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Abstract. This paper describes methods of recoding exponents to allow
for regular implementations of m-ary exponentiation algorithms. Recod-
ing algorithms previously proposed in the literature do not lend them-
selves to being implemented in a regular manner, which is required if
the implementation needs to resist side-channel attacks based on simple
power analysis. The advantage of the algorithms proposed in this paper
over previous work is that the recoding can be readily implemented in
a regular manner. Recoding algorithms are proposed for exponentiation
algorithms that use both signed and unsigned exponent digits.
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1 Introduction

Exponentiation algorithms have been shown to be vulnerable to side-channel
analysis, where an attacker observes the power consumption [17] or electromag-
netic emanations [9, 24]. These attacks are referred to as Simple Power Analysis
(SPA) and Simple Electromagnetic Analysis (SEMA). A näıvely implemented
exponentiation algorithm will reveal the exponent used, as the operations re-
quired are dependent on the (bitwise) representation of the exponent.

Recoding algorithms have been proposed to decrease the number of oper-
ations required to compute an exponentiation [4, 15]. However, these recoding
algorithms are designed to produce efficient exponentiation algorithms, and not
to produce side-channel resistant exponentiation algorithms.

There are several recoding algorithms that have been proposed in the litera-
ture [19–23, 26, 27] in order to thwart SPA or SEMA. However, as noted in [25],
to achieve a regular exponentiation algorithm any recoding that is used also
needs to be regular. We define “regular” to mean that an algorithm executes the
same instructions in the same order for any input values. There is, therefore, no



leakage through simply inspecting a side-channel. It could be argued that this
recoding could be done when an exponent is generated. However, if an exponent
is combined with a random value to prevent differential side-channel analysis,
as detailed in [7, 16], the recoding will have to be conducted just prior to the
exponentiation algorithm.

Algorithms are proposed for signed and unsigned exponentiation algorithms.
They are described in general terms and can be readily adapted for use in
(Z/NZ)∗, F

∗
p, etc. It should be noted that differential side channel analysis and

the required countermeasures are not considered in this paper (the interested
reader is referred to [18] for a discussion of this topic). Only exponentiation al-
gorithms that lend themselves to being implemented with a regular structure
are considered in this paper. For a more generic survey of (fast) exponentiation
algorithms, the interested reader is referred to [11].

The rest of this paper is organised as follows. In the next section, we review
basic methods for evaluating an exponentiation. In Section 3, we explain how
exponent recoding may prevent certain side-channel attacks and present new
recoding methods. For further efficiency, we consider exponents recoded to both
signed and unsigned digits. In Section 4, we describe (higher-radix) right-to-
left exponentiation methods and point out why they are more suited for secure
implementations. Finally, we conclude in Section 5. Specific applications of our
recoding methods can be found in Appendix A.

2 Basic Methods

2.1 Square-and-multiply method

The simplest algorithm for computing an exponentiation is the square-and-
multiply algorithm. This is where an exponent is read left-to-right bit-by-bit,
a zero results in a squaring operation being performed, and a one results in a
squaring operation followed by a multiplication. This algorithm is detailed in
Algorithm 1, where we define the function bit(n, i) as a function returning the
ith bit of n.3 The input is an element x in a (multiplicatively written) group G

and a positive `′-bit integer n; the output is the element z = xn in G.

Algorithm 1: Square-and-Multiply Algorithm

Input: x ∈ G, n ≥ 1, `′ the binary length of n (i.e., 2`′−1 ≤ n < 2`′)
Output: z = xn

A← x; R← x
for i = `′ − 2 down to 0 do

A← A2

if (bit(n, i) 6= 0) then A← A ·R
end

return A

3 By convention, the first bit is bit number 0.



It has been shown that bit values of exponent n can be distinguished by
observing a suitable side channel, such as the power consumption [17] or electro-
magnetic emanations [9, 24]. One countermeasure to prevent an attacker from
being able to recover the bit values of an exponent is to execute the same code
(i.e., without conditional branchings) whatever the value of exponent n, referred
to as side-channel atomicity [5]. Specific implementations described in [5] as-
sume that the multiplications and squaring operations behave similarly. How-
ever, it has been shown that squaring operations and multiplications may be
distinguished by differences in the power consumption of hardware implementa-
tions [1], or the distribution of the Hamming weight of the result of the single
precision operations required to compute multi-precision operations [2].

