
Technical Report
CMU/SEI-93-TR-024
ESC-TR-93-177
February 1993

Capability Maturity ModelSM

for Software, Version 1.1

Mark C. Paulk

Bill Curtis

Mary Beth Chrissis

Charles V. Weber

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-93-TR-024

ESC-TR-93-177
February 1993

Capability Maturity ModelSM

for Software, Version 1.1

Mark C. Paulk

Bill Curtis

Mary Beth Chrissis

Charles V. Weber

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments...v
To the Reader...vii
What is the Purpose of This Paper?...viii
Who Should Read This Paper?..viii
How is This Paper Organized?...ix
What Are the Other CMM Products?...x
How Do You Receive More Information?..xi
1 The Process Maturity Framework...1

1.1 Immature Versus Mature Software Organizations................................1
1.2 Fundamental Concepts Underlying Process Maturity...........................3
1.3 Overview of the Capability Maturity Model..4

2 The Five Levels of Software Process Maturity...7
2.1 Behavioral Characterization of the Maturity Levels.............................9

2.1.1 Level 1 - The Initial Level..10
2.1.2 Level 2 - The Repeatable Level...10
2.1.3 Level 3 - The Defined Level...11
2.1.4 Level 4 - The Managed Level..12
2.1.5 Level 5 - The Optimizing Level..13

2.2 Understanding the Maturity Levels..14
2.2.1 Understanding the Initial Level...15
2.2.2 Understanding the Repeatable and Defined Levels.................15
2.2.3 Understanding the Managed and Optimizing Levels.............16

2.3 Visibility Into the Software Process...19
2.4 Process Capability and the Prediction of Performance.........................22
2.5 Skipping Maturity Levels...25

3 Operational Definition of the Capability Maturity Model...........................27
3.1 Internal Structure of the Maturity Levels..27
3.2 Maturity Levels..30
3.3 Key Process Areas...30
3.4 Common Features...37
3.5 Key Practices..39

4 Using the CMM...43
4.1 Software Process Assessment and Software Capability

Evaluation Methods..44
4.2 Differences Between Software Process Assessments and

Software Capability Evaluations...47
4.3 Other Uses of the CMM in Process Improvement...............................49

CMU/SEI-93-TR-24 Capability Maturity Model ■ i

Table of Contents

5 Future Directions of the CMM...51
5.1 What the CMM Does Not Cover..51
5.2 Near-Term Activities..51
5.3 Long-Term Activities..52
5.4 Conclusion..53

6 References...55
Appendix A: Goals for Each Key Process Area..59

A.1 The Key Process Areas for Level 2: Repeatable.....................................59
A.2 The Key Process Areas for Level 3: Defined..61
A.3 The Key Process Areas for Level 4: Managed..62
A.4 The Key Process Areas for Level 5: Optimizing...................................63

ii ■ Capability Maturity Model CMU/SEI-91-TR-24

List of Figures

Figure 2.1 The Five Levels of Software Process Maturity..................................8
Figure 2.2 The Juran Trilogy Diagram: Quality Planning, Quality

Control, and Quality Improvement..17
Figure 2.3 A Management View of Visibility into the Software Process

at Each Maturity Level..20
Figure 2.4 Process Capability as Indicated by Maturity Level...........................23
Figure 3.1 The CMM Structure..29
Figure 3.2 The Key Process Areas by Maturity Level...31
Figure 3.3 Building the CMM Structure: An Example of a Key Practice......40
Figure 4.1 Common Steps in Software Process Assessments and

Software Capability Evaluations...45

CMU/SEI-93-TR-24 Capability Maturity Model ■ iii

List of Figures

iv ■ Capability Maturity Model CMU/SEI-91-TR-24

Acknowledgments

The description of the Capability Maturity Model for Software was initially
produced by a dedicated group of people who spent many hours discussing
the model and its features and then trying to document it in CMM v1.0.
This group consisted of Mark Paulk, Bill Curtis, Mary Beth Chrissis, Edward
Averill, Judy Bamberger, Tim Kasse, Mike Konrad, Jeff Perdue, Charlie
Weber, and Jim Withey.

This paper is based on the vision of Watts Humphrey, first director of the
SEI's Software Process Program. It took several drafts to evolve this paper
into the final product. Jim Withey, Mark Paulk, and Cynthia Wise
produced an early draft in 1990. Watts Humphrey provided a second draft
of the document, and Mark Paulk then took over the paper and remained
book boss until the end. Mary Beth Chrissis and Bill Curtis helped Mark
produce the CMM v1.0 revision of this paper in August, 1991. Mark Paulk
produced the CMM v1.1 revision of the paper, which is this technical report.

At various stages, several people contributed to the concepts expressed in
this paper. They include Joe Besselman, Marilyn Bush, Anita Carleton,
Marty Carlson, Betty Deimel, Suzie Garcia, Richard Kauffold, Steve Masters,
Mary Merrill, Jim Over, George Pandelios, Jane Siegel and Charlie Weber.

