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Abstract. This paper describes a m-ary exponentiation algorithm where
the radix-m digits of an exponent can be treated in a somewhat random
order without using any more group operations than a standard right-
to-left m-ary exponentiation. This paper demonstrates that the random
order countermeasure, commonly used to protect implementations of se-
cret key cryptographic algorithms, can be applied to public key crypto-
graphic algorithms.
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1 Introduction

Implementations of exponentiation algorithms in microprocessors need to be
resistant to side channel analysis. For example, it has been demonstrated that
a private key used in RSA [21] can be derived by observing a suitable side
channel, such as power consumption [15] or electromagnetic emanations [11, 20].
These attacks targeted implementations of the square and multiply algorithm,
where an exponent is read bit-by-bit and a zero in the exponent results in a
squaring operation, whereas a one results in a squaring operation followed by a
multiplication. Bits of a private key can be seen directly if these two operations
can be distinguished by observing a suitable side channel while an exponentiation
is being computed.

The first proposed countermeasure was to always compute a squaring oper-
ation followed by a (possibly fake) multiplication for each bit of an exponent,
referred to as the square and multiply always algorithm [10]. This algorithm has
a large impact on the efficiency of the computation of an exponentiation. An
alternative was proposed in [9] that proposed efficient algorithms with a fixed
structure, i.e. a structure independent to the value of the exponent. A further
suggestion was made in [8], where it was proposed that a squaring operation and
a multiplication be rendered indistinguishable via a side channel.

More complex attacks are proposed in [15], where numerous acquisitions are
taken and an attacker attempts to observes a statistical relationship between an
observed side channel and an intermediate state. In order to prevent this class of
attack individual variables are combined with random values generated for each
instantiation of an algorithm [6].



In block ciphers the order in which variables are treated can also be ran-
domised to augment the side channel resistance of an implementation [17]. In
this paper an algorithm is proposed that allows an exponentiation to be com-
puted in a random order, although not all orders will occur with with the same
probability. This algorithm is intended to allow an exponentiation to be com-
puted without the currently used blinding algorithms. However, the proposed
algorithm could also be used to augment the security of an exponentiation im-
plementation, and will inhibit attacks that allow operations to be distinguished
from one acquisition. The proposed algorithm requires a large amount of mem-
ory. However, some modern smart card chips are using 32-bit architectures and
one can expect to have around 4k of RAM available [4, 18]. This would allow for
the proposed algorithm to be implemented for elliptic curve cryptography, but
it is unlikely to be possible for exponentiation in (Z/NZ)∗.

The rest of this paper is organised as follows. In the next section, we review
some methods for evaluating an exponentiation. In Section 3 we describe the
methods of side channel analysis that could potentially be used to attack an
exponentiation. The previously published uses of random values as a counter-
measure to side channel analysis is described in Section 4. In Section 5 we detail
an exponentiation algorithm where the digits can be treated in a random order.
In Section 6 we describe how an attacker would try to derive information by side
channel analysis. Finally, we conclude in Section 7.

2 Exponentiation Algorithms

2.1 The square and multiply algorithm

The simplest algorithm for computing an exponentiation is the square and mul-
tiply algorithm. This is where an exponent is read left-to-right bit-by-bit, a zero
results in a squaring operation being performed, and a one results in a squaring
operation followed by a multiplication with the original message. This algorithm
is detailed in Algorithm 1, where we define the function bit(n, i) as a function
returning the i-th bit of n. The input is an element x in a (multiplicatively writ-
ten) group G and a positive ℓ-bit integer n; the output is the element z = xn

in G. This algorithm requires two group elements in memory and, on average,
1.5 (⌊log2 n⌋ − 1) group operations to compute xn.