2.2 Square-and-multiply-always method

The first regular exponentiation algorithm was proposed in [7], where a multipli-
cation is performed for each bit of an exponent. The value of the bit in question
determines whether the result is used or discarded.

Algorithm 2: Square-and-Multiply-Always Algorithm

Input: x ∈ G, n ≥ 1, `′ the binary length of n
Output: z = xn

R[0]← x; R[1]← x; R[2]← x
for i = `′ − 2 down to 0 do

R[1]← R[1]2

b← bit(n, i); R[b]← R[b] ·R[2]
end

return R[1]

This algorithm is less efficient than many other exponentiation algorithms.
More importantly, it has been shown that this algorithm can be attacked by a
safe-error fault attack [29, 30]. If a fault is injected into a multiplication, it will
change the output only if the result of that multiplication is used. An attacker
could potentially use this to determine bits of the exponent by targeting chosen
multiplications. A description of fault attacks that could potentially be applied
to an exponentiation is beyond the scope of this paper (see [3, 10]). However, it
would be prudent to avoid algorithms that are vulnerable to such attacks.

2.3 m-ary exponentiation

In order to speed up the evaluation of z = xn it is possible to precompute some
values that are small multiples of x by breaking up the exponent into ` words
in radix m [15]. Typically, m is chosen to be equal to 2k, for some convenient
value of k, to enable the relevant digits to simply be read from the exponent.



The m-ary algorithm is shown in Algorithm 3, where function digit(n, i) returns
the ith digit of n (in radix m).

Algorithm 3: m-ary Exponentiation Algorithm

Input: x ∈ G, n ≥ 1, ` the m-ary length of n
Output: z = xn

Uses: A, R[i] for i ∈ {1, 2, . . . , m− 1}

R[1]← x
for i = 2 to m− 1 do R[i]← R[i− 1] · x

d← digit(n, `− 1); A← R[d]

for i = `− 2 down to 0 do
A← Am

d← digit(n, i)
if (d 6= 0) then A← A ·R[d]

end

return A

This algorithm is more efficient than the square-and-multiply algorithm and
has the advantage that it is more regular and will, therefore, leak less informa-
tion. The algorithm is not entirely regular since no multiplication is conducted
when a digit is equal to zero. It would, therefore, be expected that an attacker
could determine the digits of n that are equal to zero by observing a suitable
side channel.

3 Exponent Recoding

Several methods for recoding exponents have been proposed in the literature.
The most commonly known example is Non-Adjacent Form (NAF) recoding [4]
that recodes the bits of an exponent with values in {−1, 0, 1}. This reduces the
number of multiplications that are required in the subsequent exponentiation al-
gorithm, and can be generalised to a m-ary recoding [15]. Some methods of NAF
recoding to produce a regular exponentiation algorithm have been proposed as a
countermeasure to side-channel analysis [22, 23]. However, these recoding algo-
rithms have been shown to be vulnerable to attack, since the recoding algorithm
is not itself regular [25].

Other recoding algorithms have been proposed that make the subsequent
exponentiation algorithm regular. In [19], Möller describes a recoding algorithm
for m-ary exponentiation where each digit that is equal to zero is replaced with
−m, and the next most significant digit is incremented by one. This leads to an
exponent recoded with digits in the set {1, . . . ,m−1}∪{−m}. Combined with the
m-ary exponentiation algorithm, this implies that x−m should be precomputed.
While this computation is “easy” on elliptic curves, this is not the case for
the multiplicative group of integers modulo N . An unsigned version of Möller’s



algorithm is described in [27] where the digits are recoded in the set {1, . . . ,m}:
each zero digit is replaced with m and the next digit is decremented by one.

