Welcome to XML School

After you have studied XML School you will know what XML is.

You will know the difference between the eXtensible Markup Language and HTML, and how to start using XML in your applications.

Table of Contents:

Introduction to XML

What is XML, and how does it differ from HTML?

How XML can be used

Some of the different ways XML can be used.

XML Syntax

The simple and very strict syntax rules of XML.

XML Elements

XML Elements, relationships, content and naming rules.

XML Attributes

How XML attributes can be used to describe elements, or to provide additional information about elements.

XML Validation

The difference between a Well Formed and a Valid XML document and how a DTD is used to define the XML document.

XML support in Netscape and Explorer

About the support for XML in the two most famous browsers.

Viewing XML in Internet Explorer

How to use Internet Explorer to view an XML file.

Displaying XML with CSS

How to use Internet Explorer and CSS to display an XML file.

Displaying XML with XSL

How to use Internet Explorer and XSL to display an XML file.

XML embedded in HTML

How to embed XML inside HTML documents.

The Microsoft XML Parser

How to use the Microsoft XML parser to open and manipulate XML documents.

XML in Real Life

This is where we take a look at some real life use of XML.

Advanced XML

XML Namespaces

How to avoid element name conflicts using XML namespaces.

XML CDATA

How to tell an XML parser not to parse the text.

XML Encoding

How to encode your XML documents.

XML Server

How to generate XML on the server.

XML Applications

How you can use IE 5 to navigate an XML file and how to create a complete XML application.

XML HTTP Requests

How to request XML from a server using HTTP.

Behaviors for HTML and XML

How the new CSS behavior selector can be used to create dynamic content.

XML Technologies

XML technologies that are important to the understanding and development of XML applications.

Introduction to XML

XML was designed to describe data, and to focus on what data is.

HTML was designed to display data, and to focus on how data looks.

What you should already know

Before you continue you should have some basic understanding of the following:

WWW, HTML and the basics of building Web pages

Web scripting languages like JavaScript or VBScript

If you want to study these subjects first, before you start reading about XML, you can find the tutorials you need at W3Schools' Home Page.

What is XML?

XML stands for EXtensible Markup Language

XML is a markup language much like HTML.

XML was designed to describe data.

XML tags are not predefined in XML. You must define your own tags.

XML uses a DTD (Document Type Definition) to describe the data.

XML with a DTD is designed to be self describing.

The main difference between XML and HTML

XML was designed to carry data.

XML is not a replacement for HTML.

XML and HTML were designed with different goals:

XML was designed to describe data and to focus on what data is.

HTML was designed to display data and to focus on how data looks.

HTML is about displaying information, XML is about describing information.

XML does not DO anything

XML was not designed to DO anything.

Maybe it is a little hard to understand, but XML does not DO anything. XML was not made to DO anything. XML is created as a way to structure, store and send information.

The following example is a note to Tove from Jani, stored as XML:

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

The note has a header, and a message body. It also has sender and receiver information. But still, this XML document does not DO anything. It is just pure information wrapped in XML tags. Someone must write a piece of software to send it, receive it or display it.

XML is free and extensible

XML tags are not predefined. You must "invent" your own tags.

The tags used to markup HTML documents and the structure of HTML documents are predefined. The author of HTML documents can only use tags that are defined in the HTML standard (like <p> and <h1>.....).

XML allows the author to define his own tags and his own document structure

The tags in the example above (like <to> and <from>), are not defined in any XML standard. These tags are "invented" by the author of the XML document.

XML is a complement to HTML

XML is not a replacement for HTML.

It is important to understand that XML is not a replacement for HTML. In future Web development it is most likely that XML will be used to describe the data, while HTML will be used to format and display the same data.

My best description of XML is as a cross-platform, software and hardware independent tool for transmitting information.

XML in future Web development

XML is going to be everywhere.

We have been participating in XML development since its creation. It has been amazing to see how quickly the XML standard has been developed, and how quickly a large number of software vendors have adopted the standard.

We strongly believe that XML will be as important to the future of the Web, as HTML has been to the foundation of the Web, and that XML will be the most common tool for all data manipulation and data transmission.

How can XML be Used?

It is important to know that XML was designed to store, carry and exchange data. It was not designed to display data.

XML can Separate Data from HTML

With XML, your data is stored outside your HTML.

When HTML is used to display data, the data are stored inside your HTML. With XML, data can be stored in separate XML files. This way you can concentrate on using HTML for data layout and display, and be sure that changes in the underlying data will not require any changes to your HTML.

XML data can also be stored inside HTML pages as "Data Islands". You can still concentrate on using HTML only for formatting and displaying the data.

XML is used to Exchange Data

With XML, data can be exchanged between incompatible systems.

In the real world, computer systems and databases contain data in incompatible formats. One of the most time consuming challenges for developers has been to exchange data between such systems over the Internet.

Converting the data to XML can greatly reduce this complexity and create data that can be read by many different types of applications.

XML and B2B

With XML, financial information can be exchanged over the Internet.

Expect to see a lot about XML and B2B (Business To Business) in the near future.

XML is going to be the main language for exchanging financial information between businesses over the Internet. A lot of interesting B2B applications are under development.

XML can be used to Share Data

With XML, plain text files can be used to share data.

Since XML data is stored in plain text format, XML provides a software- and hardware-independent way of sharing data.

This makes it much easier to create data that different applications can work with. It also makes it easier to expand or upgrade a system to new operating systems, servers, applications, and new browsers.

XML can be used to Store Data

With XML, plain text files can be used to store data.

XML can also be used to store data in files or in databases. Applications can be written to store and retrieve information from the store, and generic applications can be used to display the data.

XML can make your Data more Useful

With XML, your data is available to more users.

Since XML is independent of hardware, software and application, you can make your data available to more than only standard HTML browsers.

