Sect 12.3 - Equations in Quadratic Form

Concept #2 Solving Equations Reducible to a Quadratic.

We will examine solving equations that produce a quadratic equation in the process.

Solve the following:

Ex. 1
$$\frac{3c}{2c-1} - \frac{1}{c+2} = \frac{5}{2c^2 + 3c - 2}$$

Solution:

 $\frac{1}{2c-1}$ and c + 2 are prime and 2c² + 3c - 2 = (2c - 1)(c + 2)

Thus, L.C.D. = (2c - 1)(c + 2)

Our restrictions are $c \neq 0.5$ and $c \neq -2$.

Now, multiply both sides by (2c - 1)(c + 2):

$$\frac{3c}{2c-1} - \frac{1}{c+2} = \frac{5}{2c^2 + 3c - 2}$$

$$\frac{3c}{(2c-1)} \bullet \frac{(2c-1)(c+2)}{1} - \frac{1}{(c+2)} \bullet \frac{(2c-1)(c+2)}{1} = \frac{5}{(2c-1)(c+2)} \bullet \frac{(2c-1)(c+2)}{1}$$

$$\frac{3c}{1} \bullet \frac{(c+2)}{1} - \frac{1}{1} \bullet \frac{(2c-1)}{1} = \frac{5}{1} \bullet \frac{1}{1}$$

$$3c(c+2) - 1(2c-1) = 5$$

$$3c^2 + 6c - 2c + 1 = 5$$

$$3c^2 + 4c + 1 = 5 \qquad \text{(get zero on one side)}$$

$$3c^2 + 4c - 4 = 0 \qquad \text{(factor)}$$

$$(3c-2)(c+2) = 0$$

$$(3c-2) = 0 \text{ or } \qquad (c+2) = 0$$

$$c = \frac{2}{3} \qquad \text{or } \qquad c = -2$$

But c = -2 matches our restriction that $c \neq -2$ and it must be excluded from the solution. Thus, $c = \frac{2}{3}$ is the only value left.

Hence, our solution is $\left\{\frac{2}{3}\right\}$.

Ex. 2
$$\frac{3}{2y+5} - \frac{4}{y-3} = 7$$

Solution:

2y + 5 and y - 3 are prime, then our L.C.D. = (2y + 5)(y - 3)Our restrictions are $y \neq -2.5$ and $y \neq 3$.

Now, multiply both sides by (2y + 5)(y - 3):

$$\frac{3}{2y+5} - \frac{4}{y-3} = 7$$

$$\frac{3}{2y+5} \bullet \frac{(2y+5)(y-3)}{1} - \frac{4}{y-3} \bullet \frac{(2y+5)(y-3)}{1} = 7 \bullet \frac{(2y+5)(y-3)}{1}$$

$$3(y-3) - 4(2y+5) = 7(2y+5)(y-3)$$

$$3y - 9 - 8y - 20 = 7(2y^2 - y - 15)$$

$$-5y - 29 = 14y^2 - 7y - 105 \qquad \text{(get zero on one side)}$$

$$0 = 14y^2 - 2y - 76 \qquad \text{(use the quadratic formula)}$$

$$a = 14, b = -2, \text{ and } c = -76$$

$$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(14)(-76)}}{2(14)} = \frac{2 \pm \sqrt{4 + 4256}}{28} = \frac{2 \pm \sqrt{4260}}{28}$$

$$= \frac{2 \pm \sqrt{2^2 \bullet 1065}}{28} = \frac{2 \pm 2\sqrt{1065}}{28} = \frac{2(1 \pm \sqrt{1065})}{28} = \frac{1 \pm \sqrt{1065}}{14}$$
Neither of these values match our restrictions, so the solutions are

Neither of these values match our restrictions, so the solutions are

$$\left\{\frac{1-\sqrt{1065}}{14}, \frac{1+\sqrt{1065}}{14}\right\}.$$
Ex. 3
$$3x = 4 + \sqrt{2x+11}$$