The problem with the recoding algorithms proposed in [19, 27] is that they
cannot easily be implemented in a regular manner. In this section we present
some recoding methods for regular exponentiation, where the exponent can be
simply recoded in a regular fashion.

3.1 Unsigned-digit recoding

The goal is to compute z = xn for some integer n. Let n =
∑`−1

i=0 di mi denote
the expansion of n in radix m (typically, as above, m = 2k). Consider positive

integer s < n and define n′ := n − s. If n′ =
∑`−1

i=0 d′i mi and s =
∑`−1

i=0 si mi

respectively denote the m-expansion of n′ and s, it follows that

xn = xn′+s

= x
∑

`−1

i=0
κi mi

with κi := d′
i + si .

We define the most significant digit of s in radix m to be zero. This means that
the significant digit of n′ in radix m (i.e., κ`−1) will remain greater than, or
equal to, zero. Otherwise, the recoding would no longer be unsigned and would
not be suitable for groups where computing inversions is expensive.

There are several possible realisations of this idea. We detail below two such
implementations.

First implementation Choose s =
∑`−2

i=0 mi. This can be seen as setting all
digits of s to 1, namely s = (1, . . . , 1)m. Since n′

i ∈ {0, . . . ,m−1}, it follows that
κi ∈ {1, . . . ,m}. We, therefore, obtain the following algorithm.

Algorithm 4: Unsigned-Digit Recoding Algorithm (I)

Input: n ≥ 1, m = 2k, ` the m-ary length of n
Output: n = (κ`−1, . . . , κ0)m with κi ∈ {1, . . . , m}, 0 ≤ i ≤ `− 2

s← (1, . . . , 1)m; n← n− s
for i = 0 to `− 2 do

d← n mod m; n← bn/mc
κi ← d + 1

end

κ`−1 ← n

It is interesting to note that recoding with digits in the set {1, . . . ,m} is
unique. Indeed, suppose that n =

∑

i κi mi =
∑

i κ∗
i mi ≥ m + 1. This implies

κ0 ≡ κ∗
0 (mod m), which in turn yields κ0 = κ∗

0 since, given their definition
range, |κ0 − κ∗

0| ≤ m − 1. The same argument applies to n ← (n − κ0)/m



which implies κ1 = κ∗
1 and so on. Therefore, the recoded digits obtained by the

algorithm in [27] correspond to those obtained by Algorithm 4. But, contrarily
to [27], the proposed algorithm is itself regular.

Example 1. Consider, for example, an exponent n = 31415 whose binary rep-
resentation is given by (1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)2. For m = 2, Algo-
rithm 4 produces the equivalent representation (2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1)2

in radix 2 with digits in the set {1, 2}. In radix m = 4, it produces (1, 3, 2, 2, 2, 3,
1, 3)4 with digits in the set {1, 2, 3}.

A possible drawback of Algorithm 4 is that it requires the knowledge of the
m-ary length of n (i.e., of `) ahead of time. We describe hereafter an alternative
implementation overcoming this limitation.

Second implementation Looking in more detail into the subtraction step, we
have

d′i = (di − si + γi) mod m and γi+1 =

⌊

di − si + γi

m

⌋

∈ {−1, 0}

where the “borrow” is initialised to 0 (i.e., γ0 = 0). This is the classical schoolboy
algorithm. Since di, si ∈ {0, . . . ,m− 1}, we get

κi = d′
i + si =

{

di + γi if di + γi ≥ si ,

di + γi + m otherwise .

Hence, we see that any choice for si with si 6= 0 when di ∈ {0, 1} leads to a

non-zero value for κi. As in our first implementation, we choose s =
∑`−2

i=0 mi.
Further, to only resort to unsigned arithmetic, we define γ ′

i = γi + 1 where
γi ∈ {0, 1}.

