Most LBCs use this type of ignition system. Later cars benefit from the miracles of Electronic Ignition systems which are not described here, but most of the same principles apply. One can think of electronic ignitions as "improved points."
The basic ignition system consists of; the Ignition Coil, Points, Capacitor (aka Condenser), Distributor and Sparking Plugs. A ballast resistor may also be included in this system. Various bits of wire connect all these parts together and move the electrons to the right place at the right time, hopefully. Without the aid of diagrams, the scope of this is limited, but the function of each component is described briefly below, For simplicity's sake, no formulas will be used, only descriptions of the various aspects.
The coil, capacitor, and resister form a tuned, oscillator circuit. When the coil is completely discharged, the capacitor is completely charged. Now, the capacitor will try to discharge to the coil. Without resistance, there is nothing to limit the coil or capacitor discharge current, and the cycle will repeat, ie, the coil will charge, then discharge to the capacitor, which will charge, then discharge to the coil, etc. With the resistance, however, the current is "dampened," and the amplitude of the oscillating current is reduced rapidly, dropping to negligible within 3-4 cycles.
When the magnetic field of the primary coil collapses, it cuts through the windings of the secondary coil, producing an output voltage. The magnitude of the output voltage is determined primarily by the windings ratio and by the speed at which the primary field collapses. A slow collapse will produce a lower output than a rapid collapse. Until the arc occurs at the plugs, the output of the secondary is nearly an open circuit, allowing the voltage to reach a peak before current is produced. As soon as the spark occurs, the resistance is reduced, and current flows through the plug gap, maintaining the arc. The primary and secondary windings are isolated from each other, so that no current in one flows through the other. However, the secondary is connected to the primary at the point where the primary connects to the points and capacitor, and there is no direct path for the return of the secondary current other than through the capacitor. As a result, the capacitor is part of the secondary as well as the primary. There is an oscillation in the secondary, just as there is in the primary, for the same reasons. By properly selecting the coil/capacitor parameters, the designer can "tune" the circuit to provide the most effective output voltage, as described below.
Typical Ignition-Coil ParametersTurns Ratio 100:1 Secondary 25,000 turns #41 Primary 250 turns #22 Primary Inductance 6 to 10 mH Primary Resistance about 1.5 ohms Secondary Inductance 40 H Secondary Resistance 10 kilohms
*Thermionic emission - (aka Edison effect) The propensity of some metals to give up their free electrons more easily when heated, actually boiling off of the metal. This is the fundamental operating principle of vacuum tubes, once called thermionic tubes.
**Actually is cuts the voltage to the coil in half when the car is already running, but it's easier to understand the first way. A nominally 6 Volt coil is used in a ballasted ignition system.
This really only scratches the surface of ignition systems. You have been spared topics like Cylinder pressure, Ignition-voltage waveshape, Timing, Capacitance, Inductance, formulas with Greek letters and other technical mumbo-jumbo. But then there's always part 2.....