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Abstract. The process of performing a Side Channel Attack is generally a compu-
tationally intensive task. By employing a number of simple optimisations the data
analysis phase of the attack can be greatly improved. In this paper we will describe
some of these improvements and show in the context of DES when attacked using
Kocher’s classic DPA [1], that a 97% reduction in data processing can be achieved.
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1. Introduction

Side Channel Analysis (SCA) is an active area of research in the security community
and in particular, the smart card industry today. The interest in these attacks is due to
the fact that they are highly effective and difficult to defend against. The side channel
acquired can be the power consumption of the chip, the electromagnetic emanations or
even execution time. Differential SCA (DSCA) is a specific type of SCA in which the
attacker captures numerous executions of the target device performing an operation of
interest1. After acquiring the signals a data analysis phase follows, where statistical tools
are applied. This ultimately results in the retrieval of sensitive data.

Vast efforts have been made to develop next generation SCA attacks, catering to
the cryptosystem [1,2,3], or the device in question [4,5], or as a response to proposed
countermeasures aiming to deter SCA [6,7,8,9,10]. However, to the authors’ knowledge,
the literature is devoid of addressing the computational complexity of these attacks. In
actual fact the process of performing a differential attack is a lengthy process:

• Data capture can take a long period of time. This depends on a variety of practical
factors, such as the duration of the monitored process, the oscilloscope→PC trans-
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fer rate, the equipment’s sampling frequency, the number of curves necessary to
overpower the target’s signal to noise ratio etc.

• The processing of the captured information requires that the data is manipulated
in various ways to derive information on the key used.

This is a tedious and time consuming process, that the present work seeks to improve
on without affecting the attack’s precision or probability of success. In this paper we
will present a number of computational improvements to DSCA. These shortcuts will
be described in terms of the notorious Differential Power Analysis (DPA) [1], which is
most popular in the literature. The methods described are applicable to other forms of
DSCA, such as Differential Electromagnetic Analysis (DEMA) [11,12], where once the
acquisition stage of the attack is complete, the data analysis phase is exactly the same
as DPA. As an illustrative example, assuming that a classic DPA (i.e as in [1]) of a given
device requires' 64, 000 power curve operations. The techniques described in this paper
would obtain exactly the same results by spending only 3% of the computational effort
(namely ' 2100 operations).

The paper is organised as follows: Section 2 establishes the notations used through-
out the paper. Section 3 recalls the general principles of differential side channel attacks.
We will then evaluate the number of calculations that this involves, so as to establish a
benchmark against which we will measure our optimisations. Section 4 contains the dif-
ferential attack optimisations. Section 5 presents the results, and we conclude in section
6.

2. Preliminaries and Notations

We introduce the following notation to track our plaintext segments through the S-boxes.

• The algorithm will be executed N times. This will produce N current consump-
tion waveforms (also referred to as power traces) wi and N plaintext-ciphertext
pairs (Pi, Ci) where 1 ≤ i ≤ N .

• The messages given to the algorithm are assumed to be random, unless otherwise
stated.

• The algorithm is assumed to be a naive implementation that has no side-channel
countermeasures, as a discussion on attack strategies is beyond the scope of this
paper.

• We denote the S-boxes by `j where 1 ≤ j ≤ NS and NS is the number of S-boxes
in the algorithm. For example, NS = 8 for DES and 10 for AES.

• Each S-box will have as input, both subsets of Pi and the key K. For an m bit
S-box, we denote the partial plaintext and partial key by Pi,j and Kj where Pi,j

corresponds to the subset of Pi which is entered into S-box j and Kj corresponds
to the key hypothesis Kj = n for S-box j. Note that both Pi,j and Kj can have
the value n where 0 ≤ n ≤ 2m − 1.

• For each partial key Kj a hypothesis will be tested. In order to test this hypothesis,
2m DPA waveforms will be created. We denote this set of waveforms by ∆n where
the nth key hypothesis produces the differential trace ∆n.