We appreciate the administrative help from Todd Bowman, Dorothy
Josephson, Debbie Punjack, Carolyn Tady, Marcia Theoret, Andy Tsounos,
and David White; and the editorial assistance from Mary Beth Chrissis,
Suzanne Couturiaux, and Bill Pollak. Renne Dutkowski from the
American Institutes for Research provided suggestions for the design of the
document.

CMU/SEI-93-TR-24 Capability Maturity Model ■ v

Acknowledgments

vi ■ Capability Maturity Model CMU/SEI-93-TR-24

To the Reader

In November 1986, the Software Engineering Institute (SEI), with assistance
from the Mitre Corporation, began developing a process maturity
framework that would help organizations improve their software process.
This effort was initiated in response to a request to provide the federal
government with a method for assessing the capability of its software
contractors. In September 1987, the SEI released a brief description of the
process maturity framework [Humphrey 87a] and a maturity questionnaire
[Humphrey87b]. The SEI intended the maturity questionnaire to provide a
simple tool for identifying areas where an organization's software process
needed improvement. Unfortunately, the maturity questionnaire was too
often regarded as "the model" rather than as a vehicle for exploring process
maturity issues.

After four years of experience with the software process maturity framework
and the preliminary version of the maturity questionnaire, the SEI evolved
the software process maturity framework into the Capability Maturity
Model for Software (CMM) [Paulk91, Weber91]. The CMM is based on
knowledge acquired from software process assessments and extensive
feedback from both industry and government. By elaborating the maturity
framework, a model has emerged that provides organizations with more
effective guidance for establishing process improvement programs.

The initial release of the CMM, Version 1.0, was reviewed and used by the
software community during 1991 and 1992. A workshop was held in April,
1992 on CMM v1.0, which was attended by about 200 software professionals.
This version of the CMM, Version 1.1, is the result of the feedback from that
workshop and ongoing feedback from the software community.

The CMM is the foundation for systematically building a set of tools,
including a maturity questionnaire, which are useful in software process
improvement. The essential point to remember is that the model, not a
questionnaire, is the basis for improving the software process. This paper is
intended to introduce the reader to CMM v1.1.

CMU/SEI-93-TR-24 Capability Maturity Model ■vii

To the Reader

What is the Purpose of This Paper?

This paper provides a technical overview of the Capability Maturity Model
for Software and reflects Version 1.1. Specifically, this paper describes the
process maturity framework of five maturity levels, the structural
components that comprise the CMM, how the CMM is used in practice, and
future directions of the CMM. This paper serves as one of the best sources
for understanding the CMM, and it should clear up some of the
misconceptions associated with software process maturity as advocated by
the SEI.

The SEI has worked with industry and government to refine and expand
the model, and software organizations are encouraged to focus on the CMM
rather than on the maturity questionnaire. The SEI has developed, and is
developing, a suite of process products to encourage this focus. This paper
[Paulk93a], in combination with the "Key Practices of the Capability Maturity
Model, Version 1.1" [Paulk93b], comprises CMM v1.1. The "Key Practices of
the Capability Maturity Model, Version 1.1" describes the key practices for
each level of the CMM. This paper describes the principles underlying
software process maturity and is intended to help software organizations
use CMM v1.1 as a guide to improve the maturity of their software
processes.

Who Should Read This Paper?

This paper presents an introduction to the CMM and its associated products.
Therefore, anyone who is interested in learning about the CMM should
read this paper. However, this paper assumes that the reader has some
knowledge of, and experience in, developing and/or maintaining software,
as well as an understanding of the problems that the software community
faces today.

viii ■ Capability Maturity Model CMU/SEI-93-TR-24

To the Reader

This document can be used in several ways:

❑ by anyone wanting to understand the key practices that are part of
effective processes for developing or maintaining software,

❑ by anyone wanting to identify the key practices that are needed to
achieve the next maturity level in the CMM,

❑ by organizations wanting to understand and improve their capability
to develop software effectively,

❑ by acquisition organizations or prime contractors wanting to know
the risks of having a particular software organization perform the
work of a contract,

❑ by the SEI as the basis for developing questions for the maturity
questionnaire, and

❑ by instructors preparing teams to perform software process
assessments or software capability evaluations.

How is This Paper Organized?

This paper has five chapters:

Chapter 1 Defines the concepts necessary to understand
the CMM and the motivation and purpose
behind it.

CMU/SEI-93-TR-24 Capability Maturity Model ■ ix

To the Reader

Chapter 2 Describes the five levels of the CMM and the
principles that underlie them.

Chapter 3 Describes how the CMM is structured into
key process areas, organized by common
features, and described in terms of key
practices.

Chapter 4 Provides a high-level overview of how the
CMM provides guidance for software process
assessments, software capability evaluations,
and process improvement programs.

Chapter 5 Concludes by providing a description of
future directions for the CMM and its related
products.

What Are the Other CMM Products?

