
Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

1

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

Abstract

The real challenge of any application development is performance. Java Server Pages
Technology was unveiled on 2nd June 1999. After the J2EE specification release, JSP plays a very
prominent role in application layer.

This articles discusses various performance factors and trade-offs when designing JSP
modules for J2EE applications.

Contents

1. JSP life cycle and essential methods

i. JSP lifecycle
ii. JSP’s init, service, destroy methods
iii. Context path options
iv. .html Vs. .jsp files

2. JSP directives

i. <%@page> directive
ii. <%@include> Vs. <jsp:include>
iii. <jsp:forward> Vs. sendRedirect()

3. MVC and Custom Tags

i. Trade-offs with MVC
ii. Trade-offs with Custom tags

4. Conclusion

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

2

1. JSP Life Cycle and essential methods

i. JSP lifecycle

After developing and testing a JSP file, it is deployed in the container. When the first
request is made to the JSP page, the container translates the JSP page into its equivalent servlet
program, then compiles it and generates the class file. (However this process is container or
application server vendor dependent).

For example, when a “HelloWorld.jsp” file is deployed in Apache Tomcat container, the
Tomcat doesn’t take any action on the deployed jsp file initially.

When the first request hits the “HelloWorld.jsp”, the Tomcat translates it into
“HelloWorld_jsp.java” servlet (the naming convention is container vendor dependent), then
compiles and generates “HelloWorld_jsp.class”.

A simple example follows:

HelloWorld.jsp

When the first request reaches the container, HelloWorld_jsp.java servlet is generated.The
generated servlet will have the code to achieve the same functionality for whatever the JSP page
was built for. But, it differs very much in syntax.

The generated HelloWorld_jsp.java servlet comes next.

<%@page language=”java”%>
<%

out.write(“hello world”);
%>

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

3

HelloWorld_jsp.java

A compiled JSP page has the following methods:

1. _jspInit() – This method is executed only once in the life of a JSP.
2. _jspService() – This method is executed for each request coming to the JSP.
3. _jspDestroy() – This method is executed when the JSP page is removed from the

container environment

ii. JSP’s init, service and destroy methods

_jspInit() method

_jspInit() method is executed only once in the JSP’s life-time. And hence, it is good
practice to initialize the permanent resources inside this method. For example, the JDBC
connection initialization code may be placed inside the _jspInit() method.

/* This is not exact code;
* Also, this servlet code translation (once again) “vendor dependent”!

 */

public final class HelloWorld_jsp extends HttpJspBase {

public void _jspInit() {
// we didn’t override this method, so nothing is inside.

}

public void _jspService (HttpServletRequest request, HttpServletResponse response)
{

out.write(“hello world!”); // Hmm.. this is what all we wanted!
}

public void _jspDestroy() {
// we didn’t override this method too!

}

}

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

4

If the connection code is placed in _jspService () method, a new JDBC connection should
be established for each request coming to the JSP page (as the service method is executed every
time) and, will increase the number of I/O’s. This may degrade the performance.

So, the catch is to override the _jspInit () method and place the initialization code inside it.

Example:

JDBCExample.jsp

After the JDBCExample.jsp is deployed, the container translates it into
“JDBCExample_jsp.java”. Then the lines from 3 to 7 are put in _jspInit() method of
JDBCExample_jsp.java.

When the first request is made, the _jspInit() method is executed. Then, the JDBC
connection is established. This connection establishment happens only once and hence it is
optimal.

_jspService ()

The _jspService () method is run by the container for each new request. In its lifetime a JSP
page spends the maximum time in _jspService () method. Each line of code present in this method
counts against performance. Hence, this method needs to be designed with great care.

In general, this method writes the dynamic and static content to the client (browser). Hence
the I/O will be freqeuent in this method.

The followings are some optimal techniques to improve the JSP’s Http response and I/O
performance.

1. Unnecessary encoding and encryption of data can be avoided since, it takes extra burden to
pack and unpack the actual data.

1. <%@page language=”java” import=”java.sql.*,javax.sql.*”>
2. <%!
3. Connection con;
4. public void _jspInit() {
5. Con = DriverManager.getConnection (connectionString); // a sample
connection
6. // Do some Transactions
7. conn.close (); // at last close the connection
8. }
9. %>

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

5

2. The output buffer size can be set larger to support big volume of output (this point is
covered in detail later).

3. When the output data (Html) is static, the client can be advised to cache the page content
with expiry date and time (using Meta-tags).

4. The out.write() usage to give html output can be minimized and html code could be directly
written in the page itself.

