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Abstract — Block ciphers are typically resistant to direct attacks, such as an
exhaustive key search or cryptanalysis, all of which require too many resources to
achieve an efficient attack. Many block ciphers are examined for their resistance
to less direct attacks that target a given implementation. Of these attacks, fault
attacks are amongst the most effective at retrieving information on secret key, and
require specific countermeasures to be included in an implementation. In this paper
we describe a simple platform for the study of fault injection and analysis in the
context of fault attacks block ciphers based on a Feistel structure (e.g. DES). We
show that an attacker who can successfully inject faults into a block cipher can
reduce the complexity of an attack to derive the secret key. We also present a
novel version of the attack than can be applied to Triple-DES by independently
injecting faults in the second and third instantiations of DES involved in a Triple-
DES computation.
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I Introduction

Traditionally, block ciphers were viewed as a black
box abstraction which took in a plaintext and a
key and produced an encrypted ciphertext. In this
case, the strength of a block cipher is entirely de-
pendant on the secrecy of the key value, and the
only ways to find this key value is to try all the dif-
ferent possible key values of find a mathematical
weakness in the block cipher.

In cryptography, an implementation attack is
any attack based on information gained from at-
tacking an implementation of an algorithm, rather
than theoretical weaknesses in the algorithms [8].

The possibility of injecting faults into crypto-
graphic algorithms was first proposed in [7] and
implementations of this type of attack have also
been reported [2]. This led to the publication of
numerous different attacks on other cryptographic
algorithms.

In this paper we present a known-plaintext at-
tack in a hardware based smart card or chip-level
security processor environment by use of an FPGA
development board, where the cryptanalyst has ac-
cess to a ciphertext and its corresponding plaintext

pair (or many such pairs), to discover the secret
key. Using differential cryptanalysis and a ver-
sion of the fault attack method described in [3],
we run simulations with fault induced variations
of the data lines, and we will show that the time
taken to retrieve the secret key value can be greatly
reduced by means of these induced faults.

This paper is organised as follows: We begin
with a brief introduction of the DES architecture.
We then move on to describe differential cryptanal-
ysis. Following this we explain our implementation
and the design method, followed by our results,
and then we present our differential fault attack
on Triple-DES, followed by our conclusions.

II DES Architecture

DES, the Data Encryption Standard algorithm,
is the archetypal block cipher — an algorithm
that takes a fixed-length string of plaintext bits
and transforms it through a series of operations
into another ciphertext bitstring of the same
length [12]. DES was approved as a federal stan-
dard in 1976, and authorised for use on all unclas-
sified data. In 2002, DES was finally superseded



by AES, the Advanced Encryption Standard, but
its Feistal scheme forms the basis of many of the
current block ciphers in use today. The applica-
tions use this block cipher include pay-TV smart
cards, prepayment meter tokens, and remote lock-
ing devices for cars.

In the case of DES, the block size is 64 bits. DES
also uses a key to customise the transformation,
so that decryption can only be performed by those
who know the particular secret key used to en-
crypt. The algorithm’s overall structure is shown
in Figure 1, with the Feistal function shown in Fig-
ure 2. There are 16 identical stages of processing,
termed rounds. There is also an initial and final
permutation, termed IP and FP, which are inverse
operations. Before the main rounds, the block is
divided into two 32-bit halves and processed al-
ternately; this structure is known as the Feistel
scheme [11].
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Fig. 1: The DES Algorithm.

The Feistel structure ensures that decryption
and encryption are very similar processes; the only
difference is that the subkeys are applied in the
reverse order when decrypting. The rest of the
algorithm is identical. This greatly simplifies im-
plementation, particularly in hardware, as there
is no need for separate encryption and decryp-
tion algorithms. The alternation of substitution
from the S-boxes, and permutation of bits from the
P-Permutation and E-Bit selection table provides
so-called “confusion and diffusion” respectively, a
concept identified by Claude Shannon in the 1940s

Fig. 2: The Feistel structure (F-function) of DES.

as a necessary condition for a secure yet practical
cipher [13].

III Differential Cryptanalysis

Differential cryptanalysis has been, and still is, one
of the most influential techniques in block cipher
cryptanalysis. It led, in 1991, to the first attack on
the full 16-round DES which was faster than ex-
haustive search [5]. Constructing a differential dis-
tinguisher consists of finding a distinctive property
in the input and output blocks for the purposes of
revealing the secret key value.

