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Introduction 

The volatility of asset returns is of crucial importance in financial markets.  Volatility serves as a measure 

of risk faced by economic agents who purchase an asset.  Consequently, volatility is an integral part of 

many asset pricing models.  Specifically, volatility is fundamental when using the Black-Scholes option 

pricing model.  In fact, the only parameter that is unobservable in the Black-Scholes model is volatility.  

Therefore, the estimation of volatility is critical in order to use the model in practice.  One of the most 

popular ways of modeling volatility is a generalized autoregressive conditional heteroscedastic (GARCH) 

model.  The purpose of this study is to examine how well a volatility defined by a GARCH process 

matches the implied volatility observed in the market.  The premise is that if we can match the GARCH 

volatility to the implied volatility we can justify the use a GARCH model to estimate future volatilities 

and consequently option prices.  The paper will start out explaining the main underlying concepts of the 

Black-Scholes model and the GARCH model.  Then a GARCH model will be formulated using maximum 

likelihood estimation based on Microsoft equity returns.  The volatility estimates from the GARCH model 

will be compared to the implied volatility of Microsoft stock using nonparametric procedures. 

 

The Black-Scholes-Merton Option Pricing Model 

To understand the Black-Scholes-Merton pricing model it is helpful to first define a model of stock price 

behaviour.  Let us assume that agents require an expected rate of return on their investment (i.e. a 

percentage of the underlying stock price) and that this return is constant over time.  If S is the stock price 

at time t, the expected drift rate in S should be assumed to be µ S, where µ  is a constant parameter 

representing the expected rate of return on the stock.  Thus, the expected change in over some interval δ t 

is µ S.  In addition, if we assume that volatility is constant over time we can arrive at the following model: 

zStSS δσ+δµ=δ where z is a Wiener process      (1) 

From the properties of a Wiener process we know that z has the following properties: 

tz δε=δ where ε  is a random drawing from a standard normal distribution, i.i.d. N(0,1). 

0)( =zE δ  

tzEzVar δ=δ=δ 2)()(  

Moving from discrete time to continuous time our model is now: 

dtdt
S
dSdzdt

S
dSSdzSdtdS σε+µ=⇒σ+µ=⇒σ+µ=      (2) 

The model of stock price behaviour developed above is known as a geometric Brownian motion.  It is one 

of the most popular stochastic processes assumed for a non-dividend paying stock.  The left hand side of 

equation (2) is the return of the stock over an infinitesimal time interval.  The term dtµ  is the expected 
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value of this return and the term dtσε  is the stochastic component of the return.  The variance of the 

stochastic component (and therefore the whole return) is dt2σ .  From these results we can describe the 

distribution of stock returns as: 

),(~ 2dtdtN
S

dS σµ          (3) 

Another important concept in deriving the Black-Scholes-Merton model is Itô�s lemma, developed by Itô 

(1951).  A rigorous proof of this result is left out of this paper, for more detail consult the references.  

Suppose that the value of a variable x follows the Ito process, 

dztxbdttxadx ),(),( += where dz is a Wiener process and a and b are functions of x and t 

The variable x has a drift rate of a  and a variance of 2b .  Itô�s lemma shows that a function G of x and t 

follows the process, 
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1 , where dz is the same Wiener process as above (4) 

The Black-Scholes-Merton differential equation is developed using a geometric Brownian motion as 

described above in (2), 

SdzSdtdS σµ +=          (5) 

Using Itô�s lemma and defining SG ln= , 
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where ST is the stock price at some future price T, and S0 is the stock price at time zero.  From (6), ST is 

lognormally distributed since ln ST is normally distributed. 

