An introduction
to the dynamics of multibody systems
Marcelo A Trindade
Dissertation presented to the Mechanical Engineering Department of PUC-Rio as part of requirements to obtain the degree of : Master in sciences of mechanical engineering
Advisor: Prof.
Rubens Sampaio, Ph.D.
June 1996
Abstract
This dissertation presents an introduction to the multibody dynamics
with rigid and flexible parts, through the exposition of the following
steps: modeling, simulation and control. The modeling of multibody systems
emphasizes finite rotations representation, flexibility characterization
and symbolic formulation of equations of motion. Finite rotations representation
is done using several classical parameters, namely Euler's and Bryant's
angles, Euler's and Rodrigues' parameters, rotational vector, conformal
rotational vector and quaternions. Parameters singularities are analyzed,
through the comparison of different parameters systems. Flexibilty characterization
is done using the assumed modes method. Equations of motion formulation
is achieved through Lagrange's and Maggi-Kane's equations and then implemented
in MATLAB (tm) Symbolic Math Toolbox. State space equations are then derived
from the symbolic math results in order to study the linear control of
multibody systems. Two control strategies are considered: pole placement
and optimal control. Simulation of some numerical examples of dynamics
and control of multibody systems is done with emphasis to the choice of
the integration algorithm. All steps are achieved inside MATLAB (tm) environment,
using its symbolic function for modeling, linearization and control functions
for controller design, and integration algorithms and graphical functions
for simulation.
Click here to download the zip compressed PDF version [1.2 M]
References
-
Amirouche, F.M.L. [1992] Computational Methods in Multibody Dynamics,
Prentice-Hall, Inc., New Jersey.
-
Andrzejewski, T.; Bock, H.G.; Eich, E. e von Schwerin, R. [1993]
Recent Advances in the Numerical Integration of Multibody Systems, Advanced
Multibody Systems Dynamics - Simulation and Software Tools (W. Schiehlen,
ed.), p.127-151, Kluwer Academic Publishers, Dordrecht, NL.
-
Andrzejewski, T.; Bock, H.G.; Eich, E. e von Schwerin, R. [1995]
Exploiting Sparsity in the Integration of Multibody Systems in Descriptor
Form, IWR University of Heidelberg, Heidelberg, Germany.
-
Angeles, J. [1988] Rational Kinematics, Springer-Verlag, Berlin.
-
Argyris, J.H. [1982] An excursion into large rotations, Comp.
Meth. in Appl. Mech. and Eng., vol.32, p.85-155.
-
Arnold, V. [1976] Les Méthodes Mathématiques de
la Mécanique Classique, Mir, Moscou.
-
Banach, S. [1951] Mechanics, Monografie Matematyczne, Warszawa-Wroclaw.
-
Barrientos, G. e Sampaio, R. [1995a] Análise de Choque
y Flexibilidad en Sistemas de Multicuerpos, Anais do International Meeting
on Computational Mechanics and CAD/CAM, novembro, Concépcion, Chile,
p.111-118.
-
Barrientos, G. e Sampaio, R. [1995b] Dinâmica de um Sistema
de Multicuerpos con Choques: Influência de La Flexibilidad, Anais
do COBEM-CIDIM/95 - XIII Congresso Brasileiro e II Congresso Ibero Americano
de Engenharia Mecânica, dezembro, Belo Horizonte/MG, publicação
em CD.
-
Barrientos, G. e Sampaio, R. [1995c] Dinâmica de um Sistema
de Multicuerpos: Influência de La Flexibilidad, Anais do XVI CILAMCE/95
- Congresso Ibero Latino Americano sobre Métodos Computacionais
para Engenharia, Curitiba/PR, vol.2, p.1129-1138.
-
Bayo, E., Garcia de Jalon, J. e Serna, M.A. [1988] A Modified
Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical
Systems, Comp. Meth. Appl. Mech. and Eng., vol.71, p.183-195.
-
Book, W.J., Maizza-Neto, O. e Whitney, D.E. [1975] Feedback Control
of Two Beam, Two Joint Systems with Distributed Flexibility, J. Dyn. Sys.
Meas. Control, december, p.424-431.