Algorithm 5: Unsigned-Digit Recoding Algorithm (II)

Input: n ≥ 1, m = 2k

Output: n = (κ`−1, . . . , κ0)m with κi ∈ {1, . . . , m}, 0 ≤ i ≤ `− 2

i← 0; γ′ ← 1
while (n ≥ m + 1) do

d← n mod m; d′ ← d + γ′ + m− 2
κi ← (d′ mod m) + 1; γ′ ← bd′/mc
n← bn/mc
i← i + 1

end

κi ← n + γ′ − 1



3.2 Signed-digit recoding

Again, we let m = 2k. The goal is to rewrite the exponent into digits that take
odd values in {−(m− 1), . . . ,−1, 1, . . . ,m− 1},

n =
`−1
∑

i=0

κi mi with κi ∈ {±1, . . . ,±(m− 1)} and κi odd .

An m-ary exponentiation algorithm using these signed digits would require the
same amount of precomputed values as the unsigned version. When computing
inverses is easy (for example on elliptic curves), it has been suggested that the
exponent digits κi could be broken up into an unsigned integer value and the
sign, i.e. κi = siτi where τi is unsigned and si ∈ {1,−1} [12, 20, 21, 26]. In
this case, only the values multiplied by the values in {1, . . . ,m − 1} need to be
computed, and the inversion applied as required. The advantage of using this
method is that the number of precomputed values is halved.

We rely on the observation that any odd integer in the range [0, 2m) can be
written as

1 = m + (−(m− 1))

3 = m + (−(m− 3))

...

m− 1 = m + (−1)

m + 1 = m + (1)

...

2m− 3 = m + (m− 3)

2m− 1 = m + (m− 1)

which yields the following algorithm.

Algorithm 6: (Odd) Signed-Digit Recoding Algorithm

Input: n odd, m = 2k

Output: n = (κ`−1, . . . , κ0)±m with κi ∈ {±1, . . . ,±(m− 1)} and κi odd

i← 0
while (n > m) do

κi ← (n mod 2m)−m
n← (n− κi)/m
i← i + 1

end

κi ← n



The correctness of the recoding follows by inspecting that for an odd integer
n > m, we have:

1. |κi| ∈ [1,m− 1]: 1−m ≤ (n mod 2m)−m ≤ m− 1;

2. (n mod 2m)−m is odd: (n mod 2m)−m ≡ n ≡ 1 (mod 2);

3. (n− κi)/m < n: for n > m > 1, n + m ≤ nm =⇒ (n + m− 1)/m < n.

Moreover, it is easy to see that the updating step, n ← (n − κi)/m, does not
change the parity:

(n− κi)/m mod 2 =
(n− κi) mod 2m

m
=

m mod 2m

m
= 1 .

Example 2. Again, with the example of exponent n = 31415, Algorithm 6 pro-
duces the equivalent representation (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)±2 for m =
2. For m = 4, it produces (1, 3, 3, 1, 1, 1, 1, 3)±4.

Algorithm 6 requires that n is odd. It is noted in [13] that when n is even it can
be replaced with n′ = n+1 and that the result is multiplied by the inverse of the
input, i.e. x−1. To make this regular for any exponent an equivalent treatment
can be conducted when n is odd. In this case, n is replaced with n′ = n + 2 and
the result is multiplied by x−2.

It is also possible to modify Algorithm 6 so that the length of the recoded
integer is fixed. This allows one to hide the Hamming weight, by setting consec-
utive digits more significant than the most significant word in base m to −m and
one, as described in [19]. This, assuming an even number of digits are available,
will not change the output of the exponentiation algorithm.

4 Right-to-left Exponentiation Algorithms

4.1 Right-to-left m-ary exponentiation

While it is well-known that the square-and-multiply algorithm can be improved
by using a higher radix, it is sometimes believed that such improvements only
apply to left-to-right versions (e.g., in [6, p. 10]). In [15, §4.6.3], Knuth suggests
as an exercise to design an exponentiation algorithm that is analogous to the
right-to-left binary method, but based on a general radix m.