Although this paper can be read in isolation, it is designed to be the
launching point for other products. This paper and the associated products
help the reader understand and use the CMM. All of the CMM-based
products have been, or will be, systematically derived from the model. At
the time of this writing, most of these products are not available in their
final form, although preliminary versions are in various stages of pilot
testing and release.

x ■ Capability Maturity Model CMU/SEI-93-TR-24

To the Reader

The CMM-based set of products includes several diagnostic tools, which are
used by software process assessment1 and software capability evaluation2

teams to identify strengths, weaknesses, and risks of an organization's
software process. Probably the best known of these is the maturity
questionnaire. The software process assessment and software capability
evaluation methods and training also rely on the CMM.

The users of these products form a community dedicated to improving the
maturity of their software process. The SEI will continue to work with the
software community to enhance the model and its associated products.

How Do You Receive More Information?

For further information regarding the CMM and its associated products,
including training on the CMM and how to perform software process
assessments and software capability evaluations, contact:

SEI Customer Relations
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
(412) 268-5800
Internet: customer-relations@sei.cmu.edu

1 A software process assessment is an appraisal by a trained team of software professionals to
determine the state of an organization's current software process, to determine the high-priority
software process-related issues facing an organization, and to obtain the organizational support for
software process improvement.
2 A software capability evaluation is an appraisal by a trained team of professionals to identify
contractors who are qualified to perform the software work or to monitor the state of the software
process used on an existing software effort.

CMU/SEI-93-TR-24 Capability Maturity Model ■ xi

To the Reader

SEI technical reports, such as this paper and the "Key Practices of the
Capability Maturity Model, Version 1.1," are directly available from the
Defense Technical Information Center (DTIC), the National Technical
Information Service (NTIS), and Research Access Inc. (RAI). These
documents can be obtained by contacting:

RAI: Research Access Inc.
3400 Forbes Avenue
Suite 302
Pittsburgh, PA 15213
Telephone: (800) 685-6510
FAX: (412) 682-6530

NTIS: National Technical Information Service
U.S. Department of Commerce
Springfield, VA 22161-2103
Telephone: (703) 487-4600

DTIC: Defense Technical Information Center
ATTN: FDRA Cameron Station
Alexandria, VA 22304-6145
Telephone: (703) 274-7633

xii ■ Capability Maturity Model CMU/SEI-93-TR-24

To the Reader

SEI technical reports are also available via Internet. To use anonymous ftp
from a Unix system on Internet:

ftp ftp.sei.cmu.edu3

login: anonymous
password: <your user id or any string>
cd pub/cmm
get READ.ME
get <files>
quit

The file READ.ME contains information on what files are available. Other
SEI publications are available in a similar manner.

3 The SEI ftp machine address is 128.237.2.179.

CMU/SEI-93-TR-24 Capability Maturity Model ■xiii

To the Reader

xiv ■ Capability Maturity Model CMU/SEI-93-TR-24

1 The Process Maturity
Framework

After two decades of unfulfilled promises about productivity and quality
gains from applying new software methodologies and technologies,
industry and government organizations are realizing that their
fundamental problem is the inability to manage the software process
[DoD87]. The benefits of better methods and tools cannot be realized in the
maelstrom of an undisciplined, chaotic project. In many organizations,
projects are often excessively late and double the planned budget [Siegel90].
In such instances, the organization frequently is not providing the
infrastructure and support necessary to help projects avoid these problems.

Even in undisciplined organizations, however, some individual software
projects produce excellent results. When such projects succeed, it is
generally through the heroic efforts of a dedicated team, rather than
through repeating the proven methods of an organization with a mature
software process. In the absence of an organization-wide software process,
repeating results depends entirely on having the same individuals available
for the next project. Success that rests solely on the availability of specific
individuals provides no basis for long-term productivity and quality
improvement throughout an organization. Continuous improvement can
occur only through focused and sustained effort towards building a process
infrastructure of effective software engineering and management practices.

1.1 Immature Versus Mature Software
Organizations

Setting sensible goals for process improvement requires an understanding
of the difference between immature and mature software organizations. In
an immature software organization, software processes are generally
improvised by practitioners and their management during the course of the
project. Even if a software process has been specified, it is not rigorously

CMU/SEI-93-TR-24 Capability Maturity Model ■ 1

The Process Maturity Framework

followed or enforced. The immature software organization is reactionary,
and managers are usually focused on solving immediate crises (better
known as fire fighting). Schedules and budgets are routinely exceeded
because they are not based on realistic estimates. When hard deadlines are
imposed, product functionality and quality are often compromised to meet
the schedule.

In an immature organization, there is no objective basis for judging product
quality or for solving product or process problems. Therefore, product
quality is difficult to predict. Activities intended to enhance quality such as
reviews and testing are often curtailed or eliminated when projects fall
behind schedule.

On the other hand, a mature software organization possesses an
organization-wide ability for managing software development and
maintenance processes. The software process is accurately communicated to
both existing staff and new employees, and work activities are carried out
according to the planned process. The processes mandated are fit for use
[Humphrey91b] and consistent with the way the work actually gets done.
These defined processes are updated when necessary, and improvements
are developed through controlled pilot-tests and/or cost benefit analyses.
Roles and responsibilities within the defined process are clear throughout
the project and across the organization.