Suppose that f is the price of a derivative contingent on S.  The variable f must be some function of S and 

t.  Utilizing Itô�s lemma, 
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Recall that the Wiener process (dz) underlying f  and S are the same.  Thus, by choosing an appropriate 

position in the stock and the derivative, the Weiner process can be eliminated.  Specifically we can short 

the derivative and take a long position in the stock.  The value of this position can is therefore, 
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Substituting in (5) and (7), 
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Notice that dz does not appear in (9).  Consequently, the position must be riskless over some very small 

period of time.  Using a arbitrage argument the following relation can be asserted, 

 dtrd Π=Π , where r is the risk-free rate      (10) 

If the above relationship is not true then arbitrageurs could make a riskless profit by investing in either the 

risk-free asset or the portfolio, which ever provides a greater return.  Substitution (8) and (9) into (10), 
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Equation (10) is the Black-Scholes-Merton differential equation.  Notice that (10) is independent of µ .  

This means that the Black-Scholes-Merton differential equation is independent of risk preferences, thus, 

any set of risk preferences can be used to evaluate f .  To assume that preferences are risk neutral greatly 

simplifies the analysis of derivatives. 

The solution to equation (10) depends on the type of derivative that is being valued.  For example, to value 

a European call option (c) the key boundary condition to (10) is, 

 ( )0,max KSf −=  when t=T, where K is the strike price 

Obviously, the boundary condition will change based on the type of option being valued.  For example, 

the boundary condition for a European put (p) option is, 

 ( )0,max SKf −=  when t=T 

Based on the two boundary conditions specified above the solution to (10) is, 

 )()( 210 dNKedNSc rT−−=  )()( 102 dNSdNKep rT −−−= −     (11) 
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For a rigorous proof of the above solution please consult the references, Black (1973).  In equations (11), 

T is the time to maturity measured in years, r is a continuous compounded risk-free return per year, and σ  

is the volatility of the stock measured in years. 

Notice that in the derivation of (11) volatility is taken as a constant.  That is it does not change with time.  

In addition, notice that volatility is the only parameter that can not be directly observed from the market.  

It is therefore necessary to estimate volatility empirically in order to use the Black-Scholes model in 

practice.  A popular way of modeling volatility is using an ARCH processes so that volatility is allowed to 

vary over time.  A we will see later, the implied volatility fluctuates over time, thus, it is important to 

account for this feature when estimating volatility. 
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ARCH Specification 

Let tψ  represent the information set at time t 

tttt YEY ε+Ψ= − ][ 1  

( ) ),0(~ 2
1 σΨε − NE tt          (12) 

Although (12) implies that the unconditional variance of tε  is the constant 2σ , the conditional variance of 

tε  could change over time.  Letting the square of tε  follow an AR(m) process: 

tit
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=
∑ 2
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2 , where tυ  is a white noise process: i.i.d. ( ) 0=υtE  ( ) 22 λ=υtE  (13) 

An alternative representation for the above process that imposes slightly stronger assumptions about the 

serial dependence of tε , 

ttt zh=ε , where tz  is an i.i.d. sequence with ( ) 0=tzE  and ( ) 12 =tzE    (14) 
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Substituting (14) and (15) into (13), 

 )1( 22 −= ttt zhυ           (16) 

Note that the unconditional variance of tυ  ( ( ) 22 λυ =tE ) is assumed to be constant, however, the conditional 

variance will change over time. 

A white noise error process tε  satisfying (13) is described as an autoregressive conditional heteroscedastic 

process of order p, denoted tε ~ARCH(p).  This class of process was introduced by Engle (1982).  In order 

for 2
th  to be covariance �stationary, 

 0...1 2
21 =−−−− p

p zzz ααα         (17) 

the roots of (17) must lie outside the unit circle.  If all iα  are non-negative then we can say this is 

equivalent to, 

 1...21 <+++ pααα          (18) 

Satisfying these conditions result in the unconditional variance of tε  is given by, 

 ( )
p

thE
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ω
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=
...1 21

2         (19) 

 

GARCH Specification 

The generalized ARCH (GARCH) model of Bollerslev (1986) is based on an infinite ARCH specification 

and reduces the number of estimated parameters.  Letting the conditional variance depend on an infinite 

number of lags of 2
1−tε , 
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Multiplying equation (21) by )(1 Lβ− , 
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Expression (22) is the generalized autoregressive conditional heteroscedasticity model, denoted 

),(~ qpGARCHtε  proposed by Bollerslev (1986).  To satisfy that 2
th  is covariance-stationary if, 
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Assuming this condition holds, the unconditional mean of 2
th  is, 
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To ensure that the conditional variance 2
th  is nonnegative 0≥δ .  Also requiring 0≥iα  and 0≥iβ  may 

seem sensible to ensure that the conditional variance is nonnegative.  However, Nelson and Cao (1992) 

show that these conditions are sufficient but not necessary to ensure the nonnegativity of 2
th . 