-
Bottema, O. e Roth, B. [1979] Theoretical Kinematics, North-Holland
Publishing Co., Amsterdam.
-
Brenan, K.E.; Campbell, S.L. e Petzold, L.R. [1989] Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equations,
North-Holland, U.S.A.
-
Campbell, S.L. e Meyer Jr., C.D. [1979] Generalized Inverses of
Linear Transformations, Pitman, London.
-
Cardona, A. [1989] An Integrated Approach to Mechanism Analysis,
Tese de D.Sc., Université de Liège.
-
Cardona, A. e Géradin, M. [1989] Time Integration of the
Equations of Motion in Mechanism Analysis, Computers & Structures,
vol.33, no.3, p.801-820.
-
Clough, R.W. e Penzien, J. [1975] Dynamics of Structures, McGraw-Hill,
New York.
-
Damilano, J.G. [1994] Finite Element Method and Time Integration
Techniques for Nonlinear Elastic Constrained Multibody Systems, Anais do
CILAMCE/94, p.1261-1270.
-
Dimaggio, S.J. and Bieniek, M.P. [1995] Nonlinear Dynamics of
Flexible Structures: A Finite Element Approach, Int. J. Solids Structures,
vol. 32, no. 8/9, p.1179-1193.
-
Fertis, D.G. [1973] Dynamics and Vibration of Structures, John
Wiley & Sons, U.S.A.
-
Gear, C.W. [1971] Numerical Initial Value Problems in Ordinary
Differential Equations, Automatic Computation, Prentice-Hall, Englewood
Cliffs, New Jersey.
-
Gear, C.W. e Petzold, L.R. [1984] ODE Methods for the Solution
of Differential/ Algebraic Systems, SIAM J. Numer. Anal., vol.21, no.4,
p.717-728.
-
Géradin, M. [1994] Energy Conserving Time Integration for
Multibody Dynamics - Application to Top Motion, Mecanica Computacional,
vol.14, p.573-586.
-
Géradin, M. e Rixen, D. [1995] Parametrization of finite
rotations in computational dynamics: a review, Revue Européenne
des Éléments Finis, vol.4, no 5-6, p.497-553.
-
Goldstein, H. [1980] Classical Mechanics, Addison-Wesley, Reading,
MA.
-
Greenwood, D.T. [1965] Principles of Dynamics, Prentice-Hall,
New Jersey.
-
Hemani, H. e Weimer, F.C. [1981] Modeling of Nonholonomic Dynamic
Systems with Applications, J. Appl. Mech., vol.48, p.177-182.
-
Hughes, T.J.R. [1976] Stability, Convergence and Growth and Decay
of Energy of the Average Acceleration Method in Nonlinear Structural Dynamics,
Computers & Structures, vol.6, p.313-324.
-
Hurty, W.C. e Rubinstein, M.F. [1964] Dynamics of Structures,
Prentice-Hall, Inc., New Jersey.
-
Ider, S.K. and Amirouche, F.M.L. [1989] Nonlinear Modeling of
Flexible Multibody Systems Dynamics Subjected to Variable Constraints,
J. Appl. Mech., vol. 56, p.444-450.
-
Kamman, J.W. e Huston, R.L. [1984] Dynamics of Constrained Multibody
Systems, J. Appl. Mech., vol.51, p.899-903.
-
Kane, T.R. [1961] Dynamics of Nonholonomic Systems, J. Appl. Mech.,
December, p.574-578.
-
Kane, T.R. e Levinson, D.A. [1980] Formulation of Equations of
Motion for Complex Spacecraft, J. Guidance and Control, vol.3, no.2, p.99-112.
-
Kane, T.R. e Levinson, D.A. [1985] Dynamics: Theory and Applications,
McGraw-Hill, New York.
-
Kane, T.R. e Wang, C.F. [1965] On the Derivation of Equations
of Motion, J. Soc. Indust. Appl. Math., vol.13, no.2, p.487-492.
-
Kane, T.R.; Ryan, R.R. e Banerjee A.K. [1987] Dynamics of a cantilever
beam attached to a moving base, J. Guidance, vol.10, no.2, p.139-151.
