Review for Test #4 over Chapters 7 & 8

Work all the problems on a separate piece of paper showing all steps.

Find the following:

11)
$$\frac{99 \text{ Yen}}{L} = \frac{\$}{\text{gal}}$$
 (110 Yen $\approx \$1$) 12) 7 gal 3 qt 2 pt = ___ c

15)
$$(7 \text{ tons } 3 \text{ lb } 2 \text{ oz}) \div 5$$

17)
$$5 \text{ kg} - 2 \text{ lb}$$

19) 8.6 km – 192 m + 4.3 dam

4)
$$-85^{\circ} F = C$$

6)
$$\frac{77 \, dg}{300 \, m} = \frac{g}{km}$$

8)
$$\frac{\$6.24}{\text{lb}} = \frac{\$}{\text{oz}}$$

18)
$$(10 \text{ mi } 4000 \text{ ft } 4 \text{ in}) \div 7$$

Solve the following:

- Tom wants to replace a 225 in³ engine with a new engine that is the 20) same size. If all new engines are measured in liters as opposed to cubic inches, what liter size engine (to the nearest tenth of a liter) must Tom get?
- 21) Bobbi of the Yarn Barn of San Antonio has 7 yd 2 ft 6 in of 14-point canvas. If a customer buys 1 yd 2 ft 10 in of the 14-point canvas, how much of the canvas does she have left?
- At HEB, Samuel is assembling 25 gift packs for the holidays. If he 22) has a total of 28 lb 2 oz of candy, how much candy should he put in each pack?

Solve the following:

- 23) To paint one room in a house with two coats of paint, Fard estimates that he needs 1 gal 3 qt of paint. If there are five rooms of similar size that need to be painted and the owner wants to have 1 gal 2 qt left over to use for "touch-up" jobs, how much paint will Fard need to get?
- 24) An oil spill pollutes 21 mi 3600 ft of coastline. Nine crews are organized to clean-up the coastline. How much coastline will each crew have to clean-up?

Find the indicated angles:

Use the diagram below for exercise #26, assume $\stackrel{\leftrightarrow}{AB} || \stackrel{\longleftrightarrow}{EF}$.

- 26a) Identify all pairs of vertical angles.
- 26b) Identify all pairs of alternate interior angles.
- 26c) Identify all pairs of alternate exterior angles.
- 26d) Identify all pairs of corresponding angles.
- 26e) If $m \angle 6 = 72^{\circ}$, find the measure of all the other angles.

27a) 12.5°

27b) 85.6°

27c) 107°

Find the missing sides and angles:

28) Given $\triangle ABC \sim \triangle DEF$, BC = 1.4 cm, EF = 2.1 cm, DF = 0.6 cm, AB = 1.2 cm, m \angle D = 40.6°, and m \angle E = 16.2°, find all the missing sides and angles.

Find x in the following diagrams:

Solve the following geometry problems. For calculations involving π , give the exact answer and then approximate using $\pi \approx 3.14$:

31) Find the perimeter and the area:

32) Find the perimeter and the area:

33) Find the perimeter and the area:

34) Find the perimeter and the area:

35) Find the volume:

36) Find the volume:

Solve the following geometry problems. For calculations involving π , give the exact answer and then approximate using $\pi \approx 3.14$:

37) Find the volume:

38) Find the volume:

39) Find the perimeter and the area:

40) Find the perimeter and the area:

41) Find the perimeter and the area:

42) Find the volume:

Solve the following geometry problems. For calculations involving π , give the exact answer and then approximate using $\pi \approx 3.14$:

43) Find the volume:

44) Find the volume:

45) Find the area of the shaded region:

6000 cm

- 46) How much lemonade can a cone with radius of 5 cm and a height of 8 cm hold?
- 47) A family has a circular yard with a diameter of 200 yards.
 - a) How much area does the family have to fertilize?
 - b) If the wife wants to fence in the lawn, how much fencing is needed?
- 48) Benito Adobe wants to lay down a concrete floor that is 16 ft long, 15 ft wide, and 4 inches thick.
 - a) How much concrete does he need to pour?
 - b) If wants to put a six-foot high fence around the slab, how much fencing will he need?

- 49) Ramensis the second wants to build a pyramid that has a square base. The length of the side of the pyramid is to be 200 feet and it is to have a height of 300 feet. If each stone block measures 12 inches by 6 inches by 6 inches, how many blocks does Ramensis need to build his pyramid? (Assume the pyramid is solid).
- 50) a) The amount of soda needed to fill a soda can.
 - b) The amount of fencing needed to enclose a garden.
 - c) The amount of carpet needed for the living room.
 - d) The amount of medicine given to a child.
 - e) The amount of weather-stripping that goes around a window.
 - f) The amount of wrapping paper for Marigold's present.
 - g) The amount of concrete poured for a driveway.
 - h) The amount of water needed to fill a swimming pool.
 - i) The amount of grass needed to re-sod a lawn.
 - j) The amount of calk needed around a bathtub.