• We will construct ‘representative curves’ Wn where there are 2m possible curves
of this form. We define Wn by
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Wn =
N∑

i=1

χiwi where χi =

{
1 if Pi,j = n

0 otherwise

Wn will be described further in section 4.2.
• The operations on waveforms, such as the addition of two curves, are ordinary

pointwise addition functions.

3. Generic Differential Power Analysis

DPA can be performed on any algorithm in which an intermediate operation of the form
β = S(α⊕k) is calculated, where α is known and k is the secret key (or some segment of
the key). The function S() is a non-linear function, usually a substitution table (referred
to as an S-box), which produces an intermediate output value β.

The process of performing the attack initially involves running the target device N
times with N random plaintext values Pi, where 1 ≤ i ≤ N . The encryption of Pi under
the secret key K to produce the corresponding ciphertext Ci, will result in N current
consumption waveforms wi. These waveforms are captured with an oscilloscope, and
sent to a PC for analysis and processing.

To find a given partial key Kj , the output produced from the S-box `j when given
Kj and all Pi,j will be used to categorise the current consumption waveforms. A single
output bit b from `j is used for this categorisation. For all possible hypotheses, i.e. Kj =
0 . . .Kj = 2m − 1, and each partial message Pi,j , b will classify whether waveform wi

is a member of one of two possible sets. The first set S0 will contain all the waveforms
where b is equal to zero, and the second set S1 will contain all the remaining waveforms,
i.e. where the output bit b is equal to one.

For each hypothesis, a differential trace ∆n is calculated by finding the average of
each set and then subtracting the resulting values from each other.

∆n =

∑
wi∈S0

wi

|S0|
−

∑
wi∈S1

wi

|S1|
(1)

The DPA waveform with the highest peak will validate a hypothesis for Kj , i.e. Kj = n
corresponds to the ∆n featuring a maximum amplitude. For a single DPA waveform
this involves N additions (as there will be an average of N

2 elements in each set), two
divisions and one subtraction, to create the differential ∆n. Therefore, for all hypotheses
the total number of operations to calculate all DPA waveforms for one S-box is 2m ×
(N + 3).

4. Fast Differential Power Analysis

By introducing a number of basic pre-calculations we can accelerate DPA. We will op-
timise DPA in terms of the calculations performed in the statistical analysis phase of the
attack, i.e. the calculation of the DPA waveforms. To calculate one differential ∆n, the
operations involved are basic pointwise addition, subtraction and division of curves. We
target our optimisations in terms of minimising the number of additions of current con-
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sumption curves, as this is the most utilised operation. We will treat the division (calcula-
tion of mean) and subtraction operations as constant, as these are fundamental operations
in the calculation of the differential ∆n, and cannot be enhanced.

In the following section we will detail a number of optimisations which can greatly
reduce the number of additions involved in performing a DPA. We will measure these
optimisations in terms of the number of calculations required to calculate the differential
traces ∆n, for all hypotheses.

4.1. The Global Sum

The simplest optimisation involves the calculation of the global sum G. The global sum
is nothing but the summation of all the current consumption waveforms that have been
acquired.

G =
N∑

i=1

wi

The calculation of the DPA waveform now only involves the summation of a single set,
as opposed to two sets when using equation (1).

∆n =
G− Sleast

N − |Sleast|
− Sleast
|Sleast|

(2)

Sleast represents the set with the least number of elements, i.e:

Sleast =

{
S0 when |S0| ≤ |S1|
S1 when |S0| > |S1|

The expected number of additions required to generate Sleast can be calculated using:

E(X) =
N∑

i=0

iPr [X = i]

=

N
2∑

i=0

i

(
N

i

) (
1
2

)N

+
N∑

i= N
2 +1

(N − i)
(

N

i

) (
1
2

)N

If, for example, 1000 acquisitions were taken this would result in an expected num-
ber of additions per hypothesis of 487. This is an improvement over the case where a set
is chosen arbitrarily, when the expected number of additions will be 998.

