to get a month, like this:</p>

<script language="VBScript">

document.write(MonthName(1))

document.write("
")

document.write(MonthName(2))

document.write("
")

document.write("Here is how you get the abbreviated name of a month:")

document.write("
")

document.write(MonthName(1,true))

document.write("
")

document.write(MonthName(2,true))

document.write("
")

document.write("Here is how you get the current month:")

document.write("
")

document.write(MonthName(month(date)))

document.write("
")

document.write(MonthName(month(date), true))

</script>

</body>

</html>

Output

We use the VBScripts built-in MonthName function to get a month, like this:

January

February

Here is how you get the abbreviated name of a month:

Jan

Feb

Here is how you get the current month:

August

Aug

4. This example demonstrates how to make the current month and day appear on the users screen, with the built-in VBScript MonthName and WeekDayName functions.

Coding

<html>

<body>

<script language="VBScript">

document.write("Today's day is " & WeekdayName(weekday(date)))

document.write("
")

document.write("The month is " & MonthName(month(date)))

</script>

</body>

</html>

Output

Today's day is Monday

The month is August

5. This example demonstrates how you can use the DateDiff function to calculate the date difference between two dates.

Coding

<html>

<body>

Countdown to year 3000:

<script language="VBScript">

millennium=cdate("1/1/3000 00:00:00")

document.write("There are " & DateDiff("m", Now(), millennium) & " months to year 3000!
")

document.write("There are " & DateDiff("d", Now(), millennium) & " days to year 3000!
")

document.write("There are " & DateDiff("h", Now(), millennium) & " hours to year 3000!
")

document.write("There are " & DateDiff("n", Now(), millennium) & " minutes to year 3000!
")

document.write("There are " & DateDiff("s", Now(), millennium) & " seconds to year 3000!
")

</script>

</body>

</html>

Output

Countdown to year 3000:

There are 11993 months to year 3000!

There are 365024 days to year 3000!

There are 8760554 hours to year 3000!

There are 525633216 minutes to year 3000!

There are 31537992913 seconds to year 3000!

6. This example demonstrates how you can use the DateAdd function. With this function you can add a specific time interval to a date and return the result.

Coding

<html>

<body>

<script language="VBScript">

document.write(DateAdd("d",30,date()))

</script>

<p>The syntax for DateAdd is: DateAdd(interval,number,date).

You can use DateAdd to for example calculate a date 30 days from today

</p>

</body>

</html>

Output

9/6/2000

The syntax for DateAdd is: DateAdd(interval,number,date).

You can use DateAdd to for example calculate a date 30 days from today

7. This example demonstrates how you can use the FormatDateTime function. With this function you can format the date and the time as you like.

Coding

<html>

<body>

<script language="VBScript">

document.write(FormatDateTime(date(),vbgeneraldate))

document.write("
")

document.write(FormatDateTime(date(),vblongdate))

document.write("
")

document.write(FormatDateTime(date(),vbshortdate))

document.write("
")

document.write(FormatDateTime(now(),vblongtime))

document.write("
")

document.write(FormatDateTime(now(),vbshorttime))

</script>

<p>The syntax for FormatDateTime is: FormatDateTime(date,namedformat).</p>

</body>

</html>

Output

8/7/2000

Monday, August 07, 2000

8/7/00

10:26:16 PM

22:26

The syntax for FormatDateTime is: FormatDateTime(date,namedformat).

8. This example demonstrates how you can use the IsDate function. With this function you can test if an expression is a date. The IsDate function return true if the expression is a date, and false if not.

Coding

<html>

<body>

<script language="VBScript">

somedate="10/30/99"

document.write(IsDate(somedate))

</script>

</body>

</html>

Output

True

