# **Sect 1.2 - Order of Operations**

## Concept #1 Variables and Expressions

In Algebra, when there is a number that we do not know its value, we represent the number using a **variable** like the letter x. So, if we want to write three times an unknown number, we write 3•x or 3x. An **Algebraic Expression** is a collection of numbers, variables (letters), grouping symbols, and operations (addition "sum", subtraction "difference", multiplication "product", and division "quotient"). Some examples of algebraic expressions are:

Ex. 1a 
$$9y - 6z + 2$$
 Ex. 1b  $\frac{8x^2}{7y} - 3(x + 5)$  Ex. 2a  $0.45x^2y - 3xy^2$  Ex. 2b  $x^3 - 27y^3$ 

There are several ways we can represent operations in algebra:

| Operation      | Algebraic Expression                                       | Translation                |
|----------------|------------------------------------------------------------|----------------------------|
| Addition       | a + b                                                      | The sum of a and b.        |
| Subtraction    | a – b                                                      | The difference of a and b. |
| Multiplication | a•b, a(b), (a)b, (a)(b), ab<br>(Note a x b is rarely used) | The product of a and b.    |
| Division       | $a \div b, \frac{a}{b}, a/b, b )a$                         | The quotient of a and b.   |

## Concept #2 Evaluating Algebraic Expressions

To evaluate an expression, replace the letters by the numbers given. Use a set of parenthesis around the number when you plug-in the number.

## Evaluate the following for x = 0.3 and y = 1.3:

Ex. 3a 
$$x + y$$
 Ex. 3b  $5x - y$  Ex. 4b  $\frac{x}{y}$ 

#### Solution:

3a) 
$$x + y = (0.3) + (1.3) = 1.6$$

3b) 
$$5x - y = 5(0.3) - (1.3) = 1.5 - 1.3 = 0.2$$

4a) 
$$xy = (0.3)(1.3) = 0.39$$

4b) 
$$\frac{x}{y} = \frac{(0.3)}{(1.3)} = \frac{3}{13}$$
 (move the decimal point over one place)

Concept #3 **Exponential Expressions** 

Exponential notation is a shortcut for repeated multiplication. Consider the follow:

Here, we are multiplying six factors of five. We will call the 5 our base and the 6 the exponent or power. We will rewrite this as 5 to the 6<sup>th</sup> power:

$$5 \bullet 5 \bullet 5 \bullet 5 \bullet 5 \bullet 5 = 5^6$$

The number that is being multiplied is the base and the number of factors of that number is the power.

#### **Definition**

Let a be a real number and n be a natural number. Then

a<sup>n</sup> is read as "a to the nth power."

a<sup>2</sup> is read as "a squared" and a<sup>3</sup> is read as "a cubed."

#### **Evaluate the following:**

Ex. 5a 
$$3^4$$
 Ex. 5b  $(0.2)^3$  Ex. 5c  $\left(\frac{7}{3}\right)^2$  Ex. 5d  $1^5$ 

a) 
$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$$

a) 
$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$$
  
b)  $(0.2)^3 = (0.2)(0.2)(0.2) = 0.008$ 

c) 
$$\left(\frac{7}{3}\right)^2 = \left(\frac{7}{3}\right)\left(\frac{7}{3}\right) = \frac{49}{9}$$

d) 
$$1^5 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

#### Concept #4 Square Roots

The square of a whole number is called a **perfect square**. So, 1, 4, 9, 16, 25 are perfect squares since  $1 = 1^2$ ,  $4 = 2^2$ ,  $9 = 3^2$ ,  $16 = 4^2$ , and  $25 = 5^2$ . We use the idea of perfect squares to simplify square roots. The square root of a number a asks what number times itself is equal to a. For example, the square root of 25 is 5 since 5 times 5 is 25.

The **square root** of a number a, denoted  $\sqrt{a}$ , is a number whose square is a. So,  $\sqrt{25} = 5$ . The symbol  $\sqrt{\phantom{0}}$  is called a radical sign.

#### **Simplify the following:**

Ex. 6a 
$$\sqrt{81}$$
 Ex. 6b  $\sqrt{121}$  Ex. 6c  $\sqrt{0}$  Ex. 6d  $\sqrt{900}$  Ex. 6e  $\sqrt{\frac{1}{36}}$  Ex. 6f  $\sqrt{\frac{49}{144}}$  Solution:

a)  $\sqrt{81} = 9$ .
b)  $\sqrt{121} = 11$ .
c)  $\sqrt{0} = 0$ .
d)  $\sqrt{900} = 30$ .

