Sect 12.4 - Graphs of Quadratic Functions

In section 8.3, we graphed the function $f(x) = x^2$: Its graph is called a **parabola**. The **vertex** is the lowest point on the graph (0, 0) and the vertical line through the vertex is called the **axis of symmetry**. It is where we can fold the graph paper so that both halves of the parabola coincide.

x	$f(x) = x^2$	Points
0	$(0)^2 = 0$	(0, 0)
1	$(1)^2 = 1$	(1, 1)
2	$(2)^2 = 4$	(2, 4)
3	$(3)^2 = 9$	(3, 9)
- 1	$(-1)^2 = 1$	(-1, 1)
- 2	$(-2)^2 = 4$	(-2, 4)
- 3	$(-3)^2 = 9$	(-3, 9)

Concept #1

Functions in the Form g(x) = f(x) + k

Graph the following and compare it to $y = x^2$:

Ex. 1
$$g(x) = x^2 - 2$$

Solution:

X	$f(x) = x^2$	$g(x) = x^2 - 2$
0	$(0)^2 = 0$	- 2
1	$(1)^2 = 1$	– 1
2	$(2)^2 = 4$	2
3	$(3)^2 = 9$	7
<u> </u>	$(-1)^2 = 1$	– 1
-2	$(-2)^2 = 4$	2
- 3	$(-3)^2 = 9$	7

Notice that g is the graph of x^2 shifted down two units.

Ex. 2
$$h(x) = x^2 + 3$$
 Solution:

x	$f(x) = x^2$	$h(x) = x^2 + 3$
0	$(0)^2 = 0$	3
1	$(1)^2 = 1$	4
2	$(2)^2 = 4$	7
3	$(3)^2 = 9$	12
- 1	$(-1)^2 = 1$	4
-2	$(-2)^2 = 4$	7
- 3	$(-3)^2 = 9$	12
-3		12

Axis of Symmetry: x = 0

Notice that h is the graph of x^2 shifted up three units.

Vertical Shift

The graph g(x) = f(x) + k is the graph of f(x) shifted vertically by k units.

Graph the following:
Ex. 3a
$$g(x) = x^2 + 1.5$$

Solution:

Since k = 1.5, then g is the graph of x^2 shifted up 1.5 units.

Vertex: (0, 1.5)

Axis of Symmetry: x = 0

Ex. 3b
$$h(x) = x^2 - \pi$$
 Solution:

Since $k = -\pi$, then h is the graph of x^2 shifted down π units.

Vertex: $(0, -\pi)$

Axis of Symmetry: x = 0

Functions in the Form g(x) = f(x - h)

Graph the following and compare it to $y = x^2$:

Ex. 4
$$h(x) = (x - 1)^2$$

Solution:

X	x – 1	$h(x) = (x - 1)^2$	11
0	0 – 1 = – 1	$(-1)^2 = 1$	7
1	1 – 1 = 0	$(0)^2 = 0$	
2	2 – 1 = 1	$(1)^2 = 1$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
3	3 – 1 = 2	$(2)^2 = 4$	
- 1	-1-1=-2	$(-2)^2 = 4$	
-2	-2-1=-3	$(-3)^2 = 9$	-6 -4 -2 -1 1 2 4 6 Vertex: (1, 0)
– 3	-3-1=-4	$(-4)^2 = 16$	Axis of Symmetry: $x = 1$

Notice that h is the graph of x^2 shifted horizontally to the *right* by 1 unit. This shift is in the opposite direction to the sign in front of 1.

Ex. 5
$$g(x) = (x + 2)^2$$

Solution:

X	x + 2	$g(x) = (x + 2)^2$	1
0	0 + 2 = 2	$(2)^2 = 4$	
1	1 + 2 = 3	$(3)^2 = 9$	
2	2 + 2 = 4	$(4)^2 = 16$	
3	3 + 2 = 5	$(5)^2 = 25$	
<u> </u>	-1+2=1	$(1)^2 = 1$	g(x)
- 2	-2 + 2 = 0	$(0)^2 = 0$	Vert
- 3	-3 + 2 = -1	$(-1)^2 = 1$	Axis

Notice that g is the graph of x^2 shifted horizontally to the *left* by 2 unit. This shift is in the opposite direction to the sign in front of 2.