Other clients and applications can access your XML files as data sources, like they are accessing databases. Your data can be made available to all kinds of "reading machines" (agents), and it is easier to make your data available for blind people, or people with other disabilities.

XML can be used to Create new Languages

XML is the mother of WAP and WML.

The Wireless Markup Language (WML), used to markup Internet applications for handheld devices like mobile phones, is written in XML.

You can read more about WML in W3Schools' WML School.

If Developers have Sense

If they DO have sense, all future applications will store their data in XML.

The future might give us word processors, spreadsheet applications and databases that can read each others data in a pure text format, without any conversion utilities in between.

We can only pray that Microsoft and all the other software vendors will agree.

XML Syntax

The Syntax rules of XML are very simple and very strict. The rules are very easy to learn, and very easy to use.

Because of this, creating software that can read and manipulate XML is very easy to do.

An example XML document

XML documents use a self-describing and simple syntax.

<?xml version="1.0"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

The first line in the document - the XML declaration - defines the XML version of the document. In this case the document conforms to the 1.0 specification of XML.

The next line describes the root element of the document (like it was saying: "this document is a note"):

<note>	

The next 4 lines describe 4 child elements of the root (to, from, heading, and body):

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>	

And finally the last line defines the end of the root element:

</note>	

Can you detect from this example that the XML document contains a Note to Tove from Jani? Don't you agree that XML is pretty self describing?

All XML elements must have a closing tag

With XML, it is illegal to omit the closing tag.

In HTML some elements do not have to have a closing tag. The following code is legal in

HTML:

<p>This is a paragraph <p>This is another paragraph	

In XML all elements must have a closing tag like this:

<p>This is a paragraph</p> <p>This is another paragraph</p> 	

Note: You might have noticed from the previous example that the XML declaration did not have a closing tag. This is not an error. The declaration is not a part of the XML document itself. It is not an XML element, and it should not have a closing tag.

XML tags are case sensitive

Unlike HTML, XML tags are case sensitive.

With XML, the tag <Letter> is different from the tag <letter>.

Opening and closing tags must therefore be written with the same case:

<Message>This is incorrect</message>

<message>This is correct</message>	

All XML elements must be properly nested

Improper nesting of tags make no sense to XML.

In HTML some elements can be improperly nested within each other like this:

<i>This text is bold and italic</i>	

In XML all elements must be properly nested within each other like this:

<i>This text is bold and italic</i>	

All XML documents must have a root tag

The first tag in an XML document is the root tag.

All XML documents must contain a single tag pair to define the root element. All other elements must be nested within the root element.

All elements can have sub elements (children). Sub elements must be correctly nested within their parent element:

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root> 	

Attribute values must always be quoted

With XML, it is illegal to omit quotation marks around attribute values.

XML elements can have attributes in name/value pairs just like in HTML. In XML the attribute value must always be quoted. Study the two XML documents below. The first one is incorrect, the second is correct:

<?xml version="1.0"?>

<note date=12/11/99>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

<?xml version="1.0"?>

<note date="12/11/99">

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

The error in the first document is that the date attribute in the note element is not quoted.

This is correct: date="12/11/99". This is incorrect: date=12/11/99.

With XML, White Space is Conserved

With XML, the white space in your document is not truncated.

This is unlike HTML. With HTML, a sentence like this: Hello my name is Tove, will be displayed like this: Hello my name is Tove, because HTML strips off the white space.

With XML, CR / LF is converted to LF

With XML, a new line is always stored as LF.

Do you know what a typewriter is?. Well, a typewriter is a type of mechanical device they used in the previous century :-)

After you have typed one line of text on a typewriter, you have to manually return the printing carriage to the left margin position and manually feed the paper up one line.

In Windows applications, a new line in the text is normally stored as a pair of CR LF (carriage return, line feed) characters. In Unix applications, a new line is normally stored as a LF character. Some applications use only a CR character to store a new line.

There is nothing Special about XML

There is nothing special about XML. It is just plain text with the addition of some XML tags enclosed in angle brackets.

Software that can handle plain text can also handle XML. In a simple text editor, the XML tags will be visible and will not be handled specially.

In an XML aware application however, the XML tags can be handled specially. The tags may or may not be visible, or have a functional meaning, depending on the nature of the application.

XML Elements

XML Elements are extensible and they have relationships.

XML Elements have simple naming rules.

XML Elements are Extensible

XML documents can be extended to carry more information.

Look at the following XML NOTE example:

<note>

 <to>Tove</to>

 <from>Jani</from>

 <body>Don't forget me this weekend!</body>

</note>	

Let's imagine that we created an application that extracted the <to>, <from>, and <body> elements from the XML document to produce this output:

MESSAGE

To: Tove

From: Jani

Don't forget me this weekend!	

Imagine that the author of the XML document added some extra information to it:

<note>

 <date>1999-08-01</date>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

Should the application break or crash?

No. The application should still be able to find the <to>, <from>, and <body> elements in the XML document and produce the same output.

XML documents are Extensible.

XML Elements have Relationships

Elements are related as parents and children.

To understand XML terminology, you have to know how relationships between XML elements are named, and how element content is described.

Imagine that this is a description of a book

:

Book Title: My First XML

Chapter 1: Introduction to XML

What is HTML

 What is XML

 Chapter 2:

 XML Syntax Elements must have a closing tag

 Elements must be correctly nested 	

Imagine that this XML document describes the book:

<book>

 <title>My First XML</title>

 <prod id="33-657" media="paper"></prod>

 <chapter>Introduction to XML

 <para>What is HTML</para>

 <para>What is XML</para> </chapter>

 <chapter>XML Syntax

 <para>Elements must have a closing tag</para>

 <para>Elements must be properly nested</para>

 </chapter>

</book>	

Book is the root element. Title and chapter are child elements of book. Book is the parent element of both title and chapter. Title and chapter are siblings (or sister elements) because they have the same parent.