(e) 
$$\sqrt{\frac{1}{36}} = \frac{1}{6}$$
. f)  $\sqrt{\frac{2}{16}}$ 

#### Concept # 5 Order of Operations

If you ever have done some cooking, you know how important it is to follow the directions to a recipe. An angel food cake will not come out right if you just mix all the ingredients and bake it in a pan. Without separating the egg whites from the egg yolks and whipping the eggs whites and so forth, you will end up with a mess. The same is true in mathematics; if you just mix the operations up without following the order of operations, you will have a mess. Unlike directions for making a cake that differ from recipe to recipe, the order of operations always stays the same. The order of operations are:

#### **Order of Operations**

- Parentheses Simplify the expression inside of Parentheses or grouping symbol: ( ), [ ],  $\{$  }, | | ,  $\sqrt{}$
- 2) Exponents including square roots.
- 3) Multiplication or Division as they appear from left to right.
- 4) Addition or Subtraction as they appear from left to right.

A common phrase people like to use is:

Please
Excuse
My Dear
Aunt Sally
Precede Division and Division does not precede multiplication; they are done as they appear from left to right. The same is true for addition and

subtraction.)

#### **Simplify the following:**

Ex. 7 
$$45 \div 3^2 \bullet \sqrt{25} + 3 \bullet 7^2$$

Solution:

Since there are <u>no</u> parentheses, we start with step #2, exponents:

$$45 \div 3^2 \bullet \sqrt{25} + 3 \bullet 7^2$$
 (#2-exponents)  
=  $45 \div 9 \bullet 5 + 3 \bullet 49$  (#3-division)  
=  $5 \bullet 5 + 3 \bullet 49$  (#3-multiplication)  
=  $25 + 3 \bullet 49$  (#3-multiplication)  
=  $25 + 147$  (#4-addition)  
=  $172$ 

Ex. 8 
$$\left(\frac{21}{4} \cdot \frac{1}{6} - \frac{1}{8}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$$

Solution:

Solution: 
$$\left(\frac{21}{4} \bullet \frac{1}{6} - \frac{1}{8}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$$
 (reduce inside the parenthesis)  $= \left(\frac{3 \bullet 7}{4} \bullet \frac{1}{3 \bullet 2} - \frac{1}{8}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$  (#1-parentheses, #3-multiplication)  $= \left(\frac{7}{8} - \frac{1}{8}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$  (#1-parentheses, #4-subtraction)  $= \left(\frac{6}{8}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$  (#2-exponents)  $= \left(\frac{3}{4}\right)^2 \div \frac{\sqrt{121}}{24} - \frac{3}{11}$  (invert and change operation to  $\bullet$ )  $= \frac{9}{16} \div \frac{11}{24} - \frac{3}{11}$  (reduce)  $= \frac{9}{16} \bullet \frac{24}{11} - \frac{3}{11} = \frac{9}{2 \bullet 8} \bullet \frac{3 \bullet 8}{11} - \frac{3}{11}$  (reduce)  $= \frac{9}{2} \bullet \frac{3 \bullet 8}{11} - \frac{3}{11}$  (#3-multiplication)  $= \frac{9}{2} \bullet \frac{3 \bullet 8}{11} - \frac{3}{11}$  (#3-multiplication)  $= \frac{27}{22} - \frac{3}{11}$  (L.C.D. = 22)  $= \frac{27}{22} - \frac{3 \bullet 2}{11 \bullet 2} = \frac{27}{22} - \frac{6}{22}$  (#4-subtraction)  $= \frac{21}{22}$ .