 

Maximum Likelihood Estimation 

ARCH and GARCH models are most often estimated by maximizing the likelihood function (ML).  The 

logic of ML is to interpret the density as a function of the parameter set, conditional on a set of sample 

outcomes.  Assuming the tε �s are i.i.d. and normally distributed with zero mean and variance 2
th , the log-

likelihood function for a sample of T observations is, 
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Where θ  is the set of parameters to be estimated.  To maximize this function we will set up the first order 

conditions and solve the resulting set of non-linear, recursive equations via some numerical optimization 

algorithm.  The Berndt, Hall, Hall and Hausman (1974) algorithm is used in this case to maximize the log-

likelihood function. 
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Data Sources & Description 

Equity returns from Microsoft Corporation will be used in to estimate a GARCH process.  The return will 

be calculated using daily prices of Microsoft stock, and implied volatilities will be calculated using call 

option prices over the period June 20, 2000 to November 8, 2002, representing 600 observations.  Figure 

(1) shows the price and return of Microsoft stock over the period in question. 
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Stock prices were retrieved from NSDAQ through the use of the Telerate software in the Financial Lab at 

University of Toronto, Rotman School of Management.  The Call option prices were also retrieved from 

CBOE though the use of Telerate Software.  The  3-month LIBOR rates were retrieved from DataStream 

using the DataStream advance software. 

The three month London Interbank Offer Rate (LIBOR) as the risk free rate.  Banks and other large 

financial institutions tend to use LIBOR rather than the Treasury rate as the risk free rate.  The reason is 

that financial institutions invest surplus funds in the LIBOR market and borrow to meet their short term 

funding requirements in this market.  Consequently, LIBOR can be views as their opportunity cost of 

capital. 

The 3 month LIBOR rate is quoted in quoted in yield, thus, it must be converted  into a continuously 

compounded annual rate:  

LIBOR Yield= 91
360

*(100-Y)               Y is the cash price 

The quarterly compound rate per annum (Rm) is calculate as follows:  

Rm = 91
365)100( *Y

Y−  

The continuous compounding rate (Rc) is calculated as follows:  

 Rc=4*ln(1+ 4
Rm

) 
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The RC in the model is defined as the risk free rate of return. 

Implied Volatility: 

The one parameter in the Black-Scholes pricing formulas that cannot be directly observed is the volatility 

of the stock price. The way to estimate the implied volatility is to keep the stock price, strike price, interest 

rate and time to maturity fixed, while adjusting the volatility until the Black-Scholes formula converges to 

the call price actually observed in the market. 

Call Options: 

Since short-term options have a small number of observations (they have a very short history), longer 

maturity call options must be used.  A long-term equity anticipation security (LEAP) have relatively 

longer histories than regular options.  LEAP (one and half year life span) call options that mature in 2003 

with strike prices of $50, $60, $70, and $100 will be used to calculate implied volatility.  It is possible that 

the distribution of implied volatility is dependent on strike price.  Thus, a range of strike prices will be 

used to account for options that are in-the-money or out-of-the-money.  The calculated implied volatilities 

are displayed in Figure (2). 