Elements have Content

Elements can have different content types.

An XML element is everything from (including) the element's start tag to (including) the element's end tag.

An element can have element content, mixed content, simple content, or empty content. An element can also have attributes.

In the example above, book has element content, because it contains other elements. Chapter has mixed content because it contains both text and other elements. Para has simple content (or text content) because it contains only text. Prod has empty content, because it carries no information.

In the example above only the prod element has attributes. The attribute named id has the value "33-657". The attribute named media has the value "paper".

Element Naming

XML elements must follow these naming rules:

Names can contain letters, numbers, and other characters

Names must not start with a number or "_" (underscore)

Names must not start with the letters xml (or XML or Xml ..)

Names can not contain spaces

Take care when you "invent" element names and follow these simple rules:

Any name can be used, no words are reserved, but the idea is to make names descriptive. Names with an underscore separator are nice.

Examples: <first_name>, <last_name>.

Avoid "-" and "." in names. It could be a mess if your software tried to subtract name from first (first-name) or think that "name" is a property of the object "first" (first.name).

Element names can be as long as you like, but don't exaggerate. Names should be short and simple, like this: <book_title> not like this: <the_title_of_the_book>.

XML documents often have a corresponding database, in which fields exist corresponding to elements in the XML document. A good practice is to use the naming rules of your database for the elements in the XML documents.

Non-English letters like éòá are perfectly legal in XML element names, but watch out for problems if your software vendor doesn't support them.

The ":" should not be used in element names because it is reserved to be used for something called namespaces (more later).

XML Attributes

XML elements can have attributes in the start tag, just like HTML.

Attributes are used to provide additional information about elements.

XML Attributes

XML elements can have attributes.

From HTML you will remember this: . The SRC attribute provides additional information about the IMG element.

In HTML (and in XML) attributes provide additional information about elements:

 	

Attributes often provide information that is not a part of the data. In the example below, the file type is irrelevant to the data, but important to the software that wants to manipulate the element:

<file type="gif">computer.gif</file>	

Quote Styles, "female" or 'female'?

Attribute values must always be enclosed in quotes, but either single or double quotes can be used. For a person's sex, the person tag can be written like this:

<person sex="female">	

or like this:

<person sex='female'>	

Double quotes are the most common, but sometimes (if the attribute value itself contains quotes) it is necessary to use single quotes, like in this example:

<gangster name='George "Shotgun" Ziegler'>	

Use of Elements vs. Attributes

Data can be stored in child elements or in attributes.

Take a look at these examples:

<person sex="female">

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>	

<person>

 <sex>female</sex>

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>	

In the first example sex is an attribute. In the last, sex is a child element. Both examples provide the same information.

There are no rules about when to use attributes, and when to use child elements. My experience is that attributes are handy in HTML, but in XML you should try to avoid them. Use child elements if the information feels like data.

My Favorite Way

I like to store data in child elements.

The following three XML documents contain exactly the same information:

A date attribute is used in the first example:

<note date="12/11/99">

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

A date element is used in the second example:

<note>

 <date>12/11/99</date>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>	

An expanded date element is used in the third: (THIS IS MY FAVORITE):

<note>

 <date>

 <day>12</day>

 <month>11</month>

 <year>99</year>

 </date>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note> 	

Avoid using attributes?

Should you avoid using attributes?

Here are some of the problems using attributes:

attributes cannot contain multiple values (child elements can)

attributes are not easily expandable (for future changes)

attributes cannot describe structures (child elements can)

attributes are more difficult to manipulate by program code

attribute values are not easy to test against a DTD

If you use attributes as containers for data, you end up with documents that are difficult to read and maintain. Try to use elements to describe data. Use attributes only to provide information that is not relevant to the data.

Don't end up like this (if you think this looks like XML, you have not understood the point):

<note day="12" month="11" year="99" to="Tove" from="Jani" heading="Reminder" body="Don't forget me this weekend!"> </note> 	

An Exception to my Attribute rule

Rules always have exceptions.

My rule about attributes has one exception:

Sometimes I assign ID references to elements. These ID references can be used to access

XML elements in much the same way as the NAME or ID attributes in HTML. This example demonstrates this:

<messages>

 <note ID="501">

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

 </note>

 <note ID="502">

 <to>Jani</to>

 <from>Tove</from>

 <heading>Re: Reminder</heading>

 <body>I will not!</body>

 </note>

 </messages>	

The ID in these examples is just a counter, or a unique identifier, to identify the different notes in the XML file, and not a part of the note data.

What I am trying to say here is that metadata (data about data) should be stored as attributes, and that data itself should be stored as elements.

XML Validation

XML with correct syntax is Well Formed XML.

XML validated against a DTD is Valid XML.

"Well Formed" XML documents

A "Well Formed" XML document has correct XML syntax.

A "Well Formed" XML document is a document that conforms to the XML syntax rules that were described in the previous chapters

:

<?xml version="1.0"?>

 <note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note> 	

"Valid" XML documents

A "Valid" XML document also conforms to a DTD.

A "Valid" XML document is a "Well Formed" XML document, which also conforms to the rules of a Document Type Definition (DTD):

<?xml version="1.0"?>

 <!DOCTYPE note SYSTEM "InternalNote.dtd">

 <note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

 </note> 	

XML DTD

A DTD defines the legal elements of an XML document.

The purpose of a DTD is to define the legal building blocks of an XML document. It defines the document structure with a list of legal elements. You can read more about DTD, and how to validate your XML documents in W3Schools' DTD School.

XML Schema

XSchema is an XML based alternative to DTD.

W3C supports an alternative to DTD called XML Schema. You can read more about XML Schema in W3Schools' Schema School.