Solution:

$$3x = 4 + \sqrt{2x+11}$$
 (isolate the square root)

$$3x - 4 = \sqrt{2x+11}$$
 (square both sides)

$$(3x - 4)^2 = (\sqrt{2x+11})^2$$
 (simplify)

$$9x^2 - 24x + 16 = 2x + 11$$
 (get zero on one side)

$$9x^2 - 26x + 5 = 0$$
 (use the quadratic formula)

$$a = 9, b = -26, \text{ and } c = 5$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-26) \pm \sqrt{(-26)^2 - 4(9)(5)}}{2(9)} = \frac{26 \pm \sqrt{676 - 180}}{18} = \frac{26 \pm \sqrt{496}}{18}$$

$$= \frac{26 \pm \sqrt{4^2 \cdot 31}}{18} = \frac{26 \pm 4\sqrt{31}}{18} = \frac{2(13 \pm 2\sqrt{31})}{18} = \frac{13 \pm 2\sqrt{31}}{9}$$

Our potential solutions are $\frac{13-2\sqrt{31}}{9}$ and $\frac{13+2\sqrt{31}}{9}$

To check, approximate each potential solution:

Check:
$$x = \frac{13-2\sqrt{31}}{9} \approx 0.207$$
 and $x = \frac{13+2\sqrt{31}}{9} \approx 2.682$ $3(0.207) \approx 4 + \sqrt{2(0.207)+11}$? $3(2.682) \approx 4 + \sqrt{2(2.682)+11}$? $0.621 \approx 4 + \sqrt{11.414}$? $8.046 \approx 4 + \sqrt{16.364}$? $8.046 \approx 8.045$ True So, the solution is $\left\{\frac{13+2\sqrt{31}}{9}\right\}$.

Ex. 4
$$\sqrt{2x+7} - 9 = \sqrt{12x+2} - 4$$

Solution:

$$\sqrt{2x+7} - 9 = \sqrt{12x+2} - 4 \qquad \text{(isolate } \sqrt{12x+2} \text{)}$$

$$\sqrt{2x+7} - 5 = \sqrt{12x+2} \qquad \text{(square both sides)}$$

$$(\sqrt{2x+7} - 5)^2 = (\sqrt{12x+2})^2 \qquad \text{(simplify)}$$

$$(\sqrt{2x+7})^2 - 2(\sqrt{2x+7})(5) + (5)^2 = 12x + 2$$

$$(2x+7) - 10\sqrt{2x+7} + 25 = 12x + 2$$

$$2x+32-10\sqrt{2x+7} = 12x+2 \qquad \text{(isolate } \sqrt{2x+7} \text{)}$$

$$-10\sqrt{2x+7} = 10x-30 \qquad \text{(divide by } -10)$$

$$\sqrt{2x+7} = -x+3 \qquad \text{(square both sides)}$$

$$(\sqrt{2x+7})^2 = (-x+3)^2 \qquad \text{(simplify)}$$

$$2x+7=x^2-6x+9 \qquad \text{(get zero on one side)}$$

$$0=x^2-8x+2 \qquad \text{(use the quadratic formula)}$$

$$a=1, b=-8, \text{ and } c=2$$

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-(-8)\pm\sqrt{(-8)^2-4(1)(2)}}{2(1)}=\frac{8\pm\sqrt{64-8}}{2}=\frac{8\pm\sqrt{56}}{2}$$

$$=\frac{8\pm\sqrt{2^2\cdot 14}}{2}=\frac{8\pm2\sqrt{14}}{2}=\frac{2(4\pm\sqrt{14})}{2}=4\pm\sqrt{14}$$

To check, approximate each potential solution:

Check:
$$x = 4 - \sqrt{14} \approx 0.258$$

 $\sqrt{2(0.258)+7} - 9 \approx \sqrt{12(0.258)+2} - 4$?
 $\sqrt{7.516} - 9 \approx \sqrt{5.096} - 4$?
 $-6.258 \approx -1.743$ False
Check: $x = 4 + \sqrt{14} \approx 7.742$
 $\sqrt{2(7.742)+7} - 9 \approx \sqrt{12(7.742)+2} - 4$?
 $\sqrt{22.484} - 9 \approx \sqrt{94.904} - 4$?
 $-4.258 \approx 5.742$ False

Thus, there is no solution.

Concept #1 Solving Equations by Substitution

Sometimes is difficult to solve an equation that is in quadratic form directly. What we can do is to notice a pattern, make a substitution into the equation which gives us an easier equation to solve. After solving the easier equation, we substitute back in the original expression and solve.