FIGURE (2) 
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Analysis of Empirical Model 

The unit root test for stationarity tries to discriminate series that are stationary from those that follow a 

non-stationarity (or integrated) process like a pure Random Walk.  So the purposes of our GARCH model 

we had to test whether our variable r (i.e. equity returns) followed an integrated process of order zero or a 

random walk process.  The reason why this is important is because we want make certain that our 

coefficients are consistent and that our statistical procedures are in fact the correct ones. The Augmented 

Dickey Fuller test is performed by estimated the unrestricted regression equations with lagged changes of 

endogenous variables so as to control for autocorrelated errors.  The number of lags is contingent upon the 
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frequency of the sample data.  In our case, with daily observations, we used up to 30 lags of the 

endogenous variable.  This procedure will give us a better estimate of the test statistic since we are 

allowing for the existence of serial correlation in the residuals. Once we have calculated the SSE of the 

unrestricted equation we then impose the restrictions of a random walk without a drift (row to one) and 

estimate the SSE of the restricted equation.  Calculating a standard F test (using the restricted SSE and 

Unrestricted SSE) and comparing it to the D-F critical values will tell us if autocorrelation coefficient is 

significantly different from one.  From table (1) we see that in out the autocorrelated coefficient in 

significantly different from one (i.e. less than one) at a 1%, 5% and 10% level of confidence.  So we 

conclude that our variable r follows a stationary process.  (Note: Since we are only using one variable, 

namely equity returns, we don�t have to test for co-integration). 

t

p

i
titt uYYY +∆+=∆ ∑ −− 11 αδ  

H0: 0=δ   (nonstationary) 

H1: 0<δ   (stationary) 

 

TABLE 1 
Augmented Dickey-Fuller test for unit root         Number of obs   =       568 
                               ---------- Interpolated Dickey-Fuller --------- 
                  Test         1% Critical       5% Critical      10% Critical 
               Statistic           Value             Value             Value 
------------------------------------------------------------------------------ 
 Z(t)             -5.618            -3.430            -2.860            -2.570 
------------------------------------------------------------------------------ 

* MacKinnon approximate p-value for Z(t) = 0.0000 

We can also see this result by looking at the autocorrelation functions and partial autocorrelation function, 

Figure 3.  In the ACF as well as the PACF we see how each coefficient are not significantly different from 

zero.  This means that equity returns (i.e. r) follows are white noise process and thus the price level (i.e. 

original model) follows a random walk.  This can also be tested using the Piece-Box-Q test or DW test to 

check whether our coefficient is indeed close to zero. 
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FIGURE 3 
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EMPERICAL MODEL: 

In the following we assume the conditional mean specification is, 

ttR εκ +=  where tR  represents daily continuously compounded returns   (26) 

ttt hz=ε  with 0)( =tzE  1)( =tzVar and ),0(~ 2
tt hNε       (27) 
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First, however, the ARCH test will be used to illustrate the validity of using an ARCH type model.  

Engle(1982) derived this test using the Lagrange multiplier principle. 
22

22
2

110
22 ...)var( ptptttt h −−− ++++== ελελελλε        (29) 

H0: 0...21 ==== pλλλ , in which case we have 0
2 )var( λε =t , implying a homoscedastic error variance. 

H1: at least one 0,...,, 21 ≠pλλλ  

ARCH(1), ARCH(2), ARCH(3), ARCH(4), and ARCH(5) models are estimated for this test.  That is p=5.  

The test statistic, 2nR , follows a 2χ  distribution with p degrees of freedom. 

TABLE 2 

 R2 n p NR2 p-value 

ARCH(1) 0.0085 598 1 5.083 0.0241615 

ARCH(2) 0.0126 597 2 7.5222 0.0232581 

ARCH(3) 0.0237 596 3 14.1252 0.0027396 

ARCH(4) 0.0244 595 4 14.518 0.0058128 

ARCH(5) 0.0262 594 5 15.5628 0.0082097 

For ARCH(1)-ARCH(5) there is sufficient evidence to reject H0 at a 95% confidence level.  Therefore, we 

can conclude that the error variance is serially correlated.  This gives merit to using an ARCH type model. 
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The parameter estimates for the above model will be found using the maximum likelihood technique as 

described earlier in this paper.  However, the order of GARCH(p,q) processes still needs to be addressed.  