In a mature organization, managers monitor the quality of the software
products and customer satisfaction. There is an objective, quantitative basis
for judging product quality and analyzing problems with the product and
process. Schedules and budgets are based on historical performance and are
realistic; the expected results for cost, schedule, functionality, and quality of
the product are usually achieved. In general, a disciplined process is
consistently followed because all of the participants understand the value of
doing so, and the necessary infrastructure exists to support the process.

2 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Process Maturity Framework

Capitalizing on these observations about immature and mature software
organizations requires construction of a software process maturity
framework. This framework describes an evolutionary path from ad hoc,
chaotic processes to mature, disciplined software processes. Without this
framework, improvement programs may prove ineffective because the
necessary foundation for supporting successive improvements has not been
established. The software process maturity framework emerges from
integrating the concepts of software process, software process capability,
software process performance, and software process maturity, all of which
are defined in succeeding paragraphs.

1.2 Fundamental Concepts Underlying Process
Maturity

According to Webster's dictionary, a process is "a system of operations in
producing something ... a series of actions, changes, or functions that
achieve an end or result." The IEEE defines a process as "a sequence of steps
performed for a given purpose" [IEEE-STD-610]. A software process can be
defined as a set of activities, methods, practices, and transformations that
people use to develop and maintain software and the associated products
(e.g., project plans, design documents, code, test cases, and user manuals).
As an organization matures, the software process becomes better defined
and more consistently implemented throughout the organization.

Software process capability describes the range of expected results that can be
achieved by following a software process. The software process capability of
an organization provides one means of predicting the most likely outcomes
to be expected from the next software project the organization undertakes.

Software process performance represents the actual results achieved by
following a software process. Thus, software process performance focuses
on the results achieved, while software process capability focuses on results
expected. Based on the attributes of a specific project and the context within

CMU/SEI-93-TR-24 Capability Maturity Model ■ 3

The Process Maturity Framework

which it is conducted, the actual performance of the project may not reflect
the full process capability of the organization; i.e., the capability of the
project is constrained by its environment. For instance, radical changes in
the application or technology undertaken may place a project' s staff on a
learning curve that causes their project's capability, and performance, to fall
short of the organization's full process capability.

Software process maturity is the extent to which a specific process is
explicitly defined, managed, measured, controlled, and effective. Maturity
implies a potential for growth in capability and indicates both the richness
of an organization's software process and the consistency with which it is
applied in projects throughout the organization. The software process is
well-understood throughout a mature organization, usually through
documentation and training, and the process is continually being
monitored and improved by its users. The capability of a mature software
process is known. Software process maturity implies that the productivity
and quality resulting from an organization’s software process can be
improved over time through consistent gains in the discipline achieved by
using its software process.

As a software organization gains in software process maturity, it
institutionalizes its software process via policies, standards, and
organizational structures. Institutionalization entails building an
infrastructure and a corporate culture that supports the methods, practices,
and procedures of the business so that they endure after those who
originally defined them have gone.

1.3 Overview of the Capability Maturity Model

Although software engineers and managers often know their problems in
great detail, they may disagree on which improvements are most important.
Without an organized strategy for improvement, it is difficult to achieve
consensus between management and the professional staff on what

4 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Process Maturity Framework

improvement activities to undertake first. To achieve lasting results from
process improvement efforts, it is necessary to design an evolutionary path
that increases an organization's software process maturity in stages. The
software process maturity framework [Humphrey 87a] orders these stages so
that improvements at each stage provide the foundation on which to build
improvements undertaken at the next stage. Thus, an improvement
strategy drawn from a software process maturity framework provides a
roadmap for continuous process improvement. It guides advancement and
identifies deficiencies in the organization; it is not intended to provide a
quick fix for projects in trouble.

The Capability Maturity Model for Software provides software organizations
with guidance on how to gain control of their processes for developing and
maintaining software and how to evolve toward a culture of software
engineering and management excellence. The CMM was designed to guide
software organizations in selecting process improvement strategies by
determining current process maturity and identifying the few issues most
critical to software quality and process improvement. By focusing on a
limited set of activities and working aggressively to achieve them, an
organization can steadily improve its organization-wide software process to
enable continuous and lasting gains in software process capability.

The staged structure of the CMM is based on principles of product quality
that have existed for the last sixty years. In the 1930s, Walter Shewart,
promulgated the principles of statistical quality control. His principles were
further developed and successfully demonstrated in the work of W.
Edwards Deming [Deming86] and Joseph Juran [Juran88, Juran89]. These
principles have been adapted by the SEI into a maturity framework that
establishes a project management and engineering foundation for
quantitative control of the software process, which is the basis for
continuous process improvement.

The maturity framework into which these quality principles have been
adapted was first inspired by Philip Crosby of in his book Quality is Free
[Crosby79]. Crosby's quality management maturity grid describes five

CMU/SEI-93-TR-24 Capability Maturity Model ■ 5

The Process Maturity Framework

evolutionary stages in adopting quality practices. This maturity framework
was adapted to the software process by Ron Radice and his colleagues,
working under the direction of Watts Humphrey at IBM [Radice85].
Humphrey brought this maturity framework to the Software Engineering
Institute in 1986, added the concept of maturity levels, and developed the
foundation for its current use throughout the software industry.