2.2 Left-to-Right m-ary Exponentiation

In order to compute z = xn more efficiently it is possible to use an algorithm
that is described in [13]. In this algorithm one precomputes some values that are
small powers of x and the exponent is broken up into ℓ words in base m (this
is called the m-ary expansion and ℓ is called the m-ary length). Typically, m is
chosen to be equal to 2k, for some convenient value of k, to enable the relevant
digits to simply be read from the exponent. The m-ary algorithm is shown in
Algorithm 2, where we define the function digit(n, i) as a function returning



Algorithm 1: The Square and Multiply Algorithm

Input: x ∈ G, n ≥ 1, ℓ the binary length of n (i.e. 2ℓ−1 ≤ n < 2ℓ)
Output: z = xn

A← x
R← x
for i = ℓ− 2 down to 0 do

A← A2

if (bit(n, i)6= 0) then A← A · R
end

return A

the i-th radix-m digit of n. This algorithm requires m group elements in memory
and, on average,

(

m + m−1
m

)

(⌊logm n⌋ − 1)+m−2 group operations to compute
xn.

Algorithm 2: Left-to-Right m-ary Exponentiation Algorithm

Input: x ∈ G, n ≥ 1, ℓ the m-ary length of n
Output: z = xn

Uses: A, R[i] for i ∈ {1, 2, . . . , m− 1}

R[1]← x
for i← 2 to m− 1 do R[i]← R[i− 1] · x

b← digit(n, ℓ− 1)
A← R[b]

for i = ℓ− 2 down to 0 do
A← Am

b← digit(n, i)
if (b 6= 0) then A← A ·R[b]

end

return A

2.3 Right-to-Left m-ary Exponentiation

A right-to-left version of Algorithm 2 was described in [24]. This algorithm is
detailed in Algorithm 3, and requires slightly more operations than the left-to-
right algorithm. The structure of the algorithm is different as the effect of the
value of each digit is not taken into account until the final stage of the algorithm.
This algorithm requires (m − 1) + 1 = m group elements in memory and, on
average,

(

m−1
m + m

)

(⌊logm n⌋ − 1) + 2m − 3 group operations to compute xn.



Algorithm 3: Right-to-Left m-ary Exponentiation

Input: x ∈ G, n ≥ 1
Output: z = xn

Uses: A, R[j] for j ∈ {1, . . . , m− 1}

for j = 1 to m− 1 do R[j]← 1G

A← x
while (n ≥ m) do

d← n mod m
if (d 6= 0) then R[d]← R[d] ·A
A← Am

n← ⌊n/m⌋
end

R[n]← R[n] · A

A← R[m− 1]
for j = m− 2 down to 1 do

R[j]← R[j] ·R[j + 1]
A← A ·R[j]

end

return A

3 Side Channel Analysis

3.1 Simple Side Channel Analysis

The most basic form of side channel analysis is to simply inspect one acquisition
of a suitable side channel, referred to as Simple Side Channel Analysis (SPA).
This involves observing a suitable side channel whilst a computation is taking
place. An attacker will then try and make deductions about what calculations
are being performed based on these observations. If we consider the square and
multiply algorithm, it has been shown that bit values of an exponent can be
distinguished by observing a suitable side channel, such as the power consump-
tion [15] or electromagnetic emanations [11, 20].

3.2 Differential Side Channel Analysis

It has been demonstrated that in microprocessors the instantaneous power con-
sumption is typically proportional to the Hamming weight of data being manip-
ulated at a given point in time [5], and the same relationship has been observed
in electromagnetic emanations [11, 20]. This difference in Hamming weight was
first exploited in [15] to attack block ciphers. This was extended in [5] to give a
more complete analysis of the power consumption.

In this attack, an attacker acquires M power consumption traces (wi for
i ∈ {1, 2, . . . , M}) during the computation of a cryptographic algorithm, and
chooses one word, b, of an intermediate state generated while the acquisition is
taking place. For a given hypothesis for a key value (or portion of the key) K



the Hamming weight of b is predicted and the correlation between this value and
the instantaneous power consumption is calculated. A significant correlation will
confirm the hypotheses, allowing an attacker to derive information on the key.

In order to attack an exponentiation, an attacker could use this to confirm
hypotheses on an intermediate state of a multiplication at an arbitrary point
in the computation to derive portions of the exponent. A significant correlation
would indicate that the hypothesised exponent bits are correct.

4 Using Random Values as a Countermeasure

In this section we describe some of the countermeasures that can be used to
prevent side channel analysis. We concentrate on countermeasures that are spe-
cific to exponentiation algorithms. The interested reader is referred to [16] for a
discussion of countermeasures to side channel analysis in more general terms.