For m = 2, the right-to-left binary method works as follows. Let n =
∑`′−1

i=0 bi 2i with bi ∈ {0, 1}. The algorithm evaluates z = xn in G as

z := x
∑

`
′
−1

i=0
bi 2i

=
∏

0≤i≤`′−1
bi 6=0

x2i

=
∏

0≤i≤`′−1
bi 6=0

Yi with

{

Y0 = x

Yi = Y 2
i−1 , i ≥ 1

.



Algorithm 7: Right-to-left m-ary Exponentiation

Input: x ∈ G, n ≥ 1
Output: z = xn

Uses: A, R[j] for j ∈ {1, . . . , m− 1}

// Step 1: Evaluation of Tj for 1 ≤ j ≤ m− 1
for j = 1 to m− 1 do R[j]← 1G

A← x
while (n ≥ m) do

d← n mod m
if (d 6= 0) then R[d]← R[d] ·A
A← Am

n← bn/mc
end

R[n]← R[n] ·A

// Step 2: Evaluation of z =
∏m−1

j=1

(

Tj

)j

A← R[m− 1]
for j = m− 2 down to 1 do

R[j]← R[j] ·R[j + 1]
A← A ·R[j]

end

return A

Likewise, for a general radix m, we can consider the m-ary expansion of n,
n =

∑`−1
i=0 di mi where 0 ≤ di < m. We can then write z = xn as

z =
∏

0≤i≤`−1
di=1

xmi

·
∏

0≤i≤`−1
di=2

x2·mi

· · ·
∏

0≤i≤`−1
di=j

xj·mi

· · ·
∏

0≤i≤`−1
di=m−1

x(m−1)·mi

=

m−1
∏

j=1

(

Tj

)j
where Tj =

∏

0≤i≤`−1
di=j

xmi

.

Therefore, the evaluation of z = xn in G amounts to evaluating the Tj ’s followed

by
∏

j

(

Tj

)j
. It is worth noting that for a given index i, only one Tj is affected

(i.e. Tj is only affected by j = di).

In Algorithm 7, we use (m−1) temporary variables, R[1], . . . , R[m−1], each
of them initialised to 1G, the identity element of G. At the end of the loop, R[j]
will contain the value of Tj . We also make use of an accumulator A that keeps

track of the successive values of xmi

. For i = 0, . . . , `−1, if at iteration i, digit di

of n is equal to d then, provided that d 6= 0, R[d] is updated as R[d]← R[d] ·A.
Accumulator A is initialised to x and, at iteration i, it is updated by computing
A ← Am so that it contains the value of xmi+1

for the next iteration. To avoid
the useless computation of xm`

(i.e., when i = `−1), we stop the loop at iteration
`− 2, and only update R[d`−1] as R[d`−1]← R[d`−1] ·A for the last iteration.



It now remains to compute
∏m−1

j=1

(

R[j]
)j

to get the value of z = xn, as
expected. This can be done with only (2m − 4) multiplications in G. Indeed,

letting Ū :=
∏m−1

j=̄ Tj and V̄ := Ū ·
∏m−1

j=̄

(

Tj

)j−̄
, we observe that V1 =

∏m−1
j=1

(

Tj

)j
= z and it is easy to check that

Ū = T̄ · Ū+1 and V̄ = V̄+1 · Ū .

Consequently,
∏m−1

j=1

(

R[j]
)j

can be evaluated by using accumulator A initialised
to R[m− 1] and then containing the successive values of Vj for j = m− 2, . . . , 1.
Further, as the content of R[j] (i.e., Tj) is only needed in iteration j for the
evaluation of Uj , R[j] can be used to store the value of Uj . Accumulator A is so
updated as A← A ·R[j].