Solve the following:

Ex. 5
$$(3x^2 - 5)^2 + 4(3x^2 - 5) - 5 = 0$$

Solution:

Notice we have a $(3x^2 - 5)$ squared term, $(3x^2 - 5)$ term and then a constant term. So, let $u = (3x^2 - 5)$. Our equation becomes:

$$(3x^2 - 5)^2 + 4(3x^2 - 5) - 5 = 0$$

 $u^2 + 4u - 5 = 0$ (factor)

$$(u + 5)(u - 1) = 0$$
 (solve)

$$u + 5 = 0$$
 or $u - 1 = 0$
 $u = -5$ or $u = 1$

Now, replace $u = (3x^2 - 5)$:

3x² - 5 = -5 or **3x² - 5** = 1 (solve)

$$3x^2 = 0$$
 or $3x^2 = 6$
 $x^2 = 0$ or $x^2 = 2$ (square root property)

$$x^2 = 0$$
 or $x^2 = 2$ (square root property

$$x = 0$$
 or $x = \pm \sqrt{2}$

Thus, the solutions are $\{-\sqrt{2}, 0, \sqrt{2}\}$.

Ex. 6
$$3\sqrt{x} + 10\sqrt[4]{x} = 8$$

Solution:

$$3\sqrt{x} + 10\sqrt[4]{x} = 8$$
 (get zero on one side)

$$3\sqrt{x} + 10\sqrt[4]{x} - 8 = 0$$

Notice that $\sqrt{x} = (\sqrt[4]{x})^2$, so our equation looks like:

$$3(\sqrt[4]{x})^2 + 10(\sqrt[4]{x}) - 8 = 0$$

Let $u = (\sqrt[4]{x})$. Our equation becomes:

$$3u^2 + 10u - 8 = 0$$
 (factor)
 $(3u - 2)(u + 4) = 0$ (solve)

$$(3u - 2)(u + 4) = 0$$
 (solve)

$$3u - 2 = 0$$
 or $u + 4 = 0$
 $u = \frac{2}{3}$ or $u = -4$

Now, replace $u = \sqrt[4]{x}$

$$\sqrt[4]{x} = \frac{2}{3}$$
 or $\sqrt[4]{x} = -4$ (raise both sides to the 4th power)
 $(\sqrt[4]{x})^4 = \left(\frac{2}{3}\right)^4$ or $(\sqrt[4]{x})^4 = (-4)^4$

$$(\sqrt[4]{x})^4 = (\frac{2}{3})^4$$
 or $(\sqrt[4]{x})^4 = (-4)^4$

$$x = \frac{16}{81}$$
 or $x = 256$

Now, we need to check the results.

Check:
$$x = \frac{16}{81}$$
 $x = 256$ $3\sqrt{\frac{16}{81}} + 10\sqrt[4]{\frac{16}{81}} = 8$? $3\sqrt{256} + 10\sqrt[4]{256} = 8$? $3(\frac{4}{9}) + 10(\frac{2}{3}) = 8$? $3(16) + 10(4) = 8$? $48 + 40 = 8$? $48 = 8$ True $48 = 8$ False So, the solution is $\{\frac{16}{81}\}$.

In the last example, you may have noticed that $\sqrt[4]{x} = -4$ cannot be true since $\sqrt[4]{x} \ge 0$ and rejected that answer at that point. Just be sure to check the other answer.

Ex. 7
$$m^{2/3} - 2m^{1/3} = 4$$
 (get zero on one side) $m^{2/3} - 2m^{1/3} = 4$ (get zero on one side) $m^{2/3} - 2m^{1/3} - 4 = 0$ Notice that $m^{2/3} = (m^{1/3})^2$. $(m^{1/3})^2 - 2(m^{1/3}) - 4 = 0$ Let $u = (m^{1/3})$. So, the equation becomes: $u^2 - 2u - 4 = 0$ (use the quadratic formula) $a = 1$, $b = -2$, and $c = -4$ $u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-4)}}{2(1)} = \frac{2 \pm \sqrt{4 + 16}}{2} = \frac{2 \pm \sqrt{20}}{2}$ $= \frac{2 \pm \sqrt{20}}{2} = 1 \pm \sqrt{5}$ So, $u = 1 - \sqrt{5}$ or $u = 1 + \sqrt{5}$ Now, replace $u = m^{1/3}$: $m^{1/3} = 1 - \sqrt{5}$ or $m^{1/3} = 1 + \sqrt{5}$ (cube both sides) $(m^{1/3})^3 = (1 - \sqrt{5})^3$ or $(m^{1/3})^3 = (1 + \sqrt{5})^3$ (simplify) $m = (1 - 2\sqrt{5} + (\sqrt{5})^2)(1 - \sqrt{5})$ or $m = (1 + 2\sqrt{5} + (\sqrt{5})^2)(1 + \sqrt{5})$ $m = (6 - 2\sqrt{5})(1 - \sqrt{5})$ or $m = (6 + 2\sqrt{5})(1 + \sqrt{5})$