4.1 Blinding

The use of random values to modify the behaviour of an exponentiation has taken
many different forms. One of the first proposals was to modify all the variables
in a modular exponentiation [14]. If we consider the modular exponentiation
z = xn mod m, this could be implemented as

z =
(

(x + r1 · m)
n+r2·φ(m)

mod r3 · m
)

mod m ,

where r1, r2 and r3 are random values and φ is Euler’s Totient function. Typi-
cally, the bit lengths of r1, r2 and r3 are chosen to increase x, d and m by one
word of the processor computing the exponentiation. The above equation is spe-
cific to (Z/NZ)∗, but equivalent algorithms exist for exponentiation algorithms
in other groups (e.g. elliptic curves over Fp and F2q [10]).

4.2 Randomised Algorithms

When implementing block ciphers one would combine masking with a random
ordering. For example, if a given function were to be applied to a series of bytes,
one would implement the function such that the bytes were treated in some
random order. If an attacker were to try and predict a byte value occurring at
a given point in time, the prediction would only be correct a small proportion
of the time. This has a direct impact on the computed correlation coefficient,
discussed in Section 3.2, since an attacker’s prediction will often be incorrect.

An equivalent countermeasure for exponentiation algorithms has not previ-
ously been proposed in the literature, but other methods of randomising the
computation of an exponentiation have been proposed. In this section we review
some of these methods.



Random Digit Sizes

A right-to-left m-ary exponentiation algorithm is proposed in [23] where the
radix of the digits of the exponent is varied during the computation of an expo-
nentiation. The algorithm proceeds as described in Algorithm 3, but the radix of
the digits of the exponent digits is chosen randomly between 2,3 and 5 whenever
a new digit is required during the main loop of the algorithm.

Overlapping Exponent Digits

Another algorithm that modifies the exponent digits every time an exponentia-
tion is computed is presented in [12]. When the exponent digits are read from
the exponent the number if bits is extended such that the bits of one digit will
overlap with the bits of the neighbouring digits. The digits are modified such
that the sum of the effect of the overlapping digits is equivalent to the desired
exponent. Given that there are numerous combinations of overlapping digits that
are equivalent to the desired exponent, some bits of each digit can be randomly
set each time the algorithm is executed.

5 Random Order Exponentiation

In this section we define a right-to-left m-ary exponentiation algorithm, where
the radix-m digits of the exponent are treated in a random order. Before the al-
gorithm is defined we demonstrate that, if enough memory is available, the digits
of an exponent could be treated in an arbitrary order when using Algorithm 3.

Consider the right-to-left m-ary exponentiation algorithm to compute z =
xn. We can write the radix-m expansion of the exponent as n =

∑ℓ−1
i=0 di mi.

Then

z =
∏

0≤i≤ℓ−1
di=1

xmi

·
∏

0≤i≤ℓ−1
di=2

x2·mi

· · ·
∏

0≤i≤ℓ−1
di=j

xj·mi

· · ·
∏

0≤i≤ℓ−1
di=m−1

x(m−1)·mi

=

m−1
∏

j=1

(R[j])
j

where R[j] =
∏

0≤i≤ℓ−1
di=j

xmi

.

In Algorithm 3, each R[j] for j ∈ {1, . . .m− 1} is computed and then combined
in the final loop to raise each R[j] to the power of j and compute the product

of the results, i.e.
∏

j (R[j])
j
.

We can note that each R[j] is the product of xmi

for all i ∈ {0, . . . , ℓ − 1}

where di is equal to j. This can be computed in any order if all the values xmi

are
known. Therefore, if it would be possible to precompute and store all the group
elements xmi

, for i ∈ {0, . . . , ℓ − 1}, they could be multiplied with the relevant
R[j] in an arbitrary order. A worked example of this is shown in Appendix A.



However, there would need to be enough memory available to store all ℓ group
elements.

If we consider the bit lengths of variables in exponentiations that would be of
use in cryptography, it is unlikely that all the values of xmi

, for i ∈ {0, . . . , ℓ−1},
could be stored in the memory of a microprocessor.