Errors will Stop you

Errors in XML documents will stop the XML program.

The W3C XML specification states that a program should not continue to process an XML document if it finds a validation error. The reason is that XML software should be easy to write, and that all XML documents should be compatible.

With HTML it was possible to create documents with lots of errors (like when you forget an end tag). One of the main reasons that HTML browsers are so big and incompatible, is that they have their own ways to figure out what a document should look like when they encounter an HTML error.

With XML this should not be possible.

XML in Netscape and in Explorer

In this Web Site we focus on the XML support in Internet Explorer 5.0, because of poor support for XML in Netscape. Maybe that will change.

XML on this Web Site

Many applications support XML. We focus on Internet Explorer 5.0.

Some of you have complained about this, but we do it simply because this is the only practical way we know, to demonstrate real XML examples for you over the Internet.

Sad to say - while we are waiting for Netscape - most of our software examples will work only with IE5. If you want to learn XML the easy way - with lots of examples for you to try out - you will have to live with that.

XML in Netscape Navigator

Netscape has promised full XML support in its next browser.

We hope that Netscape will include standard support for the W3C XML in its next version of the browser.

Based on previous experience we can only HOPE that Navigator and Explorer XML will be compatible in the future.

Your option at the moment - if you want to work with cross browser XML - is to work with

XML on your server and transform your XML to HTML before it is sent to the browser.

You can read more about transforming XML to HTML in W3Schools' XSL School.

XML in Internet Explorer 5.0

Internet Explorer 5.0 supports the XML 1.0 standard.

Internet Explorer 5.0 supports most of the international standards for XML 1.0 and the XML DOM (Document Object Model). These standards are set by the World Wide Web Consortium (W3C).

Internet Explorer 5.0 has the following XML support:

Viewing of XML documents

Full support for W3C DTD standards

XML embedded in HTML as Data Islands

Binding XML data to HTML elements

Transforming and displaying XML with XSL

Displaying XML with CSS

Access to the XML DOM

Internet Explorer 5.0 also has support for Behaviors:

Behaviors is a Microsoft only Technology

Behaviors can separate scripts from an HTML page.

Behaviors can store XML data on the clients disk.

Examples of all these features are given in the next chapters of this web site.

You can read more about Internet Explorer, and download the latest version at W3Schools' Browser Information.

Viewing XML files with IE 5.0

Raw XML files can be viewed in Internet Explorer 5.0, but to make it display like a web page, you have to add some display information.

You must have Internet Explorer 5.0 or later to view the example XML files.

Viewing XML with Internet Explorer 5.0

You can use IE 5.0 to view any XML document.

To view an XML document, you can click on a link, type the URL in the address bar, or double-click on the name of an XML file in a files folder.

If you open an XML document in IE, it will display the document with color coded root and child elements. A plus (+) or minus sign (-) to the left of the elements can be clicked to expand or collapse the element structure.

If you want to view the raw XML source, you must select "View Source" from the browser menu.

Note: Do not expect the XML file to be formatted like an HTML document !

If you click on note.xml, IE will open the file in an Explorer like view.

Viewing an invalid XML file

If an erroneous XML file is opened with IE, IE will report the error.

IE will display an error message if you click on note_error.xml,

Other Examples

Viewing some XML documents will help you get the XML feeling.

We have collected the following XML data files for you:

An XML CD catalog

This is my fathers CD collection, stored as XML data (old and boring titles I think).

An XML plant catalog

This is a plant catalog from a plant shop, stored as XML data.

A Simple Food Menu

This is a breakfast food menu from a restaurant, stored as XML data.

Why does XML display like this?

XML documents do not carry information about how to display the data.

Since XML tags are "made up" or "invented" by the author of the XML document, we cannot know if a tag like <table> describes a HTML type of table, or if it describes a wooden kitchen table.

Without any information about how to display the data, most browsers will just display the XML document as it is.

In the next chapters, we will take a look at different solutions to the display problem, using CSS, XSL, JavaScript, and XML Data Islands.

Displaying XML with CSS

With CSS you can add display information to an XML document.

Displaying your future XML files with CSS?

Will you be using CSS to format your future XML files?

No, we don't think so! But we could not resist giving it a try:

Take a look at this pure XML file: The CD Catalog

Then look at this style sheet: The CSS file

Finally, view: The CD Catalog formatted with the CSS file

Here is a fraction of the XML file, with an added CSS stylesheet reference:

<?xml version="1.0"?>

<?xml-stylesheet type="text/css" href="cd_catalog.css"?>

<CATALOG>

 <CD>

 <TITLE>Empire Burlesque</TITLE>

 <ARTIST>Bob Dylan</ARTIST>

 <COUNTRY>USA</COUNTRY>

 <COMPANY>Columbia</COMPANY>

 <PRICE>10.90</PRICE>

 <YEAR>1985</YEAR>

 </CD>

 <CD>

 <TITLE>Hide your heart</TITLE>

 <ARTIST>Bonnie Tyler</ARTIST>

 <COUNTRY>UK</COUNTRY>

 <COMPANY>CBS Records</COMPANY>

 <PRICE>9.90</PRICE>

 <YEAR>1988</YEAR>

 </CD>

 </CATALOG> 	

We DO NOT believe that formatting XML with CSS is the future of the Web. Even if it looks right to use CSS this way, we DO believe that formatting with XSL will be the new standard (as soon as the main browsers support it).

Creating your future Homepages with XML?

Will you be writing your future Homepages in XML?

No, we don't think you will! But we could not resist giving it a try : A homepage written in XML.

We DO NOT believe that XML will be used to create future Homepages.

We DO believe however, that XHTML - HTML defined as XML will do the trick: Go to W3Schools' XHTML School.

Displaying XML with XSL

With XSL you can add display information to your XML document.

Displaying XML with XSL

XSL is the preferred style sheet language of XML.