In a block cipher like DES, the secret sub-key
bits are inserted into the encryption function by
XORing them to intermediate data blocks during
different round points in the computation. Let X1

and X2 be the values of such an intermediate data
block for two different plaintexts P1 and P2. As-
suming that both plaintexts are encrypted with
the same key, we can write:

Y1 = X1 ⊕ Ki

Y2 = X2 ⊕ Ki

(1)

and therefore,

∆Y = Y1 ⊕ Y2 and,

(X1 ⊕ Ki) ⊕ (X2 ⊕ Ki) = X1 ⊕ X2 = ∆X .
(2)

This simple equation illustrates the idea of a
differential approach: while the adversary cannot
compute the values Y1 and Y2 without knowing
the round key Ki, they can easily determine their
difference ∆Y , given ∆X . The idea of differen-
tial cryptanalysis is to try to extend this property
over multiple rounds. The attacker can predict



Fig. 3: The key-schedule of DES.

the output difference ∆K by tracing how the in-
put difference ∆Y evolves through the cipher, and
then this can distinguish the cipher from a random
permutation.

In practice however, a cipher does not only con-
sist of key additions (which, as can be seen from
above, do not produce a differential); it also con-
tains diffusion components and non-linear substi-
tution tables (S-boxes). Linear diffusion layers
can be ignored to a certain extent. Although
they do not preserve differences, they do trans-
form them in a predictable way, i.e. if Y1 = A(X1)
and Y2 = A(X2), for some linear function A, then
∆Y = A(∆X).

Unfortunately, this is not true for S-boxes (or
any other non-linear component in a block cipher).
Unless the difference ∆X at the input of the S-box
is zero, the attacker typically cannot determine the
output difference ∆Y without knowing the actual
value of X1. However, given ∆X and assuming
that X1 are uniformly distributed, one can com-
pute the statistical distribution of possible output
differences. In order to proceed, the attacker must
pick one of these output differences, compute the
probability that their choice was correct, and con-
tinue their analysis.

Eventually, they will reach the output of the ci-
pher, and will have described one of the possible
ways in which the difference ∆P at the input could
have propagated through the cipher. This is called
a differential characteristic [9]. The probability
that a given pair of plaintexts actually follows this
characteristic is the product of the probabilities of
all choices that the attacker must make (assuming
that these probabilities are independent).

This type of cryptanalysis can be employed is

a fault is injected into a device that is computing
a block cipher, as the difference between an exe-
cution of a block cipher with and without a fault
can be compared in the manner described above.
Theoretical attacks that can exploit faults at the
beginning and end of the computation of a block
ciphers have been proposed [6, 9]. This type of at-
tack is termed Differential Fault Analysis (DFA).

IV Implementation

We insert our faults on the 15th round of DES.
With this technique, only the fifteenth and six-
teenth rounds will vary from a fault free implemen-
tation. This was the method described in [3], and
conducting the attack several times either at differ-
ent positions in the fifteenth round with a varying
message, we insert the faults over the entire right
hand 32-bit data line with a logic high, as shown
in Figure 4. In hardware, if the algorithm is a di-
rect implementation, this is achieved by inserting
switches to generate stuck-at-one faults into the
circuit on the data line in the fifteenth round.

If a loop folding technique is implemented, some
monitoring is initially required, either a count of
the bitstream passing through on the data line to
determine the round number, Figure 5, or some
simple power analysis to determine at what point
in time the target round is being computed.

Fig. 4: Simplified DES last round model.

We then run a fault-free encryption using the
DES algorithm while choosing to ignore the ini-
tial permutation, which is a simple bitwise per-
mutation. If we denote the substitution table as
function S, the output of the last round can be
expressed in Boolean logic as:

L16 = R15

R16 = S(R15 ⊕ K16) ⊕ L15

= S(L16 ⊕ K16) ⊕ L15

(3)

We can then repeat the encryption, using the
same plaintext and key pairing, only this time with
our fault insertion technique, where R15 is changed
to R

′
15. The output is transformed to:



Fig. 5: Round block with fault insertion.
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Then by using the differential approach and
XORing the R16 with the fault inserted R′

16
, we

obtain:

L
′
16 = R

′
15

R16 ⊕ R
′
16

= S(L16 ⊕ K16) ⊕ L15

⊕ S(L′
16 ⊕ K16) ⊕ L15

= S(L16 ⊕ K16) ⊕ S(L′
16

⊕ K16)

(5)

This gives a relationship where only the value
of the sixteenth subkey (K16) is unknown; all the
other variables being given directly as an output
of the DES. For each substitution table used in the
last DES round this relationship will hold true.