Answers:

- 1) 76.7 dam 2) 0.0652 dl 3) $\approx 16.536 \text{ pt}$ 4) -65° C 5) $\approx 805,000 \text{ cm}$
- 6) $\frac{77g}{3 \text{ km}}$ 7) $\approx 0.001322 \text{ lb}$ 8) $\frac{\$0.39}{\text{oz}}$ 9) 3 yd 1 ft 7 in 10) 54.68° F
- 11) $\approx \frac{\$3.41}{\text{gal}}$ 12) 128 c 13) 19 mi 1721 ft 4 in 14) 14 days 19 hr 3598 sec
- 15) 1 ton 800 lb 10 oz 16) 63 gal 2c 17) ≈ 9 lb or $\approx 4\frac{1}{11}$ kg
- 18) 1 mi 2834 ft 4 in 19) 8451 m or 8.451 km 20) The engine size is ≈ 3.7 L.
- 21) Bobbi has 5 yd 2 ft 8 in of canvas left. 22) Each pack will get 1 lb 2 oz of candy.
- 23) He needs 10 gal 1 qt of paint. 24) Each crew will clean 2 mi 2160 ft of coast line.
- 25) $m \angle 1 = 94^\circ$; $m \angle 2 = 86^\circ$; $m \angle 3 = 94^\circ$; $m \angle 4 = 57^\circ$; $m \angle 5 = 123^\circ$; $m \angle 6 = 57^\circ$; $m \angle 7 = 123^\circ$; $m \angle 8 = 37^\circ$; $m \angle 9 = 143^\circ$; $m \angle 10 = 143^\circ$
- 26a) $\angle 1 \& \angle 4; \angle 2 \& \angle 3; \angle 5 \& \angle 8; \angle 6 \& \angle 7$ 26b) $\angle 3 \& \angle 6; \angle 4 \& \angle 5$
- 26c) \angle 1 & \angle 8; \angle 2 & \angle 7 26d) \angle 1 & \angle 5; \angle 2 & \angle 6; \angle 3 & \angle 7; \angle 4 & \angle 8
- 26e) $m \angle 1 = m \angle 4 = m \angle 5 = m \angle 8 = 108^{\circ}; m \angle 2 = m \angle 3 = m \angle 7 = 72^{\circ}$
- 27a) Comp. = 77.5°; Supp. = 167.5° 27b) Comp. = 4.4°, Supp. = 94.4°
- 27c) No Comp.; Supp. = 73° 28) AC = 0.4 cm, DE = 1.8 cm, m \angle A = 40.6° , m \angle B = 16.2° , m \angle C = 123.2° , and m \angle F = 123.2°
- 29) 1 in 30) \approx 16.97 mi or \approx 89,604.57 ft 31) P = 40 ft; A = 100 ft²
- 32) $P = 130 \text{ in; } A = 888 \text{ in}^2 \quad 33) P = \frac{39}{7} \text{ m; } A = \frac{6}{7} \text{ m}^2$
- 34) P = 207.8 m; A = 2495.808 m² 35) V = $\frac{16384}{3}$ m mm³ ≈ 17,148.587 mm³
- 36) $V = 5.48274 \text{ cm}^3$ 37) $V = \frac{343}{216} \text{ ft}^3$ 38) $V = 800 \pi \text{ m}^3 \approx 2512 \text{ m}^3$
- 39) $P = 80 \text{ cm}, A = 250 \text{ cm}^2$ 40) $P = 0.32 \text{ in}, A = 0.006 \text{ in}^2$
- 41) $P = (1.3\pi + 2.6) \text{ ft} \approx 6.682 \text{ ft}, A = 0.485\pi \text{ ft}^2 \approx 1.5229 \text{ ft}^2$ 42) $V = 0.768 \text{ m}^3$
- 43) V = 4080 ft³ 44) V = 1.8225π ft³ ≈ 5.72265 ft³ 45) A = $(652 29\pi)$ m² ≈ 560.94 m²
- 46) $V = \frac{200}{3} \pi \text{ cm}^3 \approx 209 \frac{1}{3} \text{ cm}^3$ 47a) $A = 10000 \pi \text{ yd}^2 \approx 31,400 \text{ yd}^2$
- 47b) P = 200π yd ≈ 628 yd 48a) V = 80 ft³ 48b) 62 feet 49) 16,000,000 blocks
- 50a) Volume 50b) Perimeter 50c) Area 50d) Volume 50e) Perimeter
- 50f) Area 50g) Volume 50h) Volume 50i) Area 50j) Perimeter