-
Knorrenschild, M. [1992] Differential/Algebraic Equations as Stiff
Ordinary Differential Equations, SIAM J. Numer. Anal., vol.29, no.6, p.1694-1715.
-
Kwakernaak, H. e Sivan, R. [1972] Linear Optimal Control Systems,
John Wiley & Sons, Inc.
-
Leipholz, H. [1970] Stability Theory, Academic Press, U.S.A.
-
Lord Rayleigh [1945] The Theory of Sound, (1a ed. - 1877), Republicado
pela Dover Publications, New York.
-
Lur?é, L. [1968] Mécanique Analytique, Tome I, Masson
& Cie, Paris.
-
Maggi, G.A. [1896] Princíppi della Teoria Matemática
del Movimento dei Corp: Corso di Meccanica Razionale, Ed. Ulrico Hoepli,
Milano.
-
Meirovitch, L. [1967] Analytical Methods in Vibration, Macmillan,
New York.
-
Meirovitch, L. [1970] Methods of Analytical Dynamics, McGraw-Hill,
U.S.A.
-
Meirovitch, L. [1980] Computational Methods in Structural Dynamics,
Sijthoff & Noordhoff, U.S.A.
-
Meirovitch, L. [1986] Elements of Vibration Analysis, McGraw-Hill,
New York.
-
Milenkovic, V. [1982] Coordinates suitable for angular motion
synthesis in robots, Anais da conferência ROBOT 6.
-
Moore, B.C. [1976] On the Flexibility Offered by State Feedback
in Multivariable Systems Beyond Closed Loop Eigenvalue Assignment, IEEE
Transactions on Automatic Control, october, p.689-692.
-
Moreau, J.J. [1971] Mécanique Classique, Tome II, Masson
& Cie, Paris.
-
Ogata, K. [1967] State Space Analysis of Control Systems, Prentice-Hall,
Inc., New Jersey.
-
Ogata, K. [1993] Engenharia de Controle Moderno, Prentice-Hall
do Brasil, Rio de Janeiro.
-
Paul, R.P. [1981] Robot Manipulators: Mathematics, Programming
and Control, MIT Press.
-
Petzold, L.R. [1982] Differential/Algebraic Equations are not
ODE?s, SIAM J. Sci. Stat. Comput., vol.3, no.3, p.367-384.
-
Ritz, W. [1911] Gesammelte Werke, Gauthier-Villars, Paris.
-
Rochinha, F.A. [1990] Modelagem e Simulação Numérica
de Estruturas Unidimensionais, Tese de Doutorado, DEM/PUC-Rio, Rio de Janeiro.
-
Rochinha, F.A. e Sampaio, R. [1996] Dynamics of Multibody Systems:
The Rigid Body Problem, III APCOM/96 - Third Asian-Pacific Conference on
Computational Mechanics, Seoul, Corea.
-
Rochinha, F.A. e Sampaio, R. [1996] Numerical Simulation of Multibody
Systems: The Rigid Problem, ECCOMAS/96 - European Community on Computational
Methods in Applied Sciences, setembro, Paris, França.
-
Sampaio, R. [1995] Dynamics of Systems of Rigid Multibodies with
Shocks, Anais do DINAME/95, Caxambú/MG, p.247.
-
Schiehlen, W. [1990] Multibody System Handbook, Springer-Verlag.
-
Shabana, A.A. [1989] Dynamics of Multibody Systems, John Wiley
& Sons, U.S.A.
-
Shabana, A.A. [1991] Theory of Vibration - Volume II: Discrete
and Continuous Systems, Springer-Verlag, New York.
-
Shampine, L.F. e Reichelt, M.W. [1995] The MATLAB OdeSuite, The
MathWorks, Inc., http://www.mathworks.com.
-
Simo, J.C. [1991] Unconditionally stable algorithms for rigid
body dynamics that exactly preserve energy and momentum, Int. J. Num. Meth.
Eng., vol.31, p.19-52.
-
Spurrier, R.A. [1978] Comment on singularity-free extraction of
a quaternion from a direction-cosine matrix, J. Spacecraft, vol.15, p.255.
