#########################################################################
# A simple plotting procedure for May's logistic equation of population #
# growth. #
# #
# by Mario dos Reis. -- October 2003 #
#########################################################################
#########################################################################
# Chaos in a simple population system
#########################################################################
# non linear, chaotic function
# r is growth rate and x is population size (from 0 to 1)
lg = function(x, r) r * x * (1 - x)
gen = 50 # number of initial generations
r.min = 3.2
r.max = 4
p = '.'
cl = 'black' # plotting color
div = 4000 # plot resolution along the x axis
k = 16 # generations to be plotted, increase to 64 to get a high
# resolution plot
# full plot
plot(x=0, y=0, type = 'n', xlim = c(r.min, r.max), ylim = c(0, 1),
xlab = 'r', ylab = 'X')
for(r in seq(r.min, r.max, by = r.max/div)) {
x.init = .01
for(i in seq(0, gen)) {
x.next = lg(x.init, r)
x.init = x.next
}
for(i in seq(0, k)) {
x.next = lg(x.init, r)
x.init = x.next
points(r, x.next, pch = p, col = cl)
}
}
               (
geocities.com/mariodosreis/Rfractals)                   (
geocities.com/mariodosreis)