XSL (the eXtensible Stylesheet Language) is far more sophisticated than CSS. One way to use XSL is to transform XML into HTML before it is displayed by the browser as demonstrated in these examples:

Click here to view the raw XML file.

Click here to view the same file styled with an XSL stylesheet.

Click here to view the XSL stylesheet.

A shortened copy of the file is shown below. Note the XSL reference in line two:

<?xml version="1.0"?>

<?xml:stylesheet type="text/xsl" href="simple.xsl" ?>

<breakfast-menu>

 <food>

 <name>Belgian Waffles</name>

 <price>$5.95</price>

 <description>two of our famous Belgian Waffles</description> <calories>650</calories>

 </food>

</breakfast-menu>	

To learn more about XSL, go to W3Schools' XSL School.

XML in Data Islands

With Internet Explorer 5.0, XML can be embedded within HTML pages in Data Islands.

XML Embedded in HTML

The unofficial <xml> tag is used to embed XML data within HTML.

XML data can be embedded directly in an HTML page like this:

<xml id="note">

 <note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

 </note>

 </xml>	

Or a separate XML file can be embedded like this:

<xml id="note" src="note.xml">

</xml>	

Note that the <xml> tag is an HTML element, not an XML element.

Data Binding

Data Islands can be bound to HTML elements (like HTML tables).

In the example below, an XML Data Island with an ID "cdcat" is loaded from an external XML file. An HTML table is bound to the Data Island with a data source attribute, and finally the tabledata elements are bound to the XML data with a data field attribute inside a span.

<html>

<body>

 <xml id="cdcat" src="cd_catalog.xml">

 </xml>

 <table border="1" datasrc="#cdcat">

 <tr>

 <td></td>

 <td></td>

 </tr>

 </table>

 </body>

 </html>	

If you are running IE 5, you can try it yourself.

With IE 5.0 you can also view the external XML file.

Also try this example, demonstrating <thead>, <tbody>, and <tfoot>.

The Microsoft XML Parser

To read and update - create and manipulate - an XML document, you need an XML parser.

Using the XML parser

The Microsoft XML parser comes with Microsoft Internet Explorer 5.0.

Once you have installed IE 5.0, the parser is available to scripts, both inside HTML documents and inside ASP files. The parser features a language-neutral programming model that supports

:

JavaScript, VBScript, Perl, VB, Java, C++ and more

W3C XML 1.0 and XML DOM

DTD and validation

If you are using JavaScript in IE 5.0, you can create an XML document object with the following code:

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")	

If you are using VBScript you create the XML document object with the following code:

set xmlDoc = CreateObject("Microsoft.XMLDOM")	

If you are using VBScript in an Active Server Page (ASP), you can use the following code:

set xmlDoc = Server.CreateObject("Microsoft.XMLDOM")	

Loading an XML file into the parser

XML files can be loaded into the parser using script code.

The following code loads an XML document (note.xml) into the XML parser:

<script language="JavaScript">

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load("note.xml")

// processing the document goes here </script>	

The first line of this script creates an instance of the Microsoft XML parser.

The second line turns off asynchronized loading, to make sure that the parser will not continue execution before the document is fully loaded.

The third line tells the parser to load an XML document called note.xml.

Loading pure XML text into the parser

XML text can also be loaded from a text string.

The following code loads a text string into the XML parser:

<script language="JavaScript">

var text="<note>"

text=text+"<to>Tove</to><from>Jani</from>" text=text+"<heading>Reminder</heading>"

text=text+"<body>Don't forget me this weekend!</body>" text=text+"</note>"

var xmlDoc = new ActiveXObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.loadXML(text)

// processing the document goes here </script>	

Note that the "loadXML" method (instead of the "load" method) is used to load a text string.

Displaying XML with JavaScript

To display XML you can use JavaScript.

JavaScript (or VBScript) can be used to import data from an XML file and display the XML data inside an HTML page.

To see how XML and HTML complement each other this way; first look at the XML document (note.xml), then open the HTML document (note.htm) that contains a JavaScript which reads the XML file and displays the information inside predefined spans in the HTML page.

To see how it works, Try It Yourself �

You can see a lot more of this kind of JavaScript in our DOM School.

XML in Real Life

Some real-life examples how XML can be used to carry information.

Example: XML News

XMLNews is a specification for exchanging news and other information.

Using such a standard makes it easier for both news producers and news consumers to produce, receive, and archive any kind of news information across different hardware, software, and programming languages.

An example XML News document:

<?xml version="1.0"?>

<nitf>

<head>

<title>Colombia Earthquake</title>

</head>

<body>

<body.head>

<headline>

<hl1>143 Dead in Colombia Earthquake</hl1>

</headline>

<byline>

<bytag>By Jared Kotler, Associated Press Writer</bytag>

</byline>

<dateline>

<location>Bogota, Colombia</location>

<story.date>Monday January 25 1999 7:28 ET</story.date>

</dateline>

</body.head>

</body>

</nitf>	

More information about XMLNews can be found at: http://www.xmlnews.org/

XML PCDATA and CDATA

Parsable Character Data (PCDATA) is text that is parsed by the parser.

Character Data (CDATA) is the text that is not parsed by the parser.

PCDATA

XML parsers treat all text as Parsable Characters (PCDATA).

When an XML element is parsed, the text between the XML tags is also parsed:

<message>This text is also parsed</message>	

The parser does this because XML elements can contain other elements, like in this example, where the <name> element contains two other elements (first and last):

<name>

<first>Bill</first>

<last>Gates</last>

</name>	

and the parser will break it up into sub-elements like this:

<name>

 <first>Bill</first>

 <last>Gates</last>

 </name>	

Escape Characters

Illegal XML characters have to be replaced by entity references.