The cost of precalculating G for a single hypothesis is obviously not worthwhile.
However for 2m hypotheses significant savings are realised, as the maximum number of
operations to calculate all DPA waveforms for a single S-box is (N −1)+2m× (N

2 +3).
Note, however, that separate pre-computation of G is not mandatory. The trick here

consists in computing a first hypothesis just as in the original version of DPA and then
summing the two resulting average curves to get G, thereby allowing the complexity of
the next 2m − 1 hypotheses calculations to be reduced calculations at no extra cost.
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In the remainder of this paper, Sleast will no longer be used. This is due to the opti-
misation described in the following section, which will change the way in which the raw
data is distributed. In subsequent sections the differential trace ∆n will be calculated by
subtracting either S0 or S1 from G, where the choice of S is completely arbitrary.

4.2. Formation of Waveform Equivalence Classes

The input to each S-box will consist of partial bits Pi,j of the plaintext Pi and partial bits
Kj of the key K. Concentrating on Pi,j , there are only 2m possible values which can
enter `j , yet we are dealing with N waveforms. Therefore, a number of the waveforms
will have the same value for Pi,j and thus can be treated in the same manner (i.e. they
form an equivalence class2). We define Wn for `j as:

Wn =
N∑

i=1

χiwi where χi =

{
1 if Pi,j = n

0 otherwise

This will produce 2m representative curves. This can be calculated on-the-fly.The
partitioning of the power curves according to the key hypothesis will now result in 2m−1

curves in each set. The differential trace will be calculated as

∆n =
G− S0

N − |S0|
− S0

|S0|

where S0 will now contain exactly 2m−1 elements3. To generate a single DPA waveform
this will result in 2m−1− 1 additions. For all hypotheses a total of 2m×

(
2m−1 − 1

)
ad-

ditions will be required to calculate all the DPA waveforms for one S-box. Pre-calculation
involves the formation of the representative curves Wn and the global sum G. Since we
can construct G as a function of Wn:

G =
2m∑
n=1

Wn

The total number of operations that will be incurred in generating all DPA waveforms, is
hence:

Total Calculations = 2m

(
N

2m
− 1

)
+ (2m − 1) + 2m

(
2m−1 − 1

)
= N − 1 + 2m

(
2m−1 − 1

)
where for W0 . . .W2m , ≈ N

2m − 1 additions will make up each Wn, additional 2m − 1
summations will be required to form the global sum G and 2m−1 − 1 additions will be
required to generate each DPA waveforms for 2m key hypotheses.

2Note the curves form an equivalence class for each `j , i.e. for `0 the representative curves will be formed
in a particular way, for `1 they will be formed in a different way, etc.

3If the case arises where a value for Wn does not occur, this may create a bias. This is the only situation
where |S0| 6= 2m−1.
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4.3. Curve Combining

Pre-calculating certain curve combinations enables groups of curves that occur in the
same set for one hypothesis, to be recycled in subsequent hypothesis testing. Since we
are dealing with 2m representative curves, precomputing all possible 2m! curve combi-
nations is obviously infeasible. Therefore we propose to partition the curves into groups
of size x and precompute the different possible combinations for each group.

For example, for x = 2, adjacent curves are summed. We define each pair as the
value W2n,2n+1 where n = 0...2m−1 and n is incremented by two.

W2n,2n+1 = W2n + W2n+1

The use of the combined curves W2n,2n+1 in the evaluation of the set S0, results in three
possible scenarios for each pair:

1. The pair occurs i.e. W2n+W2n+1 appears in S0. The probability of this occurring
is 1

4 . In this case, one additional summation must be performed.
2. The pair does not appear in S0, i.e. the pair is in G. The probability of this hap-

pening is also 1
4 . In this case no action is performed.

3. The two curves W2n and W2n+1 appear in two separate sets. There is a higher
probability of this happening, i.e. 1

2 . In this case a single addition is required.

