Homework 8 Due 11 November 2003

- 1. For 100keV Sn ions in Si, find the approximate value of dpa (using tabulated values for ϵ and R_p) for a dose of 5 x 10¹³ ions/cm². This level of damage is sufficient to form an amorphus layer in Silicon.
- 2. Using the power law energy-transfer cross-section, calculate the approximate mean free path between Si recoils for both Si and Xe ions with energies of 1, 10, and 100keV. Refer to Section 7.11.1 of the textbook.
- 3. Consider the case of: 1.) Si ions incident on Au, and 2.) Au ions incident on Si; both cases for 100keV incident energies normal to the sample. Which would have the largest value of:
 - a.) the dimensionless energy ε
 - b.) electronic energy loss rate, dE/dx|_a
 - c.) nuclear energy loss rate, dE/dx|_n
 - d.) projected range, R_p
 - e.) sputtering yield, Y (assume a binding energy of U = 5eV)
 - f.) maximum concentration of implanted species
- 4. Calculate the energy-independent sputtering yield values of Ne, Ar, and Xe incident on Ni at 10keV using the expressions for nuclear stopping given in Chapter 5 and a binding energy of 5 eV.
 - a.) Compare you values with data given in Chapter 9 (Fig. 9.3)
 - b.) Calculate values of the dimensionless energy, ε , for the three cases. Are these ε values in a region where nuclear stopping rates would dominate?
 - c.) For a current of $10\mu\text{A/cm}^2$ of Ar, how many monolayers (10^{15} atoms/cm²) would be removed per second?