$$m = 6 - 6\sqrt{5} - 2\sqrt{5} + 2(\sqrt{5})^2 \text{ or } m = 6 + 6\sqrt{5} + 2\sqrt{5} + 2(\sqrt{5})^2$$

$$m = 6 - 6\sqrt{5} - 2\sqrt{5} + 10 \text{ or } m = 6 + 6\sqrt{5} + 2\sqrt{5} + 10$$

$$m = 16 - 8\sqrt{5} \text{ or } m = 16 + 8\sqrt{5}$$

$$\text{Check: } m = 16 - 8\sqrt{5} \approx -1.889 \text{ m} = 16 + 8\sqrt{5} \approx 33.889$$

$$(-1.889)^{2/3} - 2(-1.889)^{1/3} \approx 4 \qquad (33.889)^{2/3} - 2(33.889)^{1/3} \approx 4$$

$$1.528 - (-2.472) \approx 4 \qquad \qquad 10.472 - 6.472 \approx 4$$

$$4 \approx 4 \text{ True} \qquad \qquad 4 \approx 4 \text{ True}$$

$$\text{The solutions are } \{16 - 8\sqrt{5}, 16 + 8\sqrt{5}\}.$$

$$\text{Ex. 8} \qquad x^4 - 15 = 2(2x^2 + 15) \qquad \text{(simplify)}$$

$$x^4 - 15 = 4x^2 + 30 \qquad \text{(get zero on one side)}$$

$$x^4 - 4x^2 - 45 = 0 \qquad \text{(factor)}$$

$$(u - 9)(u + 5) = 0 \qquad \text{(let } u = x^2)$$

$$u^2 - 4u - 45 = 0 \qquad \text{(factor)}$$

$$(u - 9)(u + 5) = 0 \qquad \text{(solve)}$$

$$u - 9 = 0 \qquad \text{or} \qquad u + 5 = 0$$

$$u = 9 \qquad \text{or} \qquad u + 5 = 0$$

$$u = 9 \qquad \text{or} \qquad u = -5 \qquad \text{(replace } u \text{ by } x^2)$$

$$x^2 = 9 \qquad \text{or} \qquad x^2 = -5 \qquad \text{(square root property)}$$

$$x = \pm \sqrt{9} \qquad x = \pm \sqrt{-5}$$

$$x = \pm 3 \qquad x = \pm i \sqrt{5}$$

$$\text{The solutions are } \{-i\sqrt{5}, i\sqrt{5}, -3, 3\}.$$

$$\text{Ex. 9} \qquad 2(3 - \sqrt{x})^2 + 5(3 - \sqrt{x}) = 42$$

$$\frac{\text{Solution:}}{\text{Solution:}}$$

Ex. 9
$$2(3 - \sqrt{x})^2 + 5(3 - \sqrt{x}) = 42$$

$$2(3 - \sqrt{x})^2 + 5(3 - \sqrt{x}) = 42$$
 (get zero on one side)
$$2(3 - \sqrt{x})^2 + 5(3 - \sqrt{x}) - 42 = 0$$
 (let $u = 3 - \sqrt{x}$)
$$2u^2 + 5u - 42 = 0$$
 (factor)
$$(2u - 7)(u + 6) = 0$$
 (solve)
$$2u - 7 = 0$$
 or
$$u + 6 = 0$$

$$u = 3.5$$
 or
$$u = -6$$
 (replace u by $3 - \sqrt{x}$)
$$3 - \sqrt{x} = 3.5$$
 or
$$3 - \sqrt{x} = -6$$

$$-\sqrt{x} = 0.5$$
 or
$$-\sqrt{x} = -9$$
 (square both sides)
$$(-\sqrt{x})^2 = (0.5)^2$$
 or
$$(-\sqrt{x})^2 = (-9)^2$$
 (simplify)
$$x = 0.25$$
 or
$$x = 81$$

Check:
$$x = 0.25$$

 $2(3 - \sqrt{0.25})^2 + 5(3 - \sqrt{0.25}) = 42$?
 $2(3 - 0.5)^2 + 5(3 - 0.5) = 42$?
 $2(2.5)^2 + 5(2.5) = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.5 + 12.5 = 42$?
 $12.$