The expected number of additions per ∆n (assuming the global set already exists),
is 3

4 × 2m−1. This is because there are 2m−1 groups of three elements (W2n,W2n+1 and
W2n,2n+1), one of which will be used to add to S0 with probability 3

4 .
If x = 3 then the following combinations of curves will be created from W3n,

W3n+1 and W3n+2:

W3n,3n+1 = W3n + W3n+1

W3n+1,3n+2 = W3n+1 + W3n+2

W3n,3n+2 = W3n + W3n+2

W3n,3n+1,3n+2 = W3n + W3n+1 + W3n+2

Following the same reasoning as above, the number of additions is 7
8×

2m

3 . For all values
of x this can be generalised to:

Additions per Hypothesis =
(

2x − 1
2x

) (⌊
2m

x

⌋
− 1

)
− 22m mod x − 1

22m mod x

This comprises of two expressions as x will not always divide evenly into 2m, which will
leave 2m mod x elements to be grouped together separately. Note that this is only an
approximation of the amount of additions required for each set. In practice the number of
additions involved in generating ∆n will depend on the contents of the set, and whether
the precomputed combinations appear or not.

The amount of pre-calculation involved (incorporating G, Wn and the precomputed
combinations) is:
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Pre-Additions = N − 1 +
(

(2x − x− 1)
⌊

2m

x

⌋)
+ (22m mod x − (2m mod x)− 1)

Therefore, total pre- and post-calculations, which will result in the production of 2m DPA
waveforms is given by:

Total Calculations =2m × Additions per Hypothesis + Pre-Additions

Memory requirements are obviously a vital factor, as the more pre-computed values, the
more storage they will take up and the more time it will take to load these values into
memory, which will effect the overall attack performance. In order to balance the time-
memory tradeoff and achieve the optimal attack, we give the following formula to derive
for a given value of x, the memory that is required. The formula allows an attacker to
relate the number of precomputed values to their resources.

Memory Required = (2x − 1)
⌊

2m

x

⌋
+ (22m mod x − 1) (3)

This value gives the number of representative curves Wn which need to be stored in
memory. Each point in this curve will be stored in a 32-bit word so that no information
is lost. The value generated in (3) will be multiplied by 4× the size of one acquisition
(assuming that the values acquired are byte sized).

4.4. Chosen Plaintext Differential Power Attacks

The pre-calculations previously made for S-box `j , unfortunately will be redundant for
`j+1. This is due to the fact that we will be focusing on a later section of the current
consumption waveforms, which when classified according to the partial input Pi,j will
fall into different equivalence classes Wn than before. Therefore for S-box `j+1, the
regeneration of the representative curves will be required.

In classical DPA the message given to the algorithm under attack is random. However
if we can perform a chosen plaintext attack we can utilise the precalculated Wi for use
in subsequent S-boxes. The simplest case is where input to S-box `1 is the same for
`1 . . . `NS

. For example, construct the plaintext so that all plaintext bytes are equal, i.e.
byte[1] = byte[2] = . . . = byte[16] in AES. This means that there are 256 possible values
for the plaintext. Calculating the DPA waveform for the first S-box will calculate the DPA
waveform for all others at the same time, giving sixteen peaks at the points in time in
which the sixteen key bytes are being manipulated. Using this method may not always
be advantageous as some confusion can arise as to which peak corresponds to which key
byte.

Obviously the use of this technique is dependant on the algorithm and the eligibility
checks that the plaintext undergoes before it is encrypted. A similar and valid attack is
an attack on an implementation of DES, where the plaintext is generated such that the
Pi,j entered into `j mod 2=0 is equal for all even S-boxes, and Pi,j entered into all odd
S-boxes `j mod 2=1 is equal for all odd S-boxes. All the even numbered S-boxes can use
the same set of data generated during the pre-calculation for the first S-box. The odd
numbered S-boxes also use this data but with a permutation on the value associated with
each representative curve. This does not affect the quality of the results produced as each
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S-box uses a different permutation. The DPA peak will be at the same level as if a random
plaintext was used.