4.2 Right-to-left vs. left-to-right exponentiation

As with the left-to-right m-ary algorithm, it would be expected that an attacker
would be able to determine the digits of n that are equal to zero in Algorithm 7.
An easy way to prevent this is to treat the digit 0 as the other digits. Namely, we
can remove the “if (d 6= 0) then” by using an additional temporary variable R[0].
However, as for the left-to-right version, the resulting implementation would
become vulnerable to a safe-error attack. Alternatively, the recent attack of [14]
can be extended to recover the zero digits of n. All these attacks can be prevented
by making use of the recoding methods described in Section 3. This will be
exemplified by the algorithms detailed in Appendix A.

Overall, right-to-left exponentiation methods are superior than their left-to-
right counterparts, from a security viewpoint. Known left-to-right exponentia-
tions repeatedly multiply the accumulator by the same precomputed value for
a non-zero exponent digit. While this can be advantageous from an efficiency
viewpoint (for example when the precomputed values feature some properties
allowing for a faster multiplication), this can have dramatic consequences from a
security viewpoint. In [28], Walter exploits the fact the same values are used to
mount what he calls “Big Mac” attacks. Surprisingly, Big Mac attacks are more
powerful when there are more precomputed values (i.e. when the algorithms are
faster). Right-to-left exponentiation methods are not subject to these attacks.

Another class of attacks exploiting specific properties of left-to-right methods
relies on collisions for carefully chosen inputs. These attacks were introduced
by Fouque and Valette [8] and subsequently extended by Yen et al. [31]. The
most general presentation of these attacks with several extensions applying to
all known left-to-right methods (including the Montgomery ladder) is given by
Homma et al. [14]. Although not described in [14], as aforementioned, it is an
easy exercise to show that a similar attack can be extended to recover the zero

digits of the exponent — but not all the digits as in the left-to-right algorithms —
in the basic right-to-left m-ary exponentiation algorithm (Algorithm 7).



5 Conclusion

In this paper, we describe regular recoding algorithms to aid in the implemen-
tation of regular m-ary exponentiation algorithms. If a recoding algorithm is
not regular then it may itself become subject to a side channel attack, as noted
in [25]. In this paper we detail secure implementations for recoding exponents
into signed and unsigned digits. The side-channel resistance of the left-to-right
m-ary exponentiation algorithm is compared to that of the right-to-left m-ary
exponentiation algorithm. This provides a base for a side channel resistant im-
plementation of an exponentiation algorithm, but further countermeasures will
need to be included to prevent differential side channel analysis. (Some exam-
ples of how the recoded exponents can be used to provide regular exponentiation
algorithms are presented in the appendix.)
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7. Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
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venting comb method against SCA attacks. In R.H. Deng et al., editors, Infor-
mation Security Practice and Experience — ISPEC 2005, volume 3439 of Lecture
Notes in Computer Science, pages 85–96. Springer-Verlag, 2005.

14. Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi
Shamir. Collision-based power analysis of modular exponentiation using chosen-
message pairs. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware
and Embedded Systems — CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 15–29. Springer-Verlag, 2008.

15. Donald E. Knuth. The Art of Computer Programming, volume 2 / Seminumerical
Algorithms. Addison-Wesley, 2nd edition, 1981.

16. Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In N. Koblitz, editor, Advances in Cryptology — CRYPTO ’96, vol-
ume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag,
1996.

17. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In M.J.
Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer-Verlag, 1999.

18. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, 2007.
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20. Bodo Möller. Parallelizable elliptic curve point multiplication method with resis-
tance against side-channel attacks. In A.H. Chan and V. Gligor, editors, Infor-
mation Security (ISC 2002), volume 2433 of Lecture Notes in Computer Science,
pages 402–413. Springer-Verlag, 2002.
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A Regular Exponentiation Algorithms

A.1 Unsigned-digit recoding

A regular equivalent of Algorithm 7 can designed using the exponent recoding
as described in Section 3.1.