5. Lesser the synchronized code, greater the performance.

_jspDestroy ()

This method is called when the JSP page retires from container’s environment. This
method cane be overridden to claim the resources (initialized in _jspInit () method).

iii. Context path options

The JSP page is loaded only once in the container. It stays permanent then. When the JSP
page is modified, the server has to be restarted or the particular application should be reloaded and
then the changes will take effect. The container provides an option to reload the file automatically.
This option could be disabled to avoid frequent reloading.

(Tomcat specifies this option for each application in <tomcat-home>conf/server.xml file)

iv. .html Vs. .jsp files

When a web page needed to output only static html contents, it can be saved as .html file
rather than a .jsp. Because, every .jsp file is taken control by the container, to be compiled, loaded
and maintained. So, it slows down the speed.

An example follows.

 Example.html

<html>
<body>
This is an example.
</body>
</html>

<Context path="/MyExample" docBase="MyExample" reloadable="false" />

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

6

When request comes for the Example.html, the webserver server directly transfers the file without
concerning the JSP Engine (container)

Example.jsp

Now the JSP Engine (container) comes into picture for each request to Example.jsp. But,
functionality wise both give the same result. Hence, the former gives the performance
(Example.html).

2. JSP Directives

JSP directives instruct the container to process some special functionality. They are
dynamic and they count very much against the performance.

i. <%@page %> directive

The page directive has many attributes and we discuss some of them.

extends=”class” – This attribute makes the JSP page to extend the specified class. So,
this attribute should be used cautiously. The compiled JSP file may
become larger, which may consume large memory and give burden to
container.

buffer=”nkb” – This attribute specifies the output buffer size. The buffer size could be
made larger to support bulk data output. The default size of the buffer
is 8 kb. (The buffer can be autoflushed using ‘autoFlush’ attribute).

ii.<%@include> Vs. <jsp:include>

These are the two essential tags to insert static html contents into JSP files.

<%@page language=”java”%>
<html>
<body>
This is an example.
</body>
</html>

<%@include file=”add.html”%>

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

7

The above line inserts the content of add.html file into the jsp file at compile time. It
happens only once (at compile time). So, it does not affect the runtime performance.

In case of, <jsp:include> directive,

the file add.html is inserted at runtime . It happens every time the code is executed. It affects the
runtime performance.

Hence, the <%@include> is preferable than <jsp:include>.

iii. <jsp:forward> Vs. sendRedirect()

The fundamental difference between the redirect and forward is that the redirect simply
commands the browser (or client) to contact some other page and the later passes the request,
response objects to the forwarded page on behalf of the browser.

Hence, the sendRedirect() is optimal which reduces the container’s overhead of passing
the request and response objects.

3. MVC and Custom tags

Recently, MVC and Custom tags have given a new structure for JSP application
development. They come with their own frame-works to improve JSP based applications.

i. Trade-offs with MVC

When the application is very complex, MVC gives better solution with features like
reusability, logic-presentation separation, modularity and etc. But, the resources (classes, interfaces
and API’s) used to achieve the functionality is high.

For example, even a simple functionality in MVC needs minimum a Servlet class, Business
class and a JSP page. This bulk resource utilization makes the container’s performance become
poor.

MVC design could be used only for the applications that require it.

<jsp:include page="add.html" />

Article: Gearing up the JSP Performance
By Manivannan Palanichamy. Email: manivannan.p (at) gmail.com

9th Feb 2006

8

ii. Trade-offs with Custom tags

Custom tags give high degree of reusability. But, it is always questionable what
components are really going to be reused.Custom tags are very much dynamic. They play hard at
runtime. As like MVC framework, custom tags also utilize many classes and interfaces by the
name ‘tag handlers’.

Usage of custom tags could be reduced for unnecessary functionality and hence the
performance will boost up.

4. Conclusion

So far many techniques were discussed to gear up the JSP performance. The following is
the summary of the discussion:

 The _jspInit() method can be overridden to handle the code that should run only
once.

 The _jspService() is the prime method, needs careful design for performance. This
method spends its maximum time in doing I/O with client (broswer).

 The _jspDestroy() method can be overridden to claim the resources used.
 Reloading option of JSP can be disabled to avoid frequent loading (except

development time).
 Files that give only static html output can be named with .html instead .jsp, to

directly give the output.
 <%@page%> directive gives many attribute, some of them (extends, buffer)

influences the performance.
 <%@inlclude %> directive works at compile time. <jsp:include> plays at runtime,

affecting performance.
 sendRedirect() method makes the browser to take diversion, but <jsp:forward> does

itself.
 MVC structures the application, but consumes much resources. MVC could be used

in necessary cases.
 Custom tags offers reusability, by utilizing the resources. Lesser the custom tags,

greater the performance.