Note that these optimisations are applicable when the attack is concentrating on the
first round of a secret key algorithm. If the attack focuses on the last round where the
DPA waveforms are related to the ciphertext, these optimisations will be useless as the
data can not be controlled.

5. Results

We will describe our optimisations in terms of performing DPA on DES, where 1000
acquisitions current consumption acquisitions have been taken. This has been seen ex-
perimentally to often be sufficient to determine some relationship between the current
consumption and the data manipulated. It may be necessary to use more acquisitions, or
possible to use less, but 1000 has usually proven to be a good starting point.

Given N = 1000 current consumption waveforms wi, the following table details
the number of operations that must be performed in the act of generating the differential
traces for the key hypotheses.

Precalculation Additions per Additions Curves Memory
hypothesis per S-box Required Required

Theoretical DPA - 998 63872 - -
Optimisation 1:
Global Sum 999 487 32167 1 4
Optimisation 2:
Equivalence Classes 999 31 2983 65 260
Optimisation 3:
2 bits 1031 23.3 2519 96 384
3 bits 1083 18 2235 148 592
4 bits 1175 14.1 2075 240 960
5 bits 1322 11.6 2064 387 1548
6 bits 1580 9.8 2207 645 2580
7 bits 2079 8.4 2619 1144 4576
8 bits 2975 7.0 3421 2040 8160
9 bits 4513 6.5 4928 3578 14312
10 bits 7088 5.9 7468 6153 24612

The more bits are grouped together, the more memory is required to conduct the
attack. It has been assumed the the current consumption acquisitions consist of a million
points where each point is one byte, therefore we will allow for the representative curve
to take up four times as much memory as that of a raw data curve.

As shown in the table the best results are obtained when five bits are grouped to-
gether at a time. However, the memory requirement for this is 1.5 Gigabytes. The amount
of additions when three bits are combined is slightly higher but requires a much more
reasonable amount of memory.

The optimal location for the storage of the representative curves is obviously in the
computers RAM. This is because the access times are significantly faster than those of
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a hard drive, especially as the amount of data being processed is too large for the hard
drive to store in it’s cache.

6. Conclusion

In this paper we presented a number of optimisations that can be used with Kocher’s orig-
inal algorithm to significantly reduce the computation time. These optimisations allow
an attacker to search for data dependence in a short period of time. This can be used as a
preparatory phase to other forms of SCA, such as CPA [13]. These types of treatment can
help to reduce false positives by reducing the occurrence of "ghost peaks" as described
in [13].

In the example given, the time taken for the processing of all the hypotheses for
one six-bit section of the key is reduced by a factor of thirty. In actuality, this time will
be further decreased as the acquisitions on the computer’s hard drive are only accessed
during the construction of the representative curves Wn. The rest of the processing takes
place in RAM.

The ideas expressed in section 4.4 have not been discussed in the example, as the
gain for the overall attack depends on how the message can be manipulated. The gain for
an attack where the plaintext can be freely manipulated should reduce execution time by
a factor of approximately sixty.

In our analysis we assume the resolution of the current consumption acquisitions is
one million points. In practice this can vary depending on a number of factors, such as
the storage capacity of the oscilloscope, the amount of time spent localising the S-boxes,
and the algorithm being attacked. In the case of AES, larger S-boxes are used, and so
there will be a greater number of key hypotheses, which will result in an increase in
the number of precomputed values to be stored. The worst possible scenario is where
the memory requirement becomes unmanageable and pre-computation actually inhibits
the attack. There are two approaches that an attacker can employ to combat this situa-
tion. In the case where the acquisitions captured are large, one can split the acquisition
into smaller sections and perform the respective operations on these sections, and subse-
quently concatenate the files to construct the full DPA waveform. Alternatively, (3) can
be used to determine how much pre-computation is possible with the memory available,
allowing an attacker to achieve a maximum benefit from the optimisations described.
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