Review 1 Problems Only Algebra B
SOLUTIONS
7a    7b    8a    8b    9

     7a)  Find the distance between the points and .



     ANSWER
     The distance between two points on the plane      and        is given by the formula

                      

     where       corresponds to       and        corresponds to   

     so

                      

     You must always simplify radical expressions, so

                      

     The final answer is

                      

     7b) Find the distance between the points        and   


     ANSWER
         corresponds to        and        corresponds to    , so


                      

                           

                          


     To simplify the radical, you can factor out the       in  

     so

                      

     The final answer is

                      

     Remember that

                      

     can not be further simplified because

                      

     That is,

                      

     Recall the Rules for Working with Radicals!


     8a) Write the complex fraction       in the form       , where   


     ANSWER
     Multiply the numerator and the denominator by the complex conjugate of the denominator.

                     


     Recall that      , so

                     


     But this is not yet in the form        , you must break up       into two fractions
     using the common denominator    .

     The final answer is

                     

     where       and   


     8b)Write the complex fraction        in the form      , where   


     ANSWER
                     

     Collect like terms in the numerator and recall that   


                     

     Writing this in in the standard form       , that is, separating the real and the imaginary parts,
     the final answer is


                                         

     9)    Solve the equation

                                           

      ANSWER
     This is an example of an equation reducible to a quadratic equation.
     Using the Power to a Power Rule for Exponents, the equation can re-written as

                     


     If you substitute        , the equation becomes


                     

     In this form the equation is more obviously a quadratic equation in the variable    .
     The left side of the equation can be factored as

                     

     Now you use the Zero Product Principle that if a product is equal to zero,
     then some or all of the factors in the product must be equal to zero.
     In algebra notation,

                     

                      implies that

                          or    .

     So

                         or   


     Solving each equation for       , you get

                        or   

     But now you remember that you are solving the equation


                              


     for       and that       , so


                              is       

     and

                                    is       

     To get       alone, you take the 3rd power of both sides of the equations


                     

     and

                     

     Now you use the Power to a Power Rule for Exponents to get        alone


                     


     So the solutions of the equation are

                     
     or

                     


                                                                                    top

                                                                 Review 1 Problems Only


© edmond 2001