Early versions of Humphrey's maturity framework are described in SEI
technical reports [Humphrey87a, Humphrey87b], papers [Humphrey88], and
in his book, Managing the Software Process [Humphrey89]. A preliminary
maturity questionnaire [Humphrey87b] was released in 1987 as a tool to
provide organizations with a way to characterize the maturity of their
software processes. Two methods, software process assessment and software
capability evaluation, were developed to appraise software process maturity
in 1987. Since 1990, the SEI, with the help of many people from
government and industry, has further expanded and refined the model
based on several years of experience in its application to software process
improvement.

6 ■ Capability Maturity Model CMU/SEI-93-TR-24

2 The Five Levels of Software
Process Maturity

Continuous process improvement is based on many small, evolutionary
steps rather than revolutionary innovations [Imai86]. The CMM provides a
framework for organizing these evolutionary steps into five maturity levels
that lay successive foundations for continuous process improvement.
These five maturity levels define an ordinal scale for measuring the
maturity of an organization's software process and for evaluating its
software process capability. The levels also help an organization prioritize
its improvement efforts.

A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level provides a layer in the
foundation for continuous process improvement. Each level comprises a
set of process goals that, when satisfied, stabilize an important component of
the software process. Achieving each level of the maturity framework
establishes a different component in the software process, resulting in an
increase in the process capability of the organization.

Organizing the CMM into the five levels shown in Figure 2.1 prioritizes
improvement actions for increasing software process maturity. The labeled
arrows in Figure 2.1 indicate the type of process capability being
institutionalized by the organization at each step of the maturity
framework.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 7

The Five Levels of Software Process Maturity

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Figure 2.1 The Five Levels of Software Process Maturity

The following characterizations of the five maturity levels highlight the
primary process changes made at each level:

1) Initial The software process is characterized as ad hoc, and
occasionally even chaotic. Few processes are defined, and
success depends on individual effort.

8 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

2) Repeatable Basic project management processes are established to
track cost, schedule, and functionality. The necessary
process discipline is in place to repeat earlier successes on
projects with similar applications.

3) Defined The software process for both management and
engineering activities is documented, standardized, and
integrated into a standard software process for the
organization. All projects use an approved, tailored
version of the organization's standard software process for
developing and maintaining software.

4) Managed Detailed measures of the software process and product
quality are collected. Both the software process and
products are quantitatively understood and controlled.

5) Optimizing Continuous process improvement is enabled by
quantitative feedback from the process and from piloting
innovative ideas and technologies.

2.1 Behavioral Characterization of the Maturity
Levels

Maturity Levels 2 through 5 can be characterized through the activities
performed by the organization to establish or improve the software process,
by activities performed on each project, and by the resulting process
capability across projects. A behavioral characterization of Level 1 is
included to establish a base of comparison for process improvements at
higher maturity levels.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 9

The Five Levels of Software Process Maturity

2.1.1 Level 1 - The Initial Level

At the Initial Level, the organization typically does not provide a stable
environment for developing and maintaining software. When an
organization lacks sound management practices, the benefits of good
software engineering practices are undermined by ineffective planning and
reaction-driven commitment systems.

During a crisis, projects typically abandon planned procedures and revert to
coding and testing. Success depends entirely on having an exceptional
manager and a seasoned and effective software team. Occasionally, capable
and forceful software managers can withstand the pressures to take
shortcuts in the software process; but when they leave the project, their
stabilizing influence leaves with them. Even a strong engineering process
cannot overcome the instability created by the absence of sound
management practices.

The software process capability of Level 1 organizations is unpredictable
because the software process is constantly changed or modified as the work
progresses (i.e., the process is ad hoc). Schedules, budgets, functionality, and
product quality are generally unpredictable. Performance depends on the
capabilities of individuals and varies with their innate skills, knowledge,
and motivations. There are few stable software processes in evidence, and
performance can be predicted only by individual rather than organizational
capability.

2.1.2 Level 2 - The Repeatable Level

At the Repeatable Level, policies for managing a software project and
procedures to implement those policies are established. Planning and
managing new projects is based on experience with similar projects. An
objective in achieving Level 2 is to institutionalize effective management

10 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

processes for software projects, which allow organizations to repeat
successful practices developed on earlier projects, although the specific
processes implemented by the projects may differ. An effective process can
be characterized as practiced, documented, enforced, trained, measured, and
able to improve.

Projects in Level 2 organizations have installed basic software management
controls. Realistic project commitments are based on the results observed
on previous projects and on the requirements of the current project. The
software managers for a project track software costs, schedules, and
functionality; problems in meeting commitments are identified when they
arise. Software requirements and the work products developed to satisfy
them are baselined, and their integrity is controlled. Software project
standards are defined, and the organization ensures they are faithfully
followed. The software project works with its subcontractors, if any, to
establish a strong customer-supplier relationship.