Since we now know the output from the sub-
stitution tables, an exhaustive search of the 64
possible values that validate Equation 5 can be
conducted for each of the six bits corresponding
to the input of each of the eight substitution ta-
bles. This will give approximately 224 different hy-
potheses for the last subkey (determined through
exhaustive simulation). We then implement a fi-
nal exhaustive search through 232 DES keys to find
the whole key.

V Implementation Method

The implementation was performed using VHDL
and then programmed onto a Digilent D2SB
FPGA programmable logic development board.
This development board comprises of a 200K gate
Xilinx Spartan 2E200 FPGA in a PQ208 package,
and associated hardware that provides 143 user
I/Os.

Connected to the development board, on two
banks of the expansion connectors, B and C, were

two DIO4 digital I/O boards. Each I/O board
consists of a set of eight switches. Each of the
eight switches (per I/O board) were used to in-
dependently simulate a logical stuck-at-one fault,
for each of the eight least significant bits of both
the left and right hand inputs of the permuted in-
put. In this way the inputs of the S-Boxes can be
modified to simulate a fault attack.

A Search Unit program was developed and im-
plemented to work in conjunction with the DES
block. It was designed using differential crypt-
analysis to study the differences of input and out-
put blocks encrypted with the same key. Figure 6
shows the search unit operation.

Fig. 6: Search Unit Operation Flow Chart.

The main premise of this is that if the attacker
can choose the plaintexts as is the case here, the
encryptions of a sufficient amount of plaintext
pairs with a fixed difference ∆P can use the prob-
ability to distinguish the block cipher from a ran-
dom permutation. The attacker can then count
the number of pairs which produce the output dif-
ference predicted by their characteristic. As shown
in Figure 7, the outputs from the DES block are
fed directly into the inputs of the Search Unit and
a key search is initiated. The Search Unit takes a
key and a 64 bit block of ciphertext. It decrypts
the ciphertext block with the key and checks the
resulting block of plaintext. Since we already know
the plaintext and are just looking for the key, if
the plaintext from this key matches, or partially
matches our known block of plaintext, then we
have a partial or full recovery of the key. If not,
it adds one to the key and repeats. In this way it
searches its way through the key-space.

VI Results

The development board was designed with a DES
algorithm/search unit pair. The board was left to
run with the inserted faults and the partial key
value was recovered. Modifying one S-box table in
the fifteenth round will approximately change the
inputs for on average 3.2 of the S-boxes in round
sixteen [1]. Therefore, when we implement the at-
tack a number of times, some secret key informa-
tion is released. The process is then repeated to



Fig. 7: Search Unit Operation Flow Chart.

Search Units on the FPGA 1
Clock speed (Hz) 5 × 107

Clocks per key
(typical) 16

DES keys per search
(unit per second) 3.125 × 106

Total DES keys
per search 5 × 107

Search size
(fault free) 7.21 × 1016

Seconds per result
(fault free) 14.41 × 108

Days per result 16678
(fault free) (around 45 years)
Search size

(fault inserted) 268.5 × 106

Seconds per result
(fault inserted) 288.2 × 103

Days per result 3.33
(fault inserted) (around 80 hours)

Table 1: Search unit results

obtain more information. An exhaustive search
was then performed on the remainder of the key.

As can be seen from Table 1, when the key size
has reduced from 56 to 32 bits, we can recover a
complete key in approximately 80 hours.

VII DFA on Triple DES

Differential Fault Analysis can also be applied to
triple DES by independently injecting faults in the
second and third instantiations of DES involved in
a triple DES computation. A method for attacking
triple DES is given in [6], which involves first deriv-
ing the last subkey of the last round, and then the
penultimate subkey, in order to derive the key used
for the third instantiation of DES. This approach
then allows faults in the second instantiation to be

exploited. This assumes that the fault injection is
perfect; a more robust and novel approach would
be to use an extended version of the algorithm pre-
sented in Section IV, and this approach is part of
the contribution of this work.

