Sect 9.2 - Parallel and Perpendicular Lines

Objective a: Understanding parallel and perpendicular lines.

Definition

Two intersecting lines (or rays or line segments) that form right angles (90°) are called <u>perpendicular lines</u>.

Two or more lines are called <u>parallel lines</u> if they never "cross", "meet", or have no points in common.

A <u>transversal</u> is a line that intersects two or more different lines at different points. If the transversal intersects two parallel lines, it produces a total eight angles with some special properties.

Illustration

Notation

Line ℓ is perpendicular to line m or $\ell \mid m$.

Lines ℓ_1 and ℓ_2 are parallel or $\ell_1 \mid\mid \ell_2$.

Line t is the transversal since it intersects $\ell_1 \& \ell_2$ at two different points.

If $\ell \mid \mid m$, then $m \angle 1 = m \angle 4 = m \angle 5 = m \angle 8$ $m \angle 2 = m \angle 3 = m \angle 6 = m \angle 7$

Ex. 1 Given that $m \angle b = 63^{\circ}$ in the diagram below, find all the other angles. Assume that $\overrightarrow{AB} \mid \mid \overrightarrow{CD}$.

Solution:

Since $m \angle f = m \angle h = m \angle d = m \angle b$, then $m \angle f = m \angle h = m \angle d = 63^\circ$. Since $\angle c$ and $\angle b$ are supplementary angles,

$$m\angle c = 180^{\circ} - m\angle b = 180^{\circ} - 63^{\circ} = 117^{\circ}$$
.

Hence, $m \angle g = m \angle e = m \angle a = m \angle c = 117^{\circ}$.

Objective b: Properties of Lines Cut by Transversals.

Definition

Corresponding angles are those angles that share the same location in their respective intersections. If two lines that are cut by a transversal are parallel, then the corresponding angles are equal.

<u>Illustration</u>

Notation

There are four pairs of corresponding angles. They are:

$$\angle$$
 1 & \angle 5; \angle 2 & \angle 6;

$$\angle$$
 3 & \angle 7; \angle 4 & \angle 8.

If
$$\ell \mid \mid m$$
, then

$$m \angle 1 = m \angle 5$$
;

$$m \angle 2 = m \angle 6$$
;

$$m \angle 3 = m \angle 7$$
;

$$m \angle 4 = m \angle 8$$
.

Alternate interior angles are those angles inside the two lines sharing the opposite locations, i.e., top - left and bottom - right. If the two lines are parallel, then the alternate interior angles are equal.

Alternate exterior angles are those angles outside the two lines sharing the opposite locations, i.e., top - left and bottom - right. If the two lines are parallel, then the alternate exterior angles are equal.

There are two pairs of alternate interior angles.

They are:
$$\angle$$
 3 & \angle 5;

If
$$\ell \mid \mid m$$
, then

$$m \angle 3 = m \angle 5$$
:

$$m \angle 4 = m \angle 6$$
.

There are two pairs of alternate exterior angles.

They are:
$$\angle$$
 1 & \angle 7;

If
$$\ell \mid \mid m$$
, then

$$m \angle 1 = m \angle 7$$
:

$$m \angle 2 = m \angle 8$$
.

In each of the diagrams, solve for x. Assume that $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

Ex. 2

Solution:

Since the two angles are alternate exterior angles, they are equal. Thus,

$$10x + 30^{\circ} = 5x + 80^{\circ}$$

$$-30^{\circ} = -30^{\circ}$$

$$10x = 5x + 50^{\circ}$$

$$-5x = -5x$$

$$\underline{5x} = \underline{50^{\circ}}$$

$$5 = 5$$

$$x = 10^{\circ}$$

Ex. 3

Solution:

Since the two angles are alternate interior angles, they are equal. Thus,

$$5x = 3x + 28^{\circ}$$

$$-3x - 3x$$

$$2x = 28^{\circ}$$

$$2 2$$

$$x = 14^{\circ}$$

Ex. 4

Solution:

Mark t as follows:

Since 75° – 2x and t are alternate interior angles, they are equal and hence,

Ex. 5 $A \qquad B$ $C \qquad 4x + 95^{\circ}$

Solution:

Mark t as follows:

Since 4x + 95° and t are alternate exterior angles, they are equal and hence,

we can replace t by
$$75^{\circ} - 2x$$
.
 $11x + 60^{\circ}$ and t are supple -
mentary angles, thus
 $11x + 60^{\circ} + t = 180^{\circ}$
 $11x + 60^{\circ} + 75^{\circ} - 2x = 180^{\circ}$
 $9x + 135^{\circ} = 180^{\circ}$
 $-135^{\circ} = -135^{\circ}$
 $9x = 45^{\circ}$
 $9x = 5^{\circ}$

we can replace t by
$$4x + 95^{\circ}$$
.
 $10x + 43^{\circ}$ and t are supple -
mentary angles, thus
 $10x + 43^{\circ} + t = 180^{\circ}$
 $10x + 43^{\circ} + 4x + 95^{\circ} = 180^{\circ}$
 $14x + 138^{\circ} = 180^{\circ}$
 $-138 = -138^{\circ}$
 $14x = 42^{\circ}$
 14
 $x = 3^{\circ}$

Ex. 6 In the diagram below, find all the missing angles. Assume $\ell \mid \mid m$.

