- 1.) For C and Ni ions impinging on an Al substrate, calculate the screening radius a for the Bohr formulation, the Firsov formulation, and the Lindhard formulation. Compare all of these to the universal screening radius.
- 2.) Calculate the value of the screening function $\chi(r/a)$ at values of x = r/a = 1, 5, 10, and 15 for the Sommerfeld, Moliere, and Lenz-Jensen forms.

3. Using the following equation:

$$0 = 1 - \frac{V(r_{min})}{E} - \frac{b^2}{r_{min}^2}$$

and assuming a pure Coulomb potential, calculate the value of r_{min} for a 100keV boron atom on silicon for an impact parameter b = 1nm. What is the significance of your answer?

- 4. Solve the scattering integral for the unscreened Coulomb potential $V(r) = Z_1 Z_2 e^2/r$.
 - a.) Derive a general expression for the distance of closest approach, r_{\min} , for the unscreened potential.
 - b.) What is the value of r_{min} for 2MeV ⁴He incident on gold for a head-on collision, b = 0, and for b = 0.5a_L and 5a_L, where a_L is the Lindhard screening length.