Section 2.4 — Differentiation Using Limits

Objective a: Defining the derivative

Recall our discussion on finding the average rate of
change between two points on a curve. We drew the
secant line and calculated the slope of that line. We
then modified the formula for the slope to get the
difference quotient:

%1 h X2

. . A - f(xo)—f(x
The slope of the secant line is m = 2 = Y2=%1 - f(xp)=Tx)
AX X2 — X1 X2 — X4

(The symbol delta, A, means “change in”). Let h = x, — x4 and
let x = x4. Then x; = x4 + h = x + h. Plugging into m, we get:
m = Ay _ f(xp)=f(xq) _ f(x+h)—f(x)
AX X2 —X1 h )

The quotient, Hﬂh—ﬂﬁ is called the difference quotient.

Keep in mind that this is another formula for the slope of the
line between two points on the curve.
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Ex. 1 Given that f(x) = x*, find the difference quotient when
a) x=2andh=0.1.
b) x=2andh=0.01.
c) x=2andh=0.001.
d) x=2andh—>0

Solution:
a) f(x+h)=f(x) _ f(2+0.0)-f(2) _ f(2.9-f(2) _ (2.1 —(2)
h 0.1 B 0.1 B 0.1
_ 441-4 _ o1

o1 " o1 - 4.1. So, the slope of the line or

the average rate of change is 4.1.
f(x+h)-f(x) _ f(2+40.01)-f(2) _ f(2.00-fR) _ (2.01*-(2)

b) h 0.01 0.01 0.01
_ 4.0401-4 _ 0.0401 _ .
= =001 - o001 - 4.01. So, the slope of the line
or the average rate of change is 4.01.

o) f(x+h)—f(x) _ f(2+0.001)—f(2) _ f(2.001)-f(2)

h - 0.001 ~0.001

_ (2.001° —=(2)*> _ 4.004001-4 _ 0.004001 _
=T 0001 - o001 - ooo1 - 4:001.So,
the slope of the line or the average rate of change
is 4.001.

d)  lim HR=I0) o iy KRS gyt 2 + )
h»0 D h»0 N

= (2 +h)*=4 +4h + h? and f(2) = (2)* = 4. So,

lim f@h)=f2) _ i 4+dheh?-4 o aheh®

h—> 0 h h— 0 h hs0o N

= lim M = |im 4 +h=4+(0)=4. This is the
h—0 h—0

instantaneous rate of change of fat x = 2. This is

the slope of the tangent line at x = 2.

Tangent line. The slope of the
tangent line corresponds to the
instantaneous rate of f at x = 2.




f(x+h)—-f(x

m = o corresponds to the average rate of change. For

example, if you traveled 171 miles in 3 hours, your average

speed was % = 51 mph. This would be your average rate of

change. Iimowhﬂﬁ corresponds to the instantaneous rate
h—

of change. It is as if you took a picture of your speedometer.
The reading on the speedometer tells you how fast you are
going at a particular moment. This is your instantaneous rate of
change.

We call this instantaneous rate of change the derivative of
the function f with respect to x. We denote this as f '(x)
df

(“f prime of xX*), y ' ("y prime”), % (“dee y dee X"), or ™ (“dee f

dee x”). Hence, we can make the following definition:

Definition: The derivative of the function f with respect to x is:
' —_ [ gx_ df — d N H éx R H f(X+h)—f(X’
f (X) Y = dx ~ dx de(X) _AI)!TO AX r!ino h )

Objective b: Applying the definition of the derivative.

Ex. 2 For the following function, compute f '(x)
f(x) = x?
Solution:
f(x + h) = (x + h)> =x* + 2xh + h® and f(x) = X°.
Thus, f'(x) = lim Txeh) —1(x) X+hh_f X

h—0
. x2+2xh+h2 —x2 . 2xh+ h? . h(2x+h)
= |im = |im = |[im ———
h—> 0 h h>0 N hs0 N

lim 2x + h =2x + 0 = 2x. Thus. f'(x) = 2x.
h—0



Ex. 3 For the following function, compute f '(x) and find the
equation of the tangent line at the given value of x.
fx)=x’—1;x=2
Solution:
f(x+h)=(x+h)?>=1=x>+3x*h +3xh? + h®-1 and
f(x) =%~ 1. Thus, '(x) = lim (R0

h—0
= lim x3+3x2h+3xh2+h3—1—(x3—1)
h—0 h
T x3+3x%h+3xh?+h3—1-x3+1 ERT 3x%h+ 3xh? +h3
= |lim = lim
h— 0 h h— 0 h
. (3% +3xh+h? :
= |ijm DEXE3NET) - im 3x® + 3xh + h2=3x2 + 0 + 0
h—0 h h— 0

= 3x%. Thus, f'(x) = 3x%

When x = 2, then m = f'(2) = 3(2)* = 12 and
f(2)=(2°-1=8-1=7.