The software process capability of Level 2 organizations can be summarized
as disciplined because planning and tracking of the software project is stable
and earlier successes can be repeated. The project's process is under the
effective control of a project management system, following realistic plans
based on the performance of previous projects.

2.1.3 Level 3 - The Defined Level

At the Defined Level, the standard process for developing and maintaining
software across the organization is documented, including both software
engineering and management processes, and these processes are integrated
into a coherent whole. This standard process is referred to throughout the
CMM as the organization's standard software process. Processes established
at Level 3 are used (and changed, as appropriate) to help the software
managers and technical staff perform more effectively. The organization
exploits effective software engineering practices when standardizing its
software processes. There is a group that is responsible for the

CMU/SEI-93-TR-24 Capability Maturity Model ■ 11

The Five Levels of Software Process Maturity

organization's software process activities, e.g., a software engineering
process group, or SEPG [Fowler90]. An organization-wide training program
is implemented to ensure that the staff and managers have the knowledge
and skills required to fulfill their assigned roles.

Projects tailor the organization's standard software process to develop their
own defined software process, which accounts for the unique characteristics
of the project. This tailored process is referred to in the CMM as the
project's defined software process. A defined software process contains a
coherent, integrated set of well-defined software engineering and
management processes. A well-defined process can be characterized as
including readiness criteria, inputs, standards and procedures for
performing the work, verification mechanisms (such as peer reviews),
outputs, and completion criteria. Because the software process is well
defined, management has good insight into technical progress on all
projects.

The software process capability of Level 3 organizations can be summarized
as standard and consistent because both software engineering and
management activities are stable and repeatable. Within established
product lines, cost, schedule, and functionality are under control, and
software quality is tracked. This process capability is based on a common,
organization-wide understanding of the activities, roles, and responsibilities
in a defined software process.

2.1.4 Level 4 - The Managed Level

At the Managed Level, the organization sets quantitative quality goals for
both software products and processes. Productivity and quality are
measured for important software process activities across all projects as part
of an organizational measurement program. An organization-wide
software process database is used to collect and analyze the data available
from the projects' defined software processes. Software processes are
instrumented with well-defined and consistent measurements at Level 4.

12 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

These measurements establish the quantitative foundation for evaluating
the projects' software processes and products.

Projects achieve control over their products and processes by narrowing the
variation in their process performance to fall within acceptable quantitative
boundaries. Meaningful variations in process performance can be
distinguished from random variation (noise), particularly within
established product lines. The risks involved in moving up the learning
curve of a new application domain are known and carefully managed.

The software process capability of Level 4 organizations can be summarized
as predictable because the process is measured and operates within
measurable limits. This level of process capability allows an organization to
predict trends in process and product quality within the quantitative bounds
of these limits. When these limits are exceeded, action is taken to correct
the situation. Software products are of predictably high quality.

2.1.5 Level 5 - The Optimizing Level

At the Optimizing Level, the entire organization is focused on continuous
process improvement. The organization has the means to identify
weaknesses and strengthen the process proactively, with the goal of
preventing the occurrence of defects. Data on the effectiveness of the
software process is used to perform cost benefit analyses of new technologies
and proposed changes to the organization's software process. Innovations
that exploit the best software engineering practices are identified and
transferred throughout the organization.

Software project teams in Level 5 organizations analyze defects to determine
their causes. Software processes are evaluated to prevent known types of
defects from recurring, and lessons learned are disseminated to other
projects.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 13

The Five Levels of Software Process Maturity

The software process capability of Level 5 organizations can be characterized
as continuously improving because Level 5 organizations are continuously
striving to improve the range of their process capability, thereby improving
the process performance of their projects. Improvement occurs both by
incremental advancements in the existing process and by innovations using
new technologies and methods.

2.2 Understanding the Maturity Levels

The CMM is a descriptive model in the sense that it describes essential (or
key) attributes that would be expected to characterize an organization at a
particular maturity level. It is a normative model in the sense that the
detailed practices characterize the normal types of behavior that would be
expected in an organization doing large-scale projects in a government
contracting context. The intent is that the CMM is at a sufficient level of
abstraction that it does not unduly constrain how the software process is
implemented by an organization; it simply describes what the essential
attributes of a software process would normally be expected to be.

In any context in which the CMM is applied, a reasonable interpretation of
the practices should be used. The CMM must be appropriately interpreted,
using informed professional judgment, when the business environment of
the organization differs significantly from that of a large contracting
organization.

The CMM is not prescriptive; it does not tell an organization how to
improve. The CMM describes an organization at each maturity level
without prescribing the specific means for getting there. It can take several
years to move from Level 1 to Level 2, and moving between the other levels
will usually take on the order of two years.

14 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

Software process improvement occurs within the context of the
organization's strategic plans and business objectives, its organizational
structure, the technologies in use, its social culture, and its management
system. The CMM focuses on the process aspects of a Total Quality
Management effort; successful process improvement implies that aspects
outside the scope of software process are also addressed (e.g., the people
issues involved with changing the organizational culture that enable the
process improvements to be implemented and institutionalized).