To determine the order of the GARCH model, the Schwartz criterion has been shown to deliver consistent 

series models by Bollerslev, Chou and Kroner (1992).  In addition, the Akaike and Hannan-Quinn 

criterion also produce similar results to the Schwartz criterion.  The formulas for the above criterion along 

with their computations for a GARCH p∈ [1,3], and q∈ [1,3] are shown below.  Minimizing the following 

criteria determines the values of p and q. 

• Akaike 
n
k

n
L 2log2 +−=  

• Schwartz 
n

k
n

LogL )log(22 +−=  

• Hannan-Quinn =
n

kk
n

L )]log[log(2log2 +−  

• Shibata = 





 ++−

n
kn

n
L 2loglog2  

Where k is the number of parameters estimated, n is the sample size, and Log L is the log-likelihood 

value. 

TABLE 3 

  P Q N Log Likelihood Akaike Schwartz Hannan-Quinn

GARCH(1,1) 1 1 599 -1267.363 4.244951586 4.23622469 4.235958387 

GARCH(2,1) 2 1 599 -1278.539 4.28560601 4.274285268 4.276856177 

GARCH(3,1) 3 1 599 -1281.912 4.300207012 4.286156125 4.291857057 

GARCH(1,2) 1 2 599 -1279.014 4.287191987 4.275871245 4.278442154 

GARCH(2,2) 2 2 599 -1286.969 4.31709182 4.303040933 4.308741865 

GARCH(3,2) 3 2 599 -1282.163 4.304383973 4.287508882 4.296571314 

GARCH(1,3) 1 3 599 -1285.67 4.312754591 4.298703704 4.304404636 

GARCH(2,3) 2 3 599 -1283.311 4.308217028 4.291341937 4.30040437 

GARCH(3,3) 3 3 599 -1287.762 4.326417362 4.306649221 4.319261419 

The results from Table (3) show that Schwartz, Akaike and Hannan-Quinn criterion all confirm that 

GARCH(1,1) is the optimal order of the model.  In addition, Bollerslev, Chou and Kroner (1992) have 

found that the GARCH(1,1) model best captures the heteroscadasticity characteristics of financial data. 

 

MODEL: 

ttR ε+κ=  where tR  represents daily continuously compounded returns   (30) 

ttt hz=ε  with 0)( =tzE  1)( =tzVar and ),0(~ 2
tt hNε       (31) 
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2
11

2
11

2
−− β+εα+δ= ttt hh           (32) 

 

Maximum Likelihood Estimation 

Sample:  2 to 600                               Number of obs      =       599 
                                                           Wald chi2(.)          =         . 
Log likelihood =  -1267.363              Prob > chi2           =         . 
 
-------------------------------------------------------------------------------------- 
                                   OPG 
                   Coef.       Std. Err.          z        P>|z|         [95% Conf. Interval] 
---------------------------------------------------------------------------------------- 
κ            -.0003579   .0010635     -0.336    0.736      -.0024422    .0017265 
---------------------------------------------------------------------------------------- 
GARCH  

1α           .1246635   .0237754       5.243    0.000       .0780645    .1712624 
1β            .8282759   .034424       24.061    0.000       .7608062    .8957457 

δ            .0000475   .0000175       2.708    0.007       .0000131    .0000819 
---------------------------------------------------------------------------------------- 
 

The conditional variance, 2
th , is measured in days.  To compare the volatility produced by the GARCH 

model with the implied volatilities observed in the market we must convert 2
th  so that it is measured in 

years (252 trading days per year).  We will denote the yearly volatility produced by GARCH estimate as 

GARCHσ , and the implied volatility will be denoted as IMPLIEDσ . 

 )252)(( 2
, ttGARCH h=σ          (33) 

Figure (4) shows GARCHσ  compared to IMPLIEDσ  under strike prices of $50, $60,$70 and $100. 
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FIGURE 4 
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The above graphs seem to indicate that the GARCH volatility matches the implied volatility better for 

lower strike prices than for higher strike prices.  To test this hypothesis formally we should test whether 

the distribution of GARCHσ  matches the distribution of IMPLIEDσ .  In situations where the population 

distribution function (pdf) is know with certainty a goodness of fit test will suffice.  However, in this 

situation the pdf of implied volatility is unknown, hence, an alternative testing procedure must be used.  