However, if we assume that there is enough memory available to store r group
elements, we can precompute and store xmi

, for i ∈ {0, . . . , r−1}. Suppose these
are stored in an array

S = {x, xm, xm2

, . . . , xmr−1

} ,

and list the first r digits of the exponent as

D = {d0, d1, d2, . . . , dr−1} .

If we initialise a set of registers R[i], for i ∈ {1, . . . , m − 1}, to 1G. We can
treat the r values held in S and D in some arbitrary order, where, for each
j ∈ {0, . . . , r− 1}, we compute R[D[j]] = R[D[j]] ·S[j]. The contents of R[i], for
i ∈ {1, . . . , m− 1}, will then contain the same group elements one would expect
if the standard right-to-left m-ary exponentiation had treated the first r digits
of the exponent (see Algorithm 3). One could then assign the next r values that
would be required to continue computing the exponentiation to S and D, which
then become

S = {xmr

, xmr+1

, xmr+2

, . . . , xm2r−1

} ,

and
D = {dr, dr+1, dr+2, . . . , d2r−1} .

These values could also be treated in some arbitrary order, as for for each j ∈
{0, . . . , r − 1} we compute R[D[j]] = R[D[j]] · S[j]. After which the values held
in R[i], for i ∈ {1, . . . , m − 1}, will be the same as if the standard right-to-left
m-ary exponentiation has treated the first 2r digits of the exponent. This could
be continued until all the digits of the exponent have been treated.

However, we can do better by noting that once R[D[j]] = R[D[j]] · S[j] has
been computed, for a given j ∈ {0, . . . , r − 1}, then D[j] and S[j] are no longer
required by the exponentiation algorithm. These values in memory can be safely
overwritten. Consider again the initial state of S and D

S = {x, xm, xm2

, . . . , xmr−1

} , D = {d0, d1, d2, . . . , dr−1} .

If we compute R[D[j]] = R[D[j]] · S[j], for some arbitrary j ∈ {0, . . . , r − 1}, we
can replace D[j] with dr and S[j] with xmr

. If, for example, we take j = 1 then,
after computing R[D[1]] = R[D[1]] · S[1], we can replace D[1] and S[1]. That is,

S = {x, xmr

, xm2

, . . . , xmr−1

} ,

and
D = {d0, dr, d2, . . . , dr−1} .



This could be repeated for another D[j] and S[j], for some arbitrary j ∈ {0, . . . , r−

1}, and the j-th values of S and D replaced with xmr+1

and dr+1 respectively.
For an ℓ-bit exponent this could be repeated ℓ − r times, at which point one
would be unable to include any new digits in D. One could then compute
R[D[j]] = R[D[j]] · S[j] for each j ∈ {0, . . . , r − 1} without replacing any of
the values in D or S. After which, all of the digits of the exponent, i.e. all di for
i ∈ {0, . . . , ℓ − 1}, will have been treated. A worked example of this process is
given in Appendix A.

An example of how this could be implemented to produce an exponentia-
tion algorithm where the digits are treated in some random order is shown in
Algorithm 4, where we define the function RandomInteger(x, y) as returning a
random integer in the interval [x, y].

In order to minimise the number of operations required it is necessary to keep
track of which element of S contains the largest power of x, so that xmi

can be
computed from xmi−1

with a minimum, and constant, number of operations. In
Algorithm 4 we use the variable γ as a pointer to the largest power of x present
in S.

It is interesting to note that this algorithm does not require any more group
operations than Algorithm 3 so the performance should remain unaffected. How-
ever, this does assume that random values can be generated instantly. The dif-
ference in performance between Algorithm 3 and Algorithm 4 will be the time
required to generate ℓ − r random values.

Algorithm 4 requires significantly more memory than Algorithm 3, as (m −
1) + r + 1 = m + r group elements need to be stored in memory. A further r
radix-m digits will also need to be held in memory.

6 Security Analysis

In this section we describe how an attacker would attempt to derive digits of the
exponent used in an implementation of Algorithm 4 by side channel analysis.

