
Object’s eligibility factors for Garbage Collection in Java
Author: Manivannan. P <manivannan.p (at) gmail.com>

Performance of any program depends on memory usage and smart coding. The
Java programmer should always attempt to minimize the amount of heap usage by
releasing the unused object spaces. All the objects used in Java are stored in heap
memory. Their addresses are stored in corresponding references present in the stack.

Garbage collector (a low priority and daemon thread) frees up unused object
spaces periodically. Since, Garbage collector is a low priority thread; it runs rarely and
makes the GC (Garbage Collection) process become slow. System.gc() and
Runtime.getRuntime().gc() are the methods can be assisted explicitly to force the GC.
However, these methods may not succeed all the times.

As per the common terms, an Object becomes eligible for GC, when it holds no
references (i.e., reference count = 0). Also, all the eligible objects are not immediately
flushed. But it is always good practice to design code such that it improves the degree of
Object's GC eligibility.

This article covers some common cases to improve the GC process.

Case 1: Delaying the Object creation and Making null assignment

Delaying object creation:

When a program needs to create bulk amount of objects, it can delay the object
creation statements until they are used.
Ex:

class A {...}
A a1;
A a2;
A a3;

// some statements
a1 = new A();
// some statements
a2 = new A();
// some statements
a3 = new A();

This program creates 3 references a1,a2,a3 and does not initialize them at first.
Later it initializes the references in the same order as they are put in use. This delay in
object creation can help to keep track a moderate use of heap memory throughout the
program's lifecycle.

Making null assignment:

The objects finished their service in the program can be null assigned.

Ex:
class A {}
A a1 = new A(); // 1 {a1} --> Object (A)
// statements that use a1
a1 = null ; // 10 {a1} --> null

 // & { (none)} --> Object (A)
 // statements that don’t use a2

Now the object referred by a1 may become eligible for GC at line 10. The null
assignment does not make an object become eligible for GC immediately. The purpose of
null assignment is to reduce the reference count of an object. Also it depends on other
references that the object hold.

Case 2 depicts this scenario clearly.

Case 2: Detaching all the unused object reference

class A {}
A a1 = new A(); //1
A a2 = a1 ; //2
 a1 = null;
// a1,a2 are not used in rest!
//......
// program exits here //10

At which line, the object created at line 1 becomes eligible for GC?
Ans: When the program exits (line 10)

In most of the cases, we mistake that the object becomes eligible for GC at line 3.
But the object is still held by the reference 'a2' at line 3. Hence, it becomes eligible for
GC, only when the program exits.

The following notational explanation may clarify this case.

Line 1: A a1 = new A(); => {a1} --> Object (A)
Line 2: A a2 = a1; => {a2,a1} --> Object (A)
Line 3: a1 = null; => {a1} --> null

But still, {a2} --> Object (A)

The object (created at line 1) is still held by the reference a2 (at line 3).
To make the object become eligible for GC, make all the references null (i.e., replace the
line 3 by).

like,
a1 = a2 = null; {a1,a2} --> null
and hence { (none) } --> Object (A)

Now all the references to the objects are detached and hence the object become
eligible for GC.

Case 3: Restricting method arguments

class A {}
A a1 = new A(); //1
doSomething(a1); //2
a1 = null;

At which line, the object created at line1 becomes eligible for GC?
Ans: It depends on the implementation of the method doSomething().

The reason is body of doSomething() method may assign some more new
references to the object referred by a1. So it may increment the reference count of the
object. Hence, the reference count of the object depends on internal design of the method
doSomething().

 It is often better practice to restrict the arguments to methods unless they are
necessary.

Case 4: Override finalize method()

All the classes inherit the method ‘protected void finalize()’ from java.lang.Object
class implicitly. The finalize() method is invoked before the object is garbage collected.
Programmer can place some codes in this finalize() method to release other resources
reserved by the object.
Ex:

protected void finalize()
{
s.close(); // close the socket
in.close(); out.close(); // close IO streams
}

But, care should be taken when designing this finalize() method. Sometime it may
lead to assign some new references to this object, which may cancel the GC process.
Ex:

A a2; // class variable a2;
protected void finalize()
{
a2 = this; //a2 as a new reference to this object
}

In the above example the finalize() method assigns a new reference a2 to ‘this’
object that cancels the current GC process. Also the finalize() method is invoked once per
GC.

Conclusion

 Concerning the 4 cases discussed above, the following points derived:
 Delay in object creation will result in moderate use of heap.
 ‘null’ object assignment will decrement the object’s reference count and improve

the degree of object’s eligibility for GC.
 Minimal use of method arguments will reduce the number object references.
 Careful design of finalize() method may help in optimal resource dispersion.