Ex. 9 
$$(9.1)^2 - (2.4 - |-1.2| \div 3) + (5-2)^2$$
  
Solution:  
 $(9.1)^2 - (2.4 - |-1.2| \div 3) + (5-2)^2$  (#1-parent., #1-Abs. Val)  
 $= (9.1)^2 - (2.4 - 1.2 \div 3) + (5-2)^2$  (#1-parentheses, #3-division)  
 $= (9.1)^2 - (2.4 - 0.4) + (5-2)^2$  (#1-parentheses, #4-subtr.)  
 $= (9.1)^2 - 2 + (3)^2$  (#2-exponents)  
 $= 82.81 - 2 + 9$  (#4-subtraction)  
 $= 80.81 + 9$  (#4-addition)  
 $= 89.81$   
Ex. 10  $75 - 3\sqrt{100 - (16-7)(4)}$  (#1-radical, #1-parenth., #4-subt.)

$$73 - 3\sqrt{100 - (16 - 7)(4)}$$
 (#1-radical, #1-parentill, #4-subt.)  
=  $75 - 3\sqrt{100 - (9)(4)}$  (#1-radical, #3-multiplication)  
=  $75 - 3\sqrt{100 - 36}$  (#1-radical, #4-subtraction)  
=  $75 - 3\sqrt{64}$  (#2-exponents)  
=  $75 - 3(8)$  (#3-multiplication)  
=  $75 - 24$  (#4-subtraction)  
=  $51$ 

Concept #6 Translation

Here are some key phrases and their translation

#### **Addition**

| the total of 11 and x | (11 + x) |
|-----------------------|----------|
| 8 added to y          | y + 8    |
| 7 more than f         | f + 7    |
| 4 increased by w      | 4 + w    |
| the sum of 8 and h    | (8 + h)  |
| r plus s              | r + s    |
| 13 greater than t     | t + 13   |
| exceeds r by 6        | r + 6    |

#### Subtraction

| 6 minus x                      | 6 – x   |
|--------------------------------|---------|
| 4 less y                       | 4 – y   |
| 4 less than y                  | y – 4   |
| the difference between 8 and x | (8 - x) |

| y decreased by 5    | y – 5  |
|---------------------|--------|
| x subtract 5        | x-5    |
| x subtracted from 5 | 5 – x  |
| q reduced by 43     | q – 43 |

#### Multiplication

| 6 times d                     | 6d              |
|-------------------------------|-----------------|
| the product of 11 and r       | (11r)           |
| $\frac{2}{5}$ of J            | $\frac{2}{5}$ J |
| V multiplied by $\frac{5}{6}$ | $\frac{5}{6}$ V |
| twice R                       | 2R              |
| triple w                      | 3w              |
| double q                      | <b>2</b> q      |

#### **Division**

| 7 divided into x           | $x \div 7 = \frac{x}{7}$   |
|----------------------------|----------------------------|
| 7 divided by x             | $7 \div x = \frac{7}{x}$   |
| the quotient of 5 and y    | $(5 \div y) = \frac{5}{y}$ |
| the ratio of 4 to 11       | $4 \div 11 = \frac{4}{11}$ |
| y split into 7 equal parts | $y \div 7 = \frac{y}{7}$   |
| x over 4                   | <u>x</u> 4                 |
| 9 per y                    | $9 \div y = \frac{9}{y}$   |

Note: Subtraction and division are not commutative. You need to learn the correct order with the vocabulary word.

#### a) Translate and then b) evaluate for a = 36, b = 2, and c = 72:

Ex. 11 The quotient of the square root of a and b. Solution:

a) The square root of a means  $\sqrt{a}$ . The quotient means write the first quantity divided by the second, so the quotient of  $\sqrt{a}$  and b is  $\sqrt{a} \div b$ .

b) 
$$\sqrt{a} \div b = \sqrt{(36)} \div (2) = 6 \div 2 = 3$$

Ex. 12 Twice the sum of a and c.

#### Solution:

a) The sum of a and c means [a + c] and twice the sum means to multiply the sum by 2, so the answer will be  $2 \cdot [a + c] = 2[a + c]$ .

b) 
$$2[a + c] = 2[(36) + (72)] = 2[108] = 216$$

Ex. 13 Triple the absolute value of the difference between c and a, exceeded by b.

#### Solution:

a) We need to break this one down into little pieces.

The difference between c and a: (c - a)

The absolute value of (c - a): |c - a|

Triple |c-a|: 3|c-a|

 $3 \mid c - a \mid exceeded by b:$   $3 \mid c - a \mid + b$ 

b) 3|c-a|+b=3|(72)-(36)|+2=3|36|+2= 3(36) + 2 = 108 + 2 = 110