6.1 Simple Side Channel Analysis

Algorithm 4 is, to a certain extent, vulnerable to Simple Side Channel Analysis.
It would be expected that an attacker would be able to detect when zero digits
are treated. In order to counter this, the multiplication and squaring operations
can be implemented such that they use identical code and, therefore, cannot be
distinguished [8]. There are methods of statistically distinguishing a multiplica-
tion and a squaring operation based on the design [2] or the distribution of the
bits of single-precision operations [3]. It is expected that similar attacks may be
possible on a single acquisition using template attacks [7].

If an attacker is able to distinguish multiplications from squaring operations
the amount of information available is limited. An attacker would be able to de-
termine the total number of zero digits in an exponent, but only approximately



Algorithm 4: Random Order Right-to-Left m-ary Exponentiation

Input: x ∈ G, n ≥ 1, r number of values to store in memory.
Output: z = xn

Uses: A, R[j] for j ∈ {1, . . . , m− 1}, D[i] for i ∈ {0, . . . , r − 1}, S[i] for
i ∈ {0, . . . , r − 1}

for j = 1 to m− 1 do R[j]← 1G

S[0]← x
for i = 1 to r − 1 do S[i]← S[i− 1]m

for i = 0 to r − 1 do
D[i]← n mod m
n← ⌊n/m⌋

end

γ ← r − 1

while (n > 0) do
τ = RandomInteger(0, r − 1)
if D[τ ] 6= 0 then

R[D[τ ]]← R[D[τ ]] · S[τ ]
end

S[τ ]← S[γ]m

D[τ ]← n mod m
n← ⌊n/m⌋
γ ← τ

end

for i = r − 1 down to 0 do
R[D[i]]← R[D[i]] · S[i]

end

A← R[m− 1]
for i = m− 2 down to 1 do

R[i]← R[i] ·R[i + 1]
A← A ·R[i]

end

return A

where they are in an exponent. The position of the first zero digit in the expo-
nent could be determined by taking enough acquisitions that it is possible to
determine the earliest in an exponentiation that a zero digit is visible in a side
channel. However, it is unclear how an attacker would derive further zero digits
unless they occur infrequently in an exponent, i.e. an attacker is able to locate
the earliest point each zero digit is used during the computation of an expo-
nentiation. This is unlikely to be the case, especially if the number of elements
in D and S is of a similar size to the radix of the digits being taken from the
exponent, in which case we would expect, statistically, there to be one zero digit
in D most of the time.

In [19], Möller describes a recoding algorithm for m-ary exponentiation where
each digit that is equal to zero is replaced with −m, and the next most significant



digit is incremented by one. This leads to an exponent recoded with digits in the
set {1, . . . , m−1}∪{−m}. An unsigned version of Möller’s algorithm is described
in [22] where the digits are recoded with digits in the set {1, . . . , m}. Where
each zero digit is replaced with m and the next digit is decremented by one,
which removes the need to compute a potentially costly inversion. Both of these
algorithms render a subsequent m-ary exponentiation regular, and, therefore,
resistant to simple side channel analysis.

6.2 Differential Side Channel Analysis

In order to conduct a side channel attack using differential side channel analysis,
an attacker needs to construct hypotheses on data being manipulated at a specific
point in time for each acquisition in a set of acquisitions. An attacker can then
attempt to confirm these hypotheses by computing the correlation between them
and each instant in time of during the acquisitions.

In this section we describe how differential side channel analysis could be
applied to Algorithm 4. We assume that an attacker has acquired sufficient traces
of a side channel to conduct a differential side channel attack, as described in
Section 3.2, on Algorithm 4. We also assume that the exponent has been recoded
such that the digits are in the set {1, . . . , m}, as described above.

If an attacker were to try and conduct an differential side channel attack it
would be assumed that the digit treated at the ℓ-th round is the (ℓ + r − 1)-th
digit of the exponent (counting from the right). This is because at this at this
point the (ℓ + r − 1)-th digit will just have been included into the digits from
which the algorithm will randomly select a digit to treat and will occur at this
point with the highest frequency.