This approach involves independently injecting
faults into the fifteenth round of the second and
third instantiations of DES. Let the correct ci-
phertext block (generated from message block M)
be C, a ciphertext block derived as a result of a
fault in the fifteenth round of the third instantia-
tion of DES be C′, and a ciphertext block derived
as a result of a fault in the fifteenth round of the
second instantiation of DES be C

′′.

An attacker can compare C and C′ to generate
a set of possibilities for the key used in the last
instantiation of DES. For each key hypothesis in
this set, C and C′′ are deciphered, to give a hy-
pothesised state between the second and the third
instantiations of DES. These candidate deciphered
values can then be compared to yield information
on the last subkey of the second instantiation of
DES. The set of candidate keys resulting from this
process can then be searched through, using the
key used to decipher C and C′′ to encipher M .
When the key for the second instantiation of DES
is found, the key hypothesis used to generate the
input and the output of the second instantiation
of DES is also validated.

For one attack on the fifteenth round of the sec-
ond and third instantiation of DES, the total num-
ber of hypotheses generated will be 232×232 = 264,
i.e. the expected size of the set of possibilities pro-
duced by combining C and C′, each of which will
produce a set of the same expected size.

This is a significant reduction when compared to
the exhaustive search of size 2112 that is required to
attack triple DES by exhaustively searching all the
possible key values. This can be improved upon
by acquiring more data; if two faulty ciphertext
blocks are acquired for both the second and third
instantiation of DES; the number of hypotheses
generated becomes 214 × 214 = 228.

This can be further reduced if we take into ac-
count the fact that some deciphered values of C

and C′′ will not produce a valid keyspace. If C

and C′′ are deciphered with an incorrect key, then
the intermediate states produced will be random
values. When these values are compared, the re-
lationship between L16 and R16 in the generated
intermediate state will not depend on any bits of
the key. The values generated will therefore no
longer be distributed with the frequencies given
in [4], but will be uniformly distributed across all
the possible combinations.

If an impossible differential (i.e. a difference that
could not occur because of the structure of the
block cipher) is created when analysing the deci-



phered C and C
′′, then the key hypothesis used

for deciphering C and C′′ can be discarded.

The probability that all eight S-boxes produce a
valid contribution to the keyspace is the product of
the fraction of possible differentials for all of the S-
boxes. This gives a probability of 0.125 (derived by
exhaustive simulation), so the keyspace generated
by this attack becomes 232×(232×0.125) = 261 for
one faulty ciphertext block from a fault in the fif-
teenth round of the second instantiation, and one
faulty ciphertext block from a fault in the third
instantiation of DES. This can be improved to
214 × (214 × 0.1252) = 222, if two faulty cipher-
text blocks are produced for both the second and
third instantiations of DES.

This attack can be extended to triple DES
with three independent keys, in which case
faults will be required in the fifteenth round
of each of the three instantiations of DES.
Following the same reasoning as for two-key
triple DES leads to a keyspace of size 232 ×
(

232 × 0.125 ×
(

232 × 0.125
))

= 290 for one faulty
ciphertext block from a fault in the fifteenth round
of each instantiation of DES. This can be reduced
to 214 ×

(

214 × 0.1252
(

214 × 0.1252
))

= 230 if two
faulty ciphertexts are generated by injecting faults
into each instantiation of DES.

VIII Conclusion

In this paper we presented a simple platform for
the study of fault injection attacks on a Feistal al-
gorithm, and proposed a novel approach for a sim-
ple attack scenario on the expanded version of that
algorithm. Our assumption is that faults can be
inserted in known locations, but that the number
of faults one can inject is limited. The platform is
built in such a way that it allows the study of fault
attacks on the Feistal structure. We do not take
into account the various countermeasures used to
stop these types of attacks such as dummy random
cycles, and hardware redundancy [3], it stands to
reason that the more difficult it is for an attacker
to exploit these fault attack methods, the more
secure this hidden key will become.

We have demonstrated that with current tech-
nologies it is easy to attack block ciphers in rea-
sonable time, provided that the ciphers do not in-
clude specific countermeasures, and that fault in-
jection technology is readily available. The higher
the number of injected faults into known locations,
the shorter the attack time will be. The issue is to
find the locations where fault attacks can be most
easily exploited, so that these vulnerabilities can
be reduced in the future either by finding ways to
reduce the access to the locations, or to strengthen
them against future attacks.
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