One way of dealing with this problem is to use test statistics whose pdf�s remain the same, regardless of 

how the population sampled may change.  Inference procedures having this sort of scope are called 

nonparametric.  One of the simplest nonparametric tests is the sign test.  It is appropriate in a paired-data 

situation where the normality if the distribution is in question.  The basic approach is to test whether the 

number of data values that have increased is different from the number of data values that decreased.  

Under H0 we have: 

 probability of an increase = the probability of a decrease 

 P(increase) = P(decrease) 

 Binomial distribution with 0=π  
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If 25≥n  

Let tIMPLIEDtGARCHi xxd ,,21 σ−σ=−=  

 =n number of 0≠id  

 =T number of positive id  

Test statistic:  
n

nTZcalc 5.0
5.0)5.0( −±= , where T  is adjusted for continuity 

The basic draw back of the sign test is that it assumes the data set comes from a symmetric distribution.  

Since we do not have a clear idea of whether the distribution is indeed symmetric, an alternative procedure 

will be discussed.  The Wilcoxon signed rank test is also appropriate for comparing distributions of 

paired-data where true functional form of the distribution is unknown.  The Wilcoxon signed rank test is 

one of the most widely used nonparametric procedures, and dominates the sign test in terms of both size 

and power.  Under H0 we have the populations being identical. 

If 30>n  

Define ),min( −+= WWW  

 where +W is the rank sum of the positive differences 

 where −W is the rank sum of the negative differences 

W is approximately normally distributed with 
4

)1()( += nnWE  and 
24

)12)(1( ++=σ nnn
w  

w
calc

WEWZ
σ

−= )( , with an upper critical value 2/α−Z  and lower critical value 
2

)1( +nn  

The results of both the Wilcoxon signed rank test, and the sign test are shown below in Table (4). 
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TABLE 4 

Wilcoxon Signed Ranks Test 
Ranks 

    N Mean Rank Sum of Ranks 

GARCH Volatility - Implied Volatility K=50 Negative Ranks 295 270.80 79885.00 

  Positive Ranks 305 329.23 100415.00 

  Ties 0   

  Total 600   

GARCH Volatility - Implied Volatility K=60 Negative Ranks 196 232.17 45506.00 

  Positive Ranks 404 333.65 134794.00 

  Ties 0   

  Total 600   

GARCH Volatility - Implied Volatility K=70 Negative Ranks 152 188.84 28703.00 

  Positive Ranks 448 338.39 151597.00 

  Ties 0   

  Total 600   

GARCH Volatility - Implied Volatility K=100 Negative Ranks 121 198.57 24027.00 

  Positive Ranks 479 326.25 156273.00 

  Ties 0   

  Total 600   

Test Statistics 

 GARCH Volatility - 

Implied Volatility 

K=50 

GARCH Volatility - 

Implied Volatility 

K=60 

GARCH Volatility - 

Implied Volatility 

K=70 

GARCH Volatility - 

Implied Volatility 

K=100 

Z -2.416 -10.510 -14.465 -15.566 

Asymp. Sig. 

(2-tailed) 

.016 .000 .000 .000 
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Sign Test 
Frequencies 

  N 

GARCH Volatility - Implied Volatility K=50 Negative Differences 295 

 Positive Differences 305 

 Ties 0 

 Total 600 

GARCH Volatility - Implied Volatility K=60 Negative Differences 196 

 Positive Differences 404 

 Ties 0 

 Total 600 

GARCH Volatility - Implied Volatility K=70 Negative Differences 152 

 Positive Differences 448 

 Ties 0 

 Total 600 

GARCH Volatility - Implied Volatility K=100 Negative Differences 121 

 Positive Differences 479 

 Ties 0 

 Total 600 

Test Statistics 

GARCH Volatility - 

Implied Volatility 

K=50 

GARCH Volatility - 

Implied Volatility 

K=60 

GARCH Volatility - 

Implied Volatility 

K=70 

GARCH Volatility - 

Implied Volatility 

K=100 

Z -.367 -8.451 -12.043 -14.574 

Asymp. Sig. 