The resulting algorithm requires m temporary variables for storing the re-
spective accumulated values for recoded digits d′ +1 with d′ ∈ {0, 1, . . . ,m− 1}.
In Algorithm 8 these values are stored in locations R[i] for i ∈ {0, 1, . . . ,m− 1}
which avoids having to add 1 to the index in the main loop.
The final digit is in {0, 1, . . . ,m} and can, therefore, require special treatment. If
the final digit is in {1, . . . ,m} the digit can be treated like the rest of the digits



Algorithm 8: Regular Right-to-left m-ary Exponentiation

Input: x ∈ G, n ≥ 1, k ≥ 1, m = 2k

Output: z = xn

Uses: A, R[i] for i ∈ {0, 1, . . . , m− 1}

for j = 0 to m− 1 do R[j]← 1G

A← x; γ′ ← 1; n′ ← bn/mc
while (n′ ≥ m + 1) do

d← n mod m; d′ ← d + γ′ + m− 2; γ′ ← bd′/mc
d′ ← d′ mod m; n← n′; n′ ← bn/mc
R[d′]← R[d′] ·A
A← Am

end

d← n mod m; d′ ← d + γ′ + m− 2
γ′ ← bd′/mc; d′ ← d′ mod m
R[d′]← R[d′] ·A

d′ ← n′ + γ′ − 1
if (d′ 6= 0) then

while (d′ < 1) do

d′ ← 2 · d′; k ← k − 1
end

A← A2
k

; R[d′ − 1]← R[d′ − 1] ·A
end

A← R[m− 1]
for j = m− 2 down to 0 do

R[j]← R[j] ·R[j + 1]; A← A ·R[j]
end

A← A ·R[0]

return A

of the exponent. If the final digit is equal to zero the final multiplication can be
avoided or replaced with a multiplication with 1G (where such a multiplication
would not be apparent by observing a side channel).

Another potential problem is the first multiplication for each R[i], for i ∈
{0, 1, . . . ,m − 1}, which will be with 1G. Depending on the arithmetic involved
with this multiplication, it may be visible in a side channel. In a side channel
resistant implementation one would expect the operands to be blinded such that
there are numerous values that represent 1G [7, 16]. In this case, multiplications
with 1G would no longer be visible.

A.2 Signed-digit recoding

The same exponent recoding presented in Algorithm 6 in Section 3.2 can be used
in a right-to-left algorithm. The algorithm given in Algorithm 9 describes how
the recoded exponent can be used to compute an exponentiation.



In Algorithm 9 the variable R[i] for i ∈ {0, . . . ,m/2− 1} is used to store the
product of the negative digits of the recoded exponent without inverting them.
The product of the positive digits is stored in R[i] for i ∈ {m/2, . . . ,m−1}. When
the main loop is terminated the result of combining R[i] for i ∈ {0, . . . ,m/2−1}
can be inverted to produce the value of x raised to the power of the negative
digits. This can then be combined with the values corresponding to the positive
digits to produce the result of the exponentiation.

Algorithm 9: Right-to-left Signed Recoding m-ary Exponentiation (I)

Input: x ∈ G, n ≥ 1 and odd, m = 2k

Output: z = xn

Uses: A, R[i] for i ∈ {0, 1, . . . , m− 1}

for j = 0 to m− 1 do R[j]← 1G

A← x
while (n > m) do

κ← (n mod 2m)−m; d′ ← b(κ + m)/2c
R[d′]← R[d′] ·A
A← Am

n← (n− κ)/m
end

d′ ← b(n + m)/2c; R[d′]← R[d′] ·A

A← R[0]
for j = 1 to m/2− 1 do

A← A ·R[j − 1]; R[j]← R[j] ·R[j − 1]; A← A ·R[j]
end

R[0]← A; A← R[m− 1]
for i = m− 2 down to m/2 do

A← A ·R[j + 1]; R[j]← R[j] ·R[j + 1]; A← A ·R[j]
end

A← A ·R[0]−1

return A

As with Algorithm 8, the initial multiplications with 1G may be visible in a
side channel in Algorithm 9. This problem is easier to deal with in this algorithm
since an inversion is computed at the end of the algorithm. For example, the line
“R[j] ← 1G” can be replaced with “R[j] ← x”. This will, effectively, blind the
exponentiation and be removed when “A← A ·R[0]−1” is computed at the end
of the algorithm.