If you place a character like "<" inside an XML element, it will generate an error because the parser interprets it as the start of a new element. You cannot write something like this:

<message>if salary < 1000 then</message>	

To avoid this, you have to replace the "<" character with an entity reference, like this:

<message>if salary < 1000 then</message>	

There are 5 predefined entity references in XML:

<	<	less than	

>	>	greater than	

&	&	ampersand 	

'	'	apostrophe	

"	"	quotation mark	

Entity references always start with the "&" character and ends with the ";" character.

Note: Only the characters "<" and "&" are strictly illegal in XML. Apostrophes, quotation marks and greater than signs are legal, but it is a good habit to replace them.

CDATA

Everything inside a CDATA section is ignored by the parser.

If your text contains a lot of "<" or "&" characters - like program code often does - the XML element can be defined as a CDATA section.

A CDATA section starts with "<![CDATA[" and ends with "]]>":

<script>

 <![CDATA[

 function matchwo(a,b)

 {

 if (a < b && a < 0) then

 { return 1 }

 else

 { return 0 }

 }]]>

 </script>	

In the previous example, everything inside the CDATA section is ignored by the parser.

XML Encoding

XML documents can contain foreign characters like Norwegian æøå, or french êèé.

To let your XML parser understand these characters, you should save your XML documents as Unicode.

Windows 95/98 Notepad

Windows 95/98 Notepad cannot save files in Unicode format.

You can use Notepad to edit and save XML documents that contain foreign characters (like Norwegian or French æøå and êèé),

<?xml version="1.0"?>

 <note>

 <from>Jani</from>

 <to>Tove</to>

 <message>Norwegian: æøå. French: êèé</message>

 </note>	

But if you save the file and open it with IE 5.0, you will get an ERROR MESSAGE.

Windows 95/98 Notepad with Encoding

Windows 95/98 Notepad files must be saved with an encoding attribute.

To avoid this error you can add an encoding attribute to your XML declaration, but you cannot use Unicode.

This encoding (open it with IE 5.0), will NOT give an error message:

<?xml version="1.0" encoding="windows-1252"?>	

This encoding (open it with IE 5.0), will NOT give an error message:

<?xml version="1.0" encoding="ISO-8859-1"?>	

This encoding (open it with IE 5.0), WILL give an error message:

<?xml version="1.0" encoding="UTF-8"?>	

This encoding (open it with IE 5.0), WILL give an error message:

<?xml version="1.0" encoding="UTF-16"?>	

Windows 2000 Notepad

Windows 2000 Notepad can save files as Unicode.

The Notepad editor in Windows 2000 supports Unicode. If you select to save this XML file as Unicode (note that the document does not contain any encoding attribute):

<?xml version="1.0"?>

 <note>

 <from>Jani</from>

 <to>Tove</to>

 <message>Norwegian: æøå. French: êèé</message>

 </note>	

you can open it with IE 5.0, WITHOUT getting an error message.

Windows 2000 Notepad with Encoding

Windows 2000 Notepad files saved as Unicode use "UTF-16" encoding.

If you add an encoding attribute to XML files saved as Unicode, windows encoding values will generate an error.

This encoding (open it with IE 5.0), WILL give an error message:

<?xml version="1.0" encoding="windows-1252"?>	

This encoding (open it with IE 5.0), WILL give an error message:

<?xml version="1.0" encoding="ISO-8859-1"?>	

This encoding (open it with IE 5.0), WILL give an error message:

<?xml version="1.0" encoding="UTF-8"?>	

This encoding (open it with IE 5.0), will NOT give an error message:

<?xml version="1.0" encoding="UTF-16"?>	

Error Messages

If you try to load an XML document into Internet Explorer 5, you can get two different errors indicating encoding problems:

An invalid character was found in text content.

You will get this error message if a character in the XML document does not match the encoding attribute. Normally you will get this error message if your XML document contains "foreign" characters, and the file was saved with a single-byte encoding editor like Notepad, and no encoding attribute was specified.

Switch from current encoding to specified encoding not supported.

You will get this error message if your file was saved as Unicode/UTF-16 but the encoding attribute specified a single-byte encoding like Windows-1252, ISO-8859-1 or UTF-8. You can also get this error message if your document was saved with single-byte encoding, but the encoding attribute specified a double-byte encoding like UTF-16.

Conclusion

The conclusion is that the encoding attribute has to specify the encoding used when the document was saved. My best advice to avoid errors is this:

Always save XML files as Unicode, without any encoding information.

Use an editor that supports Unicode (Windows 2000 Notepad does) and always skip the encoding attribute.

A Simple XML Server

XML can be generated on a server without any installed XML controls.

Storing XML on the Server

XML files can be stored on your Internet server.

XML files can be stored on your Internet server, just like any other HTML files.

Start up your Notepad editor and write the following lines:

<?xml version="1.0"?>

 <note>

 <from>Jani</from>

 <to>Tove</to>

 <message>Remember me this weekend</message>

 </note>

	

All you have to do is to save the file on your Internet server with a proper name like "note.xml", before the XML document is ready to use.

Note: The XML file must be in the same directory (folder) as your HTML files, and the MIME type of XML files should be set to text/xml.

Generating XML with ASP

XML can be generated on a server without any installed XML software.

To generate an XML response from your server - simply write the following code and save it as an ASP file on your web server :

<%Response.ContentType="text/xml"

 Response.Write("<?xml version='1.0' ?>")

 Response.Write("<note>")

 Response.Write("<from>Jani</from>")

 Response.Write("<to>Tove</to>")

 Response.Write("<message>Remember me this weekend</message>") Response.Write("</note>") %>	

Note that the content type of the response must be set to XML. Click here to see how the ASP file will be returned from the server.

(ASP stands for Active Server Pages. If you don't know how to write ASP, you can study it at W3Schools' ASP School)

Getting XML from a Database

XML can be generated from a database without any installed XML software.