2.2.1 Understanding the Initial Level

Although Level 1 organizations are frequently characterized as having ad
hoc, even chaotic, processes, they frequently develop products that work,
even though they may be over the budget and schedule. Success in Level 1
organizations depends on the competence and heroics of the people in the
organization. Selecting, hiring, developing, and/or retaining competent
people are significant issues for organizations at all levels of maturity, but
they are largely outside the scope of the CMM.

2.2.2 Understanding the Repeatable and Defined Levels

As projects grow in size and complexity, attention shifts from technical
issues to organizational and managerial issues – the focus of process
maturity [Siegel90, DoD87, GAO-92-48]. Process enables people to work
more effectively by incorporating the lessons learned by the best staff into
documented processes, building the skills needed to perform those processes
effectively (usually via training), and continually improving by learning
from the people performing the job.

To achieve Level 2, management must focus on its own processes to
achieve a disciplined software process. Level 2 provides the foundation for
Level 3 because the focus is on management acting to improve its processes

CMU/SEI-93-TR-24 Capability Maturity Model ■ 15

The Five Levels of Software Process Maturity

before tackling technical and organizational issues at Level 3. Management
establishes a leadership position in achieving Level 2 by documenting and
following project management processes.

Processes may differ between projects in a Level 2 organization; the
organizational requirement for achieving Level 2 is that there are policies
that guide the projects in establishing the appropriate management
processes. Documented procedures provide the foundation for consistent
processes that can be institutionalized across the organization, with the aid
of training and software quality assurance.

Level 3 builds on this project management foundation by defining,
integrating, and documenting the entire software process. Integration in
this case means that the outputs of one task flow smoothly into the inputs
of the next task. When there are mismatches between tasks, they are
identified and addressed in the planning stages of the software process,
rather than when they are encountered while enacting the process. One of
the challenges of Level 3 is to build processes that empower the individuals
doing the work without being overly rigid [Humphrey 91b].

2.2.3 Understanding the Managed and Optimizing Levels

Maturity Levels 4 and 5 are relatively unknown territory for the software
industry. There are only a few examples of Level 4 and 5 software projects
and organizations [Humphrey91a, Kitson92]. There are too few to draw
general conclusions about the characteristics of Level 4 and 5 organizations.
The characteristics of these levels have been defined by analogy with other
industries and the few examples in the software industry exhibiting this
level of process capability.

Many characteristics of Levels 4 and 5 are based on the concepts of statistical
process control as exemplified in Figure 2.2. The Juran Trilogy Diagram
[Juran88] illustrates the primary objectives of process management.

16 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

Quality Planning Quality Control (during operations)

Sporadic
 spike

Original zone of
 quality control

New zone of
 quality control

Chronic waste

Lessons learned

Time

C
o

st
 o

f
p

o
o

r
q

u
al

it
y

J.M. Juran Wilton, CT Used with the express permission of the Juran Institute, Aug, 1990.

Quality Improvement

Figure 2.2 The Juran Trilogy Diagram: Quality Planning, Quality Control,
and Quality Improvement

Juran breaks quality management into three basic managerial processes
[Juran88]. The purpose of quality planning is to provide the operating
forces, i.e., the software producers, with the means of producing products
that can meet customer needs. The operating forces produce the product,
but some rework must be done because of quality deficiencies. This waste is
chronic because the process was planned that way; quality control is carried
out to prevent things from getting worse. Sporadic spikes in the process, as
shown in Figure 2.2, represent fire fighting activities. Chronic waste
provides an opportunity for improvement; seizing that opportunity is
referred to as quality improvement.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 17

The Five Levels of Software Process Maturity

The first responsibility, and the focus of Level 4, is process control. The
software process is managed so that it operates stably within a zone of
quality control. There is inevitably some chronic waste, and there may be
spikes in the measured results that need to be controlled, but the system is
generally stable overall. This is where the concept of controlling special
causes of variation comes into play. Because the process is both stable and
measured, when some exceptional circumstance occurs, the "special cause"
of the variation can be identified and addressed.

The second responsibility, and the focus of Level 5, is continuous process
improvement. The software process is changed to improve quality, and the
zone of quality control moves. A new baseline for performance is
established that reduces chronic waste. The lessons learned in improving
such a process are applied in planning future processes. This is where the
concept of addressing common causes of variation comes to the fore. There
is chronic waste, in the form of rework, in any system simply due to
random variation. Waste is unacceptable; organized efforts to remove
waste result in changing the system, i.e., improving the process by changing
"common causes" of inefficiency to prevent the waste from occurring.

It is anticipated that organizations reaching the highest maturity levels of
the CMM would have a process that is capable of producing extremely
reliable software within predictable cost and schedule limits. As
understanding of the higher maturity levels grows, the existing key process
areas will be refined, and others may be added to the model. The CMM is
derived from ideas about process that were inspired in manufacturing, but
software processes are not dominated by replication issues like a
manufacturing process is. The software process is dominated by design
issues and is a knowledge-intensive activity [Curtis88].