(2-tailed)

.713 .000 .000 .000 

Sign Test 

 

The results from Table (4) indicate that the distribution of GARCH volatility is different from the implied 

volatility under strike prices of $50, $60, $70, and $100.  All test results, except for the sign test with a 

strike price of $50, clearly reject H0.  Although, the statistical evidence suggests that the distributions are 

different under all the strike prices examined, there is an indication that the GARCH volatility distribution 

matches the implied volatility distribution better for lower strike prices.  This result can be drawn from the 

fact that the CALCZ �s decrease as strike price decreases for both the Wilcoxon signed rank test and the sign 

test. 
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Conclusion 

A GARCH(1,1) model was used to estimate conditional variance on Microsoft stock over the period 

starting at June 20,2000 to November 8, 2002.  The conditional variance was then compared to the 

implied volatility in the market to assess the validity of using a GARCH process to estimate volatility.  

Nonparametric tests were used to compare the distributions of the estimated GARCH volatility and the 

implied volatility in the market.  The results indicate that the two distributions in question are not equal to 

each other.  However, we can conclude that GARCH(1,1) conditional volatility matches the implied 

volatility distribution better for lower strike prices (this corresponds to deep out-of-the-money call options 

or deep in-the-money put options). 

The GARCH model used in this study does not produce volatilities that are consistent with empirical 

implied volatilities.  However, other ARCH-type models possess properties that may help to estimate 

volatility more accurately.  This point can be illustrated with the aid of a volatility smile.  A volatility 

smile is a plot of the implied volatility of an option as a function of its strike.  Three volatility smiles are 

displayed in Figure (5) corresponding to time to maturity of less than 3 months, between 3 months and 6 

months, and more than 1 year. 

FIGURE 5 

Volitility Smiles
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The volatility smile in Figure (5) indicates that the relationship between volatility, strike price and time to 

maturity is dynamic.  If volatility were constant over time and strike price the volatility smiles should all 

be the same horizontal line.  However, we can see that volatility becomes larger as the strike price 

progresses to extreme low or high values.  Therefore, there is a greater probability of the stock price being 

extremely low or high.  Furthermore, the curvature of the volatility smile seems to depend on the option 

maturity.  The smile tends to be less pronounced as the option maturity increases.  The above arguments 

suggest that the volatility of asset returns display asymmetric properties.  In other words, positive 
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innovations in asset prices are characteristic of greater volatility than negative innovations.  The GARCH 

model prescribed in this study treats the volatility of innovations as symmetric, that is, positive and 

negative innovations have the same effect on volatility.  Obviously, this model misspecification has a 

detrimental effect on the validity of the model developed in this study.  In order to account for asymmetry, 

or the �leverage effect� as it has been termed, Nelson developed the exponential GARCH (EGARCH) 

model that accounts for both the size and the sign of lagged residuals in the conditional variance.  Another 

popular GARCH extension is the fractionally integrated GARCH (FIGARCH) model developed by 

Baillie, Bollerslev, and Mikkelsen.  Empirical studies often result in 1
1

≈β+α ∑∑
==

q

i
i

p

ij
j , implying that the 

model is highly persistent.  When this sum is equal to one current information remains relevant for all 

future forecasts, that is, the model is integrated.  The FIGARCH model adjusts for integration by 

introducing a difference operator, termed d where 1d0 ≤≤ , into the conditional variance equation.  

Finally, although this study has considered only univariant models, it is possible to extend the GARCH 

framework to include multiple exogenous variables, termed as a GARCH-X model.  This can be achieved 

by including another variable, say tX , into the conditional variance equation. 

In addition to using more advanced techniques to estimate volatility it will also be interesting to broaden 

the scope of the data set used in this study.  The results in this paper only hold true for Microsoft equity, 

thus, the results are not robust enough to make any general conclusions regarding the validity of GARCH 

processes.  Including more securities so that the entire market is represented will lead to more convincing 

and vigorous conclusions. 
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