Horizontal Shift

The graph g(x) = f(x - h) is the graph of f(x) shifted horizontally by h units.

Graph the following:

Ex. 6a
$$g(x) = (x + 2.8)^2$$

Solution:

Since h = -2.8, then g is the graph of x² shifted to the left 2.8 units. x = -2.8

$$x = -2.8$$

Ex. 7a
$$g(x) = (x - 3)^2 + 2$$

Solution:

This graph is the graph of x^2 shifted up 2 and to the right 3. x = 3

Ex. 6b
$$r(x) = (x - 1.6)^2$$
 Solution:

 $\overline{\text{Since h}} = 1.6$, then r is the graph of x² shifted to the right 1.6 units.

$$x = 1.6$$
 $x = 1.6$
 $x = 1.6$

Ex. 7b
$$q(x) = (x + 0.7)^2 - 5$$

Solution:

This graph is the graph of x^2 shifted down 5 & to the left 0.7.

$$x = -0.7$$

Concept #3 Functions in the Form $g(x) = a \cdot f(x)$

Graph the following and compare it to $y = x^2$:

Ex. 8
$$g(x) = 2x^2$$

Solution:

X	$f(x) = x^2$	$g(x) = 2x^2$
0	$(0)^2 = 0$	0
1	$(1)^2 = 1$	2
2	$(2)^2 = 4$	8
3	$(3)^2 = 9$	18
- 1	$(-1)^2 = 1$	2
- 2	$(-2)^2 = 4$	8
- 3	$(-3)^2 = 9$	18

Notice that g is the graph of x^2 stretched by a factor of 2, so the shape is "skinnier" than x^2 .

Ex. 9
$$h(x) = \frac{1}{4}x^2$$

Solution:

x	$f(x) = x^2$	$h(x) = \frac{1}{4}x^2$
0	$(0)^2 = 0$	0
1	$(1)^2 = 1$	0.25
2	$(2)^2 = 4$	1
3	$(3)^2 = 9$	2.25
– 1	$(-1)^2 = 1$	0.25
- 2	$(-2)^2 = 4$	1
- 3	$(-3)^2 = 9$	2.25

Notice that h is the graph of x^2 shrunk to 1/4 of its size, so the shape is "fatter" than x^2 .

Stretch/Shrink (shape)

The graph of $g(x) = a \cdot f(x)$ is the graph of f(x) stretched by a factor of a if |a| > 1 and shrunk by a factor of a if |a| < 1.

Ex. 10
$$g(x) = -2x^2$$

Solution:	<u>.</u>		6 7
X	$f(x) = x^2$	$g(x) = -2x^2$	
0	$(0)^2 = 0$	0	$ x^2 $
1	$(1)^2 = 1$	-2	2
2	$(2)^2 = 4$	-8	-6 -4 -2 2 4 6
3	$(3)^2 = 9$	– 18	a(v)
<u> </u>	$(-1)^2 = 1$	-2	4 g(x)
- 2	$(-2)^2 = 4$	-8	Vertex: (0, 0)
- 3	$(-3)^2 = 9$	– 18	Axis of Symmetry: $x = 0$

Notice that g is the graph of x^2 stretched by a factor of 2, so the shape is "skinnier" than x^2 and it is reflected across the x-axis.