The XML response from the previous example can easily be modified to fetch its data from a database.

To generate an XML database response from the server, simply write the following code and save it as an ASP file:

<% Response.ContentType = "text/xml"

 set conn=Server.CreateObject("ADODB.Connection") conn.provider="Microsoft.Jet.OLEDB.4.0;" conn.open server.mappath("../ado/database.mdb") sql="select fname, lname from tblGuestBook" set rs = Conn.Execute(sql) rs.MoveFirst() response.write("<?xml version='1.0' ?>") response.write("<guestbook>")

 while (not rs.EOF)

 response.write("<guest>")

 response.write("<fname>" & rs("fname") & "</fname>")

 response.write("<lname>" & rs("lname") & "</lname>") response.write("</guest>")

 rs.MoveNext()

 wend

 rs.close()

 conn.close()

 response.write("</guestbook>") %>	

If you want to see the real life database output from this page, try it yourself.

The example above uses ASP with ADO. If you don't know how to use ADO, you can study it at W3Schools' ADO School.

This chapter demonstrates a small framework for an XML application.

Start with an XML document

First we start with a simple XML document.

Take a look at our original demonstration document, the CD catalog.

<?xml version="1.0"?>

 <CATALOG>

 <CD>

 <TITLE>Empire Burlesque</TITLE>

 <ARTIST>Bob Dylan</ARTIST>

 <COUNTRY>USA</COUNTRY>

 <COMPANY>Columbia</COMPANY>

 <PRICE>10.90</PRICE>

 <YEAR>1985</YEAR>

 </CD> more	

If you have Internet Explorer 5.0 or higher, Click here to see the full XML file.

Load the document into a Data Island

A Data Island can be used to access the XML file.

To get your XML document "inside" an HTML page, add an XML Data Island to the page.

<xml src="cd_catalog.xml" id="xmldso" async="false">

</xml>	

With the example code above, the XML file "cd_catalog.xml" will be loaded into an "invisible" Data Island called "xmldso". The async="false" attribute is added to the Data Island to make sure that all the XML data is loaded before any other HTML processing takes place.

Bind the Data Island to an HTML Table

An HTML table can be used to display the XML data.

To make your XML data visible on your HTML page, you must "bind" your XML Data Island to an HTML element.

To bind your XML data to an HTML table, add a data source attribute to the table, and add data field attributes to elements inside the table data:

<table datasrc="#xmldso" width="100%" border="1">

 <thead>

 <th>Title</th>

 <th>Artist</th>

 <th>Year</th>

 </thead>

 <tr align="left">

 <td></td>

 <td></td>

 <td></td>

 </tr>

 </table>	

If you have Internet Explorer 5.0 or higher: Click here to see how the XML data is displayed inside an HTML table.

Bind the Data Island to or <div> elements

 or <div> elements can be used to display XML data.

You don't have to use a table to display your XML data. Data from a Data Island can be displayed anywhere on an HTML page.

All you have to do is to add some or <div> elements to your page. Use the data source attribute to bind the elements to the Data Island, and the data field attribute to bind each element to an XML element, like this:

Title:

Artist:

Year: 	

or like this:

Title: <div datasrc="#xmldso" datafld="TITLE"></div>

Artist: <div datasrc="#xmldso" datafld="ARTIST"></div>

Year: <div datasrc="#xmldso" datafld="YEAR"></div>	

If you have Internet Explorer 5.0 or higher, click here to see how the XML data is displayed inside the HTML elements.

Note that if you use a <div> element, the data will be displayed on a new line.

With the examples above, you will only see one line of your XML data. To navigate to the next line of data, you have to add some scripting to your code.

Add a Navigation Script to your XML

Navigation has to be performed by a script.

To add navigation to the XML Data Island, create a script that calls the movenext() and moveprevious() methods of the Data Island.

<script language="JavaScript">

 function movenext()

 {

 x=xmldso.recordset

 if (x.absoluteposition < x.recordcount)

 {

 	x.movenext()

 	}

 }

 function moveprevious()

 {

 x=xmldso.recordset

 if (x.absoluteposition > 1)

 	{

	x.moveprevious()

 	}

 }

 </script>	

If you have Internet Explorer 5.0 or higher, click here to see how you can navigate through the XML records.

All Together Now

With a little creativity you can create a full application.

If you use what you have learned on this page, and a little imagination, you can easily develop this into a full application.

If you are running Internet Explorer 5.0 or higher, click here to see how you can add a little fancy to this application.

XML HTTP Requests

XML data can be requested from a server using an HTTP request.

The Browser Request

An HTTP request from the browser, can request XML from a server:

var objHTTP = new ActiveXObject("Microsoft.XMLHTTP") objHTTP.Open('GET','httprequest.asp',false)

objHTTP.Send()	

To view the result from the request, you can display the result in your browser:

document.all['A1'].innerText= objHTTP.status document.all['A2'].innerText= objHTTP.statusText document.all['A3'].innerText= objHTTP.responseText	

Try it Yourself using JavaScript

Try it Yourself using VBScript

Communicating with the Server

With HTTP requests you can "communicate" with a server.

Communicating with a server using XML

In the example the response is "faked" on the server with this ASP code:

<% Response.ContentType="text/xml"

 txt="<answer><text>12 Years</text></answer>"

 response.write(txt) %>	

So, the answer will always be 12 years, no matter what question is asked. In real life, you have to write some code to analyze the question and respond with a correct answer.

XML Behaviors - the new DHTML?

A behavior is a CSS attribute selector. It can point to an XML file that contains code to be executed against elements in a Web page.

Behaviors is not a W3C standard, but a Microsoft only technology.

Behaviors - What are they?

A behavior is a new CSS attribute selector.

