INTEGRATION – WORKSHEET

COURSE/LEVEL

NSW Secondary High School Year 12 HSC Extension Mathematics. Syllabus reference: 11.1 – 11.5

- **1.** Find the primitives of:
 - (i) $\sqrt[3]{x^5}$ (i) $\frac{5}{x^3}$
 - (iii) $(1-x)^8$ (iv) $\sqrt{3x-1}$
- Find the area bounded by the curve $y = 3x - x^2$ and the x-axis.
- 3. Complete the following table:

x	0	1	2	3	4
$f(x) = \frac{1}{x - 1}$					

Hence evaluate $\int_0^4 \frac{dx}{x+1}$ using 5 function values of Simpson's Rule.

Find the area enclosed between the parabola $y = x^2 + 2x$ and the straight line y = x.

Find the area of the shaded region.

6. If f''(x) = 6x - 8 and f'(0) = 6, f(1) = 1, find f(x).

- 7. The area bounded by the parabola $y = 9 - x^2$ and the x-axis is rotated about the *x*–axis. Find the volume generated.
- **8**. If $y = \sqrt{1 4x^2}$,
 - (a) find $\frac{dy}{dx}$.
 - (b) Hence evaluate $\int_0^1 \frac{x \, dx}{\sqrt{1 4 \, r^2}}.$
- 9.

Calculate the area of the shaded region.

- **10**. Use the substitution $u = x^2 + 1$ to find $\int x (1+x^2)^3 dx.$
- 11. By letting u = 2x + 1, evaluate

$$\int_1^4 x\sqrt{2x+1}\,dx.$$

12. Use the substitution $t = u^2 - 1$ to evaluate $\int_0^1 \frac{t}{\sqrt{t-1}} dt.$