Another option, when a random element in G can be computed efficiently, is
to replace the initialisation loop, “for j = 0 to m− 1 do R[j]← 1G”, with

for j = 0 to m/2− 1 do
R[j]← RandomElement()
R[m− j − 1]← R[j]

end

where the function RandomElement() returns a random element in G. Given
that the random elements are balanced, the computation of a group inversion in



the last line will remove the effect of these group elements. This provides more
security than if x is used, since an attacker may attempt to manipulate x to
produce specific effects in a side channel.

Algorithm 9 can be rewritten so that it uses m/2 values stored in memory.
This means that inversions will need to be computed as required, rather than
deferred to the end of the algorithm.

Algorithm 10: Right-to-left Signed Recoding m-ary Exponentiation (II)

Input: x ∈ G, n ≥ 1 and odd, m = 2k with k > 1
Output: z = xn

Uses: R[i] for i ∈ {0, 1, . . . , m/2}

for j = 1 to m/2 do R[j]← 1G

R[0]← x
while (n > m) do

κ← (n mod 2m)−m; d′ ← d|κ|/2e
s← sign(κ); d← [(1 + s)((d′ mod (m/2)) + 1)]/2
R[d]← R[d]−1; R[d′]← R[d′] ·R[0]; R[d]← R[d]−1

R[0]← R[0]m

n← (n− κ)/m
end

d′ ← dn/2e; R[d′]← R[d′] ·R[0]

R[0]← R[m/2]
for j = m/2− 1 down to 1 do

R[0]← R[0] ·R[j + 1]; R[j]← R[j] ·R[j + 1]; R[0]← R[0] ·R[j]
end

return R[0]

Depending on the group G and the target device, this may be problematic
to compute in a regular manner, as discussed in Section 3.2. Some methods of
achieving a regular solution when using elliptic curve arithmetic can be envisaged
where κi is broken down into si and τi, e.g.:

– In F2m the unsigned representation of si can be used as a look up to either
zero or the binary representation of the irreducible polynomial used to rep-
resent Fq over F2 which will be xor-ed with the value of τi to produce the
required value for the κi.

– An inversion over Fp can be achieved if we add p to the y coordinate and
subtract zero or two times the value of the y coordinate, depending on the
value of si. This will produce the required value corresponding to the value
of κi in a regular manner. However, this will be vulnerable to a safe-error
attack on the function that multiplies the y coordinate by two.

Another approach for elliptic curve arithmetic would be to compute the triplet
{x, y,−y} for each point produced by multiplying the initial point by {1, 3, . . . ,



m− 1}. The unsigned representation of si can then be used to select y or −y as
required. The memory requirements are reduced when compared to a standard
m-ary algorithm, but not as much as would be possible if the computation of an
inversion were completely free.

Yet another approach, provided that inversion can be computed for free, with
fewer memory requirements, is to apply the previous trick but “on-the-fly”. This
requires an additional temporary variable, say B. In the while-loop, at each
step, the inverse of A is computed and stored in B. The sign of digit d′ is then
used to compute R[d′] ← R[d′] · A or [d′] ← R[d′] · B as required. Provided
that k > 1, the same effect can be obtained but without additional temporary
variable with two inversions. This is detailed in Algorithm 10, where, to make
the presentation easier, we rename accumulator A to R[0] and reorganise the
other variables: R[i] for i ∈ {1, 2, . . . ,m/2} is used to accumulated the values for
recoded digits {1, 3, . . . ,m− 1} (in absolute value).