Ex. 11
$$h(x) = -\frac{1}{4}x^2$$

Solution:

X	$f(x) = x^2$	$h(x) = -\frac{1}{4}x^2$	4
0	$(0)^2 = 0$	0	2 X ²
1	$(1)^2 = 1$	- 0.25	
2	$(2)^2 = 4$	– 1	-6 -4
3	$(3)^2 = 9$	- 2.25	h(x)
<u> </u>	$(-1)^2 = 1$	- 0.25	4
-2	$(-2)^2 = 4$	- 1	Vertex: (0, 0)
- 3	$(-3)^2 = 9$	- 2.25	Axis of Symmetry: $x = 0$

Notice that h is the graph of x^2 shrunk to 1/4 of its size, so the shape is "fatter" than x^2 and it is reflected across the x-axis.

Reflection

The graph of g(x) = -f(x) is the graph of f(x) reflected across the x-axis.

Concept #4 Functions in the Form $g(x) = a \cdot f(x - h) + k$

Let's summarize all the techniques discussed so far and develop a general strategy for graphing functions without point plotting, but based on the graph of y = f(x)

General Strategy for transformations:

In graphing $y = a \cdot f(x - h) + k$, we will start with the graph of f(x) and

- i) Stretch it by a factor of a if |a| > 1 or shrink it by a factor of a if |a| < 1.
- ii) Reflect it across the x-axis if a is negative.
- iii) Shift it horizontally by h units and vertically by k units.

Graph the following:

Ex. 12a
$$h(x) = 2(x + 3)^2 + 1$$
 Ex. 12b $f(x) = -(x - 2)^2 - 3$

Solution:

Since a = 2, the graph is stretched by a factor of 2. Since k is 1 and h is -3, the graph is shifted up 1 unit and to the left by 3 units.

Vertex: (- 3, 1)

Axis of Symmetry: x = -3

Solution:

Since a = -1, the graph is reflected across the x - axis. Since k = -3 and h = 2, the graph is shifted down 3 units & to the right by 2 units.

Vertex: (2, -3)

Axis of Symmetry: x = 2

These techniques can be applied to graphing many other types of functions aside from quadratic functions such as f(x) = |x|.

Ex. 13a Graph
$$g(x) = -|x-1| + 3$$
.

Solution:

Let's go through the steps of our general strategy:

- i) Since | a | = 1, the graph is not stretched or shrunk.
- ii) Since a is negative, the graph is reflected across the x-axis.
- iii) Since k is 3 and h is 1, the graph is shifted up by 3 units and to the right by 1 unit.

Ex. 13b Graph
$$h(x) = \frac{2}{3} |x + 3| - 2$$

Solution:

Let's go through the steps of our general strategy:

- i) Since $|a| = \frac{2}{3}$, the graph is shrunk to $\frac{2}{3}$ of its size.
- ii) Since a is positive, the graph is not reflected across the x-axis.
- iii) Since k is 2 and h is 3, the graph is shifted down by 2 units and to the left by 3 units.

Let's go through the steps of our general strategy:

- i) Since | a | = 2, the graph is stretched by a factor of 2.
- ii) Since a is negative, the graph is reflected across the x-axis.
- iii) Since k is 4 and h is 1/2, the graph is shifted up by 4 units and to the left by 1/2 unit.

Now, let's look at some specifics just for quadratic functions.

Graphs of $f(x) = a(x - h)^2 + k$

- 1) The vertex is the point (h, k).
- 2) The axis of symmetry is the line x = h.
- 3) If a > 0, the graph opens upward (smile), and k is the **minimum** value of the function.
- 4) If a < 0, the graph opens downward (frown), and k is the **maximum** value of the function.

Without graphing, a) find the vertex, b) the axis of symmetry, c) and find the maximum or minimum value of the function:

Ex. 14 $g(x) = -2(x-4)^2 + 3$ Solution:

- a) Since h = 4 and k = 3, the vertex is (4, 3).
- b) The axis of symmetry is x = 4.
- c) Since a < 0, the function opens downwards and has a maximum value of 3 at x = 4.

Ex. 15 $q(x) = 3(x + 1)^2 - 9$ Solution:

- a) Since h = -1 & k = -9, the vertex is (-1, -9)
- b) The axis of symmetry is x = -1.
- c) Since a > 0, the function opens upwards and has a minimum value of 9 at x = -1