Solution:

Since \angle 5 and 56° are vertical angles, m \angle 5 = 56°. Since \angle 1 and 43° are alternate exterior angles, m \angle 1 = 43°. But \angle 1 and \angle 3 are vertical angles, thus m \angle 3 = 43°. \angle 1, \angle 2, and 56° form a straight line and $m \angle 1 = 43^\circ$, hence $180^\circ = 56^\circ + m \angle 2 + 43^\circ$. Solving for $m \angle 2$ yields $m \angle 2 = 81^{\circ}$. Yet, $\angle 2$ and $\angle 4$ are vertical angles which means $m \angle 4 = 81^{\circ}$. Since $\angle 5$ corresponds to $\angle 8$, $m \angle 8 = m \angle 5 = 56^{\circ}$. But $\angle 6$ and $\angle 8$ are vertical angles, so $m \angle 6 = 56^{\circ}$. $\angle 7$ and $\angle 8$ are supplementary angles, therefore $m \angle 7 = 180^{\circ} - m \angle 8 = 180^{\circ} - 56^{\circ} = 124^{\circ}$. $\angle 7$ and $\angle 9$ are vertical angles and thus m \angle 9 = 124°. \angle 10 and 43° are vertical angles which means m \angle 10 = 43°. Since \angle 10 and \angle 11 are supplementary angles, $m \angle 11 = 180^{\circ} - 43^{\circ} = 137^{\circ}$. But, \angle 11 and \angle 12 are vertical angles, so m \angle 12 = 137°. Therefore: $m \angle 2 = 81^{\circ}$ $m \angle 3 = 43^{\circ}$ $m \angle 1 = 43^{\circ}$ $m \angle 4 = 81^{\circ}$ m∠ 6 = 56° $m \angle 7 = 124^{\circ}$ $m \angle 8 = 56^{\circ}$ $m \angle 11 = 137^{\circ}$ $m \angle 12 = 137^{\circ}$ $m \angle 5 = 56^{\circ}$ $m \angle 9 = 124^{\circ}$ $m \angle 10 = 43^{\circ}$

In looking back at the diagram in the previous example, observe that the sum of the three angles of the triangle ($m \angle 4 = 81^{\circ}$, $m \angle 6 = 56^{\circ}$, and $m \angle 10 = 43^{\circ}$) is 180° . This is true for any triangle. Thus, the sum of the angles of a triangle is 180° . Let's prove it in general:

Ex. 7 In the triangle below, show that the sum of the measures of the angles is equal to 180°.

Solution:

Draw m so that it is parallel to ℓ and passes through the vertex of the angle of the triangle not on ℓ . Notice that \angle a, \angle b, & ∠ 3 together form a line. This means that $m \angle a + m \angle b + m \angle 3 = 180^{\circ}$. Since $\ell \parallel m$ and t_1 is a transversal, then \angle 1 and \angle a are a pair of alternate interior angles. Hence, $m \angle 1 = m \angle a$ and we can replace

 $m \angle 1 + m \angle b + m \angle 3 = 180^{\circ}$. But, t_2 is also a transversal, so $\angle 2$ and \angle b are a pair of alternate interior angles. Hence,

 $m \angle 2 = m \angle b$ and we can replace $m \angle b$ by $m \angle 2$ to get:

$$m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$$
.

Thus, the sum of the measures of the angles is 180°.

Find the measure of each angle:

Ex. 8

Solution:

Since the sum of the angles of a triangle is 180°, our equation $32^{\circ} - 2x + 8x + 5x + 3^{\circ} = 180^{\circ}$ becomes:

$$11x + 35^{\circ} = 180^{\circ}
-35^{\circ} = -35^{\circ}
11x = 145^{\circ}
11 11
x = 13 \frac{2}{11}^{\circ}$$

Now, plug in to find the angles:

$$32 - 2x = 32^{\circ} - 2\left(\frac{145^{\circ}}{11}\right) = \frac{32^{\circ}}{1} - \frac{290^{\circ}}{11} = \frac{352^{\circ}}{11} - \frac{290^{\circ}}{11} = \frac{62^{\circ}}{11} = 5\frac{7}{11}^{\circ}$$

$$8x = 8\left(\frac{145^{\circ}}{11}\right) = \frac{1160^{\circ}}{11} = 105\frac{5}{11}^{\circ}$$

$$5x + 3^{\circ} = 5\left(\frac{145^{\circ}}{11}\right) + 3 = \frac{725^{\circ}}{11} + \frac{3^{\circ}}{1} = \frac{725^{\circ}}{11} + \frac{33^{\circ}}{11} = \frac{758^{\circ}}{11} = 68\frac{10}{11}^{\circ}$$