Homework #5 Due 7 October 2003

1. Show that

$$d\sigma = \frac{-\pi \cdot a_{\rm TF}^2}{2} \cdot \frac{f(\sqrt{t})}{\sqrt{t^3}} \cdot dt$$

Can be written in the form:

$$d\sigma = \frac{\pi \cdot a^2}{2} \cdot \frac{\sqrt{T_M}}{\epsilon} \cdot \frac{f(\sqrt{t})}{\sqrt{T^3}} \cdot dT$$

2. For $M_1 < M_2$ (He on Si), $M_1 = M_2$ (Si on Si) and $M_1 > M_2$ (Xe on Si), calculate the values of the dimensionless collision parameter t, the center of mass scattering angle θ_c , and the laboratory scattering angle θ for values of T/T_m = 0.25, 0.5, and 0.75. Assume an incident particle energy of 100keV in all cases.

3. Calculate the velocity v, the Thomas-Fermi (Firsov) screening length a_{TF} , the universal screening length a_U and the reduced energy ε for 1, 10, and 100 keV Ar ions ($Z_1 = 18$, $M_1 = 40$) incident on Cu ($Z_2 = 29$, $M_2 = 64$).

4. Calculate the nuclear stopping cross section and $dE/dx|_n$ for Cu in Ni for $\varepsilon = 0.1$ and $\varepsilon = 1$.