This can be seen if we consider that once a digit has been included, it has a
probability of 1/r of being used in the next round. It has the same probability
of being used in the following round but this can only occur if the digit was
not treated in the previous round, so the probability of the digit not being used
in the first round but being used in the second round is

(

1 − 1
r

)

1
r . In general,

we can say that the probability of a digit being treated θ rounds after being

included is 1
r

(

1 − 1
r

)θ−1
. The highest probability occurs one round after a digit

is included when θ = 1.
In [5] it is pointed out that if the correlation coefficient of η independent

bits amongst δ is calculated, a partial correlation still exists and its size can be
predicted as a function of the coefficient that would be generated if all the bits
of δ were included. This is given as:

ρη/δ = ρ

√

η

δ

where ρ is the correlation if everything is known and ρη/δ is the predicted partial
correlation.

This also applies to η intermediate states being correctly predicted out of a
total of δ. Therefore, in conducting a side channel attack against a random order



exponentiation the correlation coefficient seen would be reduced to
√

1/r of the
correlation coefficient that would be seen if a non-randomised algorithm were
under attack if R is known. This would indicate to an attacker which previously
treated digits of the exponent are equal to the (ℓ + r − 1)-th digit.

However, the state of R will not be known to an attacker. To conduct a
differential side channel attack an attacker would be obliged to form hypotheses
on the number and positions of the digits with the same value as the (ℓ+r−1)-th
digit and therefore predict the state of R. An attacker would then be obliged
to generate a correlation trace from the acquired traces for all of the possible
values of R.

The state of R will be different for each execution since the digits that have
not been treated at the ℓ-th round will vary from one execution to another.
An attacker would, therefore, be obliged to predict the most likely state of R
and assume this is the state for every acquisition. This will further reduce the
correlation coefficient visible via a differential side channel attack.

An attacker can, therefore, expect to be able to derive a correlation whose
size is reduced to

√

1/r of what one would be able to produce when attacking a
näıve implementation in the first round of the algorithm. In subsequent rounds
the largest correlation an attacker could hope to produce will diminish rapidly.
It is not clear exactly how the correlation will diminish, and it is left as open
problem, as to exactly how an attacker would attempt to derive the exponent
via differential side channel analysis.

7 Conclusion

In this paper we present a method of computing an exponentiation where radix-
m digits can be treated in a random order. The algorithm is intended to provide
resistance to side channel analysis, and some informal arguments are given as
to the side channel analysis resistance of this algorithm. However, we can note
that not all the possible orderings of exponent digits will be equally likely.

Algorithm 4 will most likely find use as a supplement, rather than as a
replacement, to the blinding countermeasure described in Section 4.1. This is
because it may be possible to derive the digits used in an m-ary exponentiation
from one trace using template attacks [7]. In the example given, d+φ(m) gives a
value equivalent to the private key and could be used to start to make attempts at
factoring m. If Algorithm 4 were also used, an attacker would have to test all the
possible orderings of the exponent to find d+φ(m). This is an advantage over the
previously proposed randomised exponentiation algorithms [12, 23], described in
Section 4.2, that would provide a value equivalent to the exponent if one were
able to derive the digits of an exponent from one acquisition.

Another advantage over previously proposed countermeasures [12, 23], is that
the digit size can be chosen such that it evenly divides a computer word. It is,
therefore, not necessary to read digits that will have bits on two computer words,
which has implications for both security and efficiency.



As stated in the introduction, Algorithm 4 requires a large amount of mem-
ory, as Algorithm 4 requires m+r group elements to be stored in memory. There
are 32-bit secure microprocessors that have enough memory to allow exponentia-
tion in Fp or F2q to be implemented [4, 18]. More recently, processors with larger
memories are being studied with regard to their side channel resistance [1], on
which one would be able to implement Algorithm 4 in (Z/NZ)∗. This is unlikely
to be possible on a smart card microprocessor unless a cryptographic coprocessor
with a large amount of registers is included.

The side channel resistance of the algorithm proposed in this paper is only
briefly analysed. There are some open problems that arise from this work.

The most obvious question is exactly how one would mount a side channel
attack against Algorithm 4. Some brief details are given, but the magnitude of
the correlation coefficient one would expect to be able to observe for a given r
is not defined. Indeed, it remains to be shown what values of r would provide a
suitable level of random ordering.