Using the point-slope formula, we can find the equation
of the tangent line:

y—Yy1=m(x—x)

y—7=12(x-2)
y—7=12x-24
y=12x-17.

Ex. 4 For the following function, compute f '(p) and find the
equation of the tangent line at the given value of p.

f(p) =ﬁ; p =9 where p =0.

Solution:

lim 1—ij+h
hoolVp+h  p

= lim 1.£_L.vp+h).1
hso[\Jpth Jp o pth) h

lim || Y——
h— 0|\ vP/p+h
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rationalize the numerator by multiplying top and bottom

by(w/? ++ p+h

= lim f\/pT(f\/pT)) }
Voo o oen)

lim | &P -(ph)® 4
h— 0|\ VPypth(/p +4/pth) ) h

lim (p) = (p+h)

1
ho 0| \Pp+h(yp +/p+h) )

lim —h °

1
ho 0| \Vp/p+h({/p +/p+h) ) |
= lim =1 = —

h—)O‘j_‘Jp‘*‘h‘jF‘*“Jp‘*‘h) VP p+(0) p +{p+(0))

When p =9, thenm =f'(9) = 2(9; 1(9) = ;—‘: and

_ __ 1 _1
y=f(9) =7 = 1.

Using the point-slope formula, we can find the equation
of the tangent line:

y—Yy1=m(p—p1)

1
y-3=% (p-9)
1_-=1 1
Y=37 5%P%5
_ -1 1
V=5P* 3

Objective c: Understanding differentiability.

Definition: A function f is differentiable at a point (c, f (¢)) if

f '(c) exists (in other words, rllimomh_u& exists at x = ¢).
%

Property: If a function is differentiable at x = c, then it is
continuous at x = c.

The converse is not true. Consider the following example:
Suppose f (x) = |x|. The graph of f looks like:

T 19 Trads) " aede s TS 0= 2
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Ex. 5 y

Since there are no “breaks” or “holes” in the graph, f is
continuous for all real numbers. But, the derivative does not
exist at x = 0 since

TSR GEE (0 O 11 | A L Y

h—0* h h—0* h h—0* h

. f(0+h)-f . h|-] 0 . h

lim 0+h 0) - [im w= lim lT =—1.
h—0" h—0" h—0"

Typically, a function is not differentiable at x = c if
1)  Itis not continuous at x = c.
Or
2) It has a “sharp point” or a “sharp corner” at x = c.
Or
3) It has a vertical tangent line at x = c.

Ex. 6 Consider the following graphs:

a) \I\/- b) _v

] !
c c
In a) and b), the function is not differentiable at x = ¢
since the graph has a sharp point or corner at x = c.

Tangent

. i < Tangent
Line [—— | '

Line

c) d)

In ¢) and d), the function is not differentiable at x = c
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since the tangent line is a vertical line. Thus, the slope
of the tangent line is undefined.

s AT

In e) and f), the function is not differentiable at x = ¢
since the function is not continuous at x = c.

e)

Ex. 7 Consider the following graph of f:

' \

a b C d e f
) At which of the labeled points is f continuous?
II) At which of the labeled points is f differentiable?

Solution:
) The function f is only continuous at the points a, b,

& d. Itis discontinuous at c since lim f(x) # f(c). It
X—>C

is discontinuous at e since f(e) is not defined. It is

discontinuous at f since Iimff(x) does not exist.
X—>

II)  The function f is only differentiable at the point b.
It is not differentiable at ¢, e, and f since it is not
continuous at those points (see part |). It is not
differentiable at a since the tangent line is vertical
and It is not differentiable at d since the function
has a sharp corner at d.
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