-
Tavares Jr., H.M. [1994] Modelagem e Simulação Numérica
de Sistemas Dissipativos com Número Finito de Graus de Liberdade,
Tese de Doutorado, DEM/PUC-Rio, Rio de Janeiro.
-
Tavares Jr., H.M. e Sampaio, R. [1993a] Método de Maggi-Kane:
Uma Sistemática de Construção de Bases para o Espaço
dos Movimentos Virtuais, Anais do XII COBEM/93 - Congresso Brasileiro de
Engenharia Mecânica, setembro, Brasília/DF.
-
Tavares Jr., H.M. e Sampaio, R. [1993b] Método de Projeção
e a Forma de Lagrange do Princípio de d?Alembert, Anais do XII COBEM/93
- Congresso Brasileiro de Engenharia Mecânica, setembro, Brasília/DF.
-
Tavares Jr., H.M. e Sampaio, R. [1993c] Modelagem da Dinâmica
dos Sistemas de Multicorpos Rígidos com Vinculação
Unilateral, apresentado no CNMAC, setembro, Uberlândia/MG.
-
Tavares Jr., H.M. e Sampaio, R. [1993d] Revisitando os Princípios
de Gauss e de d?Alembert, Anais do XII COBEM/93 - Congresso Brasileiro
de Engenharia Mecânica, dezembro, Brasília/DF.
-
Tavares Jr., H.M. e Sampaio, R. [1995] Dinâmica de Sistemas
de Multicorpos Rígidos com Impacto, Anais do COBEM-CIDIM/95 - XIII
Congresso Brasileiro e II Congresso Ibero Americano de Engenharia Mecânica,
dezembro, Belo Horizonte/MG, publicação em CD.
-
The MathWorks, Inc. [1994] MATLAB 4.2, 24 Prime Park Way, Natick,
MA.
-
The MathWorks, Inc. [1994] SIMULINK 1.3, 24 Prime Park Way, Natick,
MA.
-
Timoshenko, S., Young, D.H. e Weaver, W. [1974] Vibration Problems
in Engineering, Wiley, New York.
-
Tran, D.M. [1991] Une Présentation de la Méthode
de Kane pour la Formulation des Équations du Mouvement, La Recherche
Aérospatiale, no.3, p.1-21.
-
Trindade, M.A. e Sampaio, R. [1995a] Análise da Influência
da Flexibilidade na Dinâmica de Sistemas de Multicorpos, Anais do
International Meeting on Computational Mechanics and CAD/CAM, novembro,
Concépcion, Chile, p.135-142.
-
Trindade, M.A. e Sampaio, R. [1995b] Influência da Flexibilidade
na Dinâmica e no Controle de um Pêndulo Invertido, Anais do
COBEM-CIDIM/95 - XIII Congresso Brasileiro e II Congresso Ibero Americano
de Engenharia Mecânica, dezembro, Belo Horizonte/MG, publicação
em CD.
-
Trindade, M.A. e Sampaio, R. [1995c] Modelagem e Simulação
da Dinâmica Tridimensional de Multicorpos Rígidos, Anais do
XVI CILAMCE/95 - Congresso Ibero Latino Americano sobre Métodos
Computacionais para Engenharia, Curitiba/PR, vol.2, p.1149-1158.
-
Trindade, M.A. e Sampaio, R. [1996a] Dinâmica Tridimensional
de Sistemas de Multicorpos Rígidos, IV CEM-NNE/96 - Congresso de
Engenharia Mecânica Norte-Nordeste, junho, Recife/PE.
-
Trindade, M.A. e Sampaio, R. [1996b] Influence of the Flexibility
in the Dynamics of Multibody Systems, III APCOM/96 - Third Asian-Pacific
Conference on Computational Mechanics, setembro, Seoul, Corea.
-
Wehage, R.A. [1984] Quaternion and Euler parameters: a brief exposition,
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics,
Springer-Verlag.
-
Whittaker, E.T. [1944] A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies, Dover, New York.
-
Wylie, C.R. e Barrett, L.C. [1985] Advanced Engineering Mathematics,
McGraw-Hill, Singapore.
Back to main homepage
Last updated 25/03/1999 by M.A.Trindade