Another question is how one would attack Algorithm 4 if it were combined
with other countermeasures. For example, one could easily combine Algorithm 4
with Walter’s MIST algorithm [23] where the radix of the digits read from an
exponent is also randomised.
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A Worked Example

We wish to compute z = xn, where n is set to 738530 (B44E2 in hexadecimal)
and the digits will be read from this exponent two bits at a time, i.e. m = 4. The
digits and powers of x (variable A) computed in the main loop of Algorithm 3

are shown below. If enough memory were available then xmi

for i ∈ {0, . . . , 9}
could all be precomputed. Then we can set

S = {x, x4, x16, x64, x256, x1024, x4096, x16384, x65536, x262144} ,

and
D = {2, 0, 2, 3, 0, 1, 0, 1, 3, 2} .

The exponentiation can be computed by treating the elements of S and D in
an arbitrary order. We initially set R[j] for j ∈ {1, 2, 3} to 1G. An arbitrary
j ∈ {0, . . . , 9} is chosen, and we compute R[D[j]] = R[D[j]] · S[j] except when
D[j] is equal to zero when no operation is performed. This is repeated once for
each possible value of j, which will result in:

R[1] = S[5] · S[7] = x1024 x16384 = x17408

R[2] = S[0] · S[2] · S[9] = xx16 x262144 = x262161

R[3] = S[3] · S[8] = x64 x65536 = x65600

where z = R[1] · R[2]2 · R[3]3 = x17408 x2·262161 x3·65600 = x738530, which is
computed by the final loop in Algorithm 3.

If the above computation of z = xn were conducted using Algorithm 4, where
we set r = 6 so that there is only enough memory to store six group elements in
S. The initial values in memory would be xmi

for i ∈ {0, . . . , 5}, i.e.

S = {x, x4, x16, x64, x256, x1024} ,

and the corresponding digits of the exponent would be

D = {2, 0, 2, 3, 0, 1} .



Again, initially set R[j] for j ∈ {1, 2, 3} to 1G. An arbitrary j ∈ {0, . . . , 5} is
chosen, and we compute R[D[j]] = R[D[j]] · S[j]. As above, all R[j] for j ∈
{1, 2, 3} are initialised to 1G. We will take j = 3 which give S[3] = x64 and
D[3] = 3, and we compute R[3] = R[3] · x64. The values in S[3] and D[3] are no

longer required and can be replaced. We, therefore set S[3] = xm7

= x4096 and
D[3] = 0. The values contained in memory would then be

S = {x, x4, x16, x4096, x256, x1024} ,

and
D = {2, 0, 2, 0, 0, 1} .

Another arbitrary j ∈ {0, . . . , 5} can then be selected. We will take j = 0, which
will mean we will compute R[2] = R[2] · x. After which S[0] and D[0] can be

replaced with xm8

and 1 respectively, giving

S = {x16384, x4, x16, x2048, x256, x1024} ,

and
D = {1, 0, 2, 0, 0, 1} .

Next, we take j = 4. D[4] is equal to zero, so no operation is conducted with

S[4], and these elements can be replaced with 3 and xm9

, giving

S = {x16384, x4, x16, x4096, x65536, x1024} ,

and
D = {1, 0, 2, 0, 3, 1} .

We now take j = 1. Again, the chosen digit, D[1], is equal to zero and no

operation takes place. S[1] and D[1] can be replaced with xm10

and the last
digit of the exponent, giving

S = {x16384, x262144, x16, x4096, x65536, x1024} ,

and
D = {1, 2, 2, 0, 3, 1} .

There are now no remaining digits that could be D, so there is no further need to
select digits to be replaced. The remaining digits can be treated, where for each
j ∈ {0, . . . , 5} we compute R[D[j]] = R[D[j]] · S[j] except when D[j] is equal
to zero when no operation is performed. This can be performed in an arbitrary
order and will result in:

R[1] = S[7] · S[5] = x16384 x1024 = x17408

R[2] = S[0] · S[9] · S[2] = xx262144 x16 = x262161

R[3] = S[3] · S[8] = x64 x65536 = x65600

This is exactly the same result as given where all the xmi

for i ∈ {0, . . . , 9}

are precomputed. The only difference being the order in which the xmi

, for
i ∈ {1, . . . , 10}, are multiplied together. The final stage is the same as described
above, since z = R[1] · R[2]2 · R[3]3 = x17408 x2·262161 x3·65600 = x738530.