A behavior selector can point to a separate XML file that contains code to be executed against XML or HTML elements in a Web page.

Did you understand that? A method for completely removing script code from HTML pages? That's great! Now we can start writing script libraries, and attach our scripts to any element we want!

How does it work?

Take a look at this HTML file. It has a <style> element that defines a behavior for the <h1> element:

<html>

<head>

<style>

h1 { behavior: url(behave.htc) }

</style>

</head>

<body>

<h1>Move your Mouse over me</h1>

</body>

</html>	

Try it yourself with this example, and move the mouse over the text.

The behavior code is stored in an XML document behave.htc as shown below:

<component>

 <attach for="element" event="onmouseover" handler="hig_lite" /> <attach for="element" event="onmouseout" handler="low_lite" /> <script language="JavaScript">

 function hig_lite()

 {

 element.style.color=255

 }

 function low_lite()

 {

 element.style.color=0

 }

 </script>

 </component>	

The behavior file contains JavaScript. The script is wrapped in a <component> element. The component wrapper also contains the event handlers for the script. Nice behavior, isn't it?

XML Related Technologies

This chapter contains a list of technologies that are important to the understanding and development of XML applications.

It can also be viewed as "where to go from here" information, if you want to study more XML.

XHTML - Extensible HTML

XHTML is the reformulation of HTML 4.01 in XML. XHTML 1.0 is the latest version of HTML.

Read more at XHTML School.

CSS - Cascading Style Sheets

CSS style sheets can be added to XML documents to provide display information.

Read more at CSS School.

XSL - Extensible Style Sheet Language

XSL consists of three parts: XML Document Transformation (renamed XSLT, see below), a pattern matching syntax (renamed XPath, see below), and a formatting object interpretation.

XSLT - XML Transformation

XSLT is far more powerful than CSS. It can be used to transform XML files into many different output formats.

Read more at XSL School.

XPath - XML Pattern Matching

XPath is a language for addressing parts of an XML document. XPath was designed to be used by both XSLT and XPointer.

XLink - XML Linking Language

The XML Linking Language (XLink), allows elements to be inserted into XML documents in order to create links between XML resources.

XPointer - XML Pointer Language

The XML Pointer Language (XPointer), supports addressing into the internal structures of XML documents, such as elements, attributes, and content.

DTD - Document Type Definition

A DTD can be used to define the legal building blocks of an XML document.

Read more at DTD School.

Namespaces

XML namespaces defines a method for defining element and attribute names used in XML by associating them with URI references.

XSD - XML Schema

Schemas are powerful alternatives to DTDs. Schemas are written in XML, and support namespaces and data types.

Read more at Schema School.

XDR - XML Data Reduced

XDR is a reduced version of XML Schema. Support for XDR was shipped with Internet Explorer 5.0 when XML Schema was still a working draft. Microsoft has committed full support for XML Schema as soon as the specification becomes a W3C Recommendation.

DOM - Document Object Model

The DOM defines interfaces, properties and methods to manipulate XML documents.

Read more at DOM School.

XQL - XML Query Language

The XML Query Language supports query facilities to extract data from XML documents.

SAX - Simple API for XML

SAX is another interface to read and manipulate XML documents.

Read more at SAX School.

W3C Recommendations

The World Wide Web Consortium (W3C) was founded in 1994 to lead the Web by developing common WWW protocols like HTML, CSS and XML.

The most important work done by the W3C is the development of Web specifications (called "Recommendations") that describe communication protocols (like HTML and XML) and other building blocks of the Web.

Read more about the status of each XML standard at our W3C School.

XML Books

This is a list of selected books that we think you should read. It is a list of books that are known for good quality.

We have actually read all these books or an earlier edition of them.

Book	Description	

XML Step by Step July 2000 XML STEP BY STEP clearly explains the basics of XML and shows both nonprogrammers and Web developers how to create effective XML documents and display them on the Web.	

Beginning XML June 2000 This book is for anyone who is interested in learning what XML is, what it can do, and how to use it. Some knowledge of mark up and scripting is advantageous, but not essential, as the basics of these techniques are explained.	

Teach Yourself XML in 21 days April 1999 This is an easy-to-use tutorial that breaks down the task of learning XML into 21 focused lessons. Readers learn through clear explanations of concepts, structured step-by-step tasks, and abundant code samples.	

XML by Example December 1999 XML by Example teaches Web developers to make the most of XML with short, self-contained examples every step of the way.	

XML Web Documents from Scratch March 2000 This book is a road map to managing and publishing documents using XML and XSL.	

XML Bible August 1999 Based on the latest W3C standards, this tutorial-plus-reference takes you step by step through everything you need to know to put XML to work.	

XML Unleashed December 1999 XML Unleashed is a complete and comprehensive reference for sophisticated Web developers that covers every possible use of XML, from creating Web documents to building sophisticated Web applications.	

Professional XML January 2000 This book describes how the total XML concept will work for programmers. The focus is on real-world applications. Professional XML is for anyone who wants to use XML to build applications and systems.	

XML IE5, Programmers Reference March 1999 This book is for web developers who want to know more about what XML is, what its potential applications are, and what support is available for XML and its associated technologies right now in Microsoft Internet Explorer 5.	

Professional XML Design and Implementation March 1999 This unique book is for all web developers who are familiar with ASP and HTML and who now want to use XML to develop web applications.	

Designing Distributed Applications with XML, ASP and IE5 April 1999 This book is all about creating Cooperative Network Applications. The aim is to promote the re-use of intranet and Internet applications and maintain the viability of applications in the face of change.	

Professional ASP XML June 2000 This book will show you how to synthesize your ASP applications with the power of XML. The aim is for you to expand your knowledge of XML, in conjunction with ASP, to a level where you can harness effectively the full capability and versatility that this evolving technology offers to integrated Internet systems.	