18 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

2.3 Visibility Into the Software Process

Software engineers have detailed insight into the state of a project because
they have first-hand information on project status and performance.
However, on large projects their insight usually is drawn only from their
personal experience in their area of responsibility. Those outside the project
without first-hand exposure, such as senior managers, lack visibility into
the project's processes and rely on periodic reviews for the information they
require to monitor progress. Figure 2.3 illustrates the level of visibility into
project status and performance afforded to management at each level of
process maturity. Each succeeding maturity level incrementally provides
better visibility into the software process.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 19

The Five Levels of Software Process Maturity

In Out22

In Out33

In Out44

In Out55

11 OutIn

Figure 2.3 A Management View of Visibility Into the Software Process at
Each Maturity Level

At Level 1, the software process is an amorphous entity – a black box – and
visibility into the project's processes is limited. Since the staging of
activities is poorly defined, managers have an extremely difficult time
establishing the status of the project's progress and activities.4

4 This leads to the Ninety-Ninety Rule: 90% of the project is complete 90% of the time.

20 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

Requirements flow into the software process in an uncontrolled manner,
and a product results. Software development is frequently viewed as black
magic, especially by managers who are unfamiliar with software.

At Level 2, the customer requirements and work products are controlled,
and basic project management practices have been established. These
management controls allow visibility into the project on defined occasions.
The process of building the software can be viewed as a succession of black
boxes that allows management visibility at transition points as activity flows
between boxes (project milestones). Even though management may not
know the details of what is happening in the box, the products of the process
and checkpoints for confirming that the process is working are identified
and known. Management reacts to problems as they occur.

At Level 3, the internal structure of the boxes, i.e., the tasks in the project's
defined software process, is visible. The internal structure represents the
way the organization's standard software process has been applied to specific
projects. Both managers and engineers understand their roles and
responsibilities within the process and how their activities interact at the
appropriate level of detail. Management proactively prepares for risks that
may arise. Individuals external to the project can obtain accurate and rapid
status updates because defined processes afford great visibility into project
activities.

At Level 4, the defined software processes are instrumented and controlled
quantitatively. Managers are able to measure progress and problems. They
have an objective, quantitative basis for making decisions. Their ability to
predict outcomes grows steadily more precise as the variability in the
process grows smaller.

At Level 5, new and improved ways of building the software are continually
tried, in a controlled manner, to improve productivity and quality.
Disciplined change is a way of life as inefficient or defect-prone activities are
identified and replaced or revised. Insight extends beyond existing processes

CMU/SEI-93-TR-24 Capability Maturity Model ■ 21

The Five Levels of Software Process Maturity

and into the effects of potential changes to processes. Managers are able to
estimate and then track quantitatively the impact and effectiveness of
change.

2.4 Process Capability and the Prediction of
Performance

The maturity of an organization's software process helps to predict a
project's ability to meet its goals. Projects in Level 1 organizations
experience wide variations in achieving cost, schedule, functionality, and
quality targets. As illustrated in Figure 2.4, three improvements in meeting
targeted goals are observed as the organization's software process matures.

First, as maturity increases, the difference between targeted results and
actual results decreases across projects. For instance, if ten projects of the
same size were targeted to be delivered on May 1, then the average date of
their delivery would move closer to May 1 as the organization matures.
Level 1 organizations often miss their originally scheduled delivery dates by
a wide margin, whereas Level 5 organizations should be able to meet
targeted dates with considerable accuracy. This is because Level 5
organizations use a carefully constructed software process operating within
known parameters, and the selection of the target date is based on the
extensive data they possess about their process and on their performance in
applying it. (This is illustrated in Figure 2.4 by how much of the area under
the curve lies to the right of the target line.)

22 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

P
ro

ba
bi

lit
y

Time/$/...

Ta
rg

et
 N

11

22

P
ro

ba
bi

lit
y

Time/$/...

Ta
rg

et
 N

+a

44

P
ro

ba
bi

lit
y

Time/$/...

Ta
rg

et
 N

-y

55
P

ro
ba

bi
lit

y

Time/$/...
Ta

rg
et

 N
-z

33

P
ro

ba
bi

lit
y

Time/$/...

Ta
rg

et
 N

-x

Schedule and cost targets
are typically overrun by
Level 1 organizations.

Plans based on past
performance are more
realistic in Level 2
organizations

With well-defined processes,
performance improves in
Level 3 organizations

Based on quantitative
understanding of process
and product, performance
continues to improve in
Level 4 organizations

Performance continuously
improves in Level 5
organizations

Figure 2.4 Process Capability as Indicated by Maturity Level

CMU/SEI-93-TR-24 Capability Maturity Model ■ 23

The Five Levels of Software Process Maturity

Second, as maturity increases, the variability of actual results around
targeted results decreases. For instance, in Level 1 organizations delivery
dates for projects of similar size are unpredictable and vary widely. Similar
projects in a Level 5 organization, however, will be delivered within a
much smaller range. This narrowed variation occurs at the highest
maturity levels because virtually all projects are performing within
controlled parameters approaching the organization's process capability for
cost, schedule, functionality, and quality. (This is illustrated in Figure 2.4 by
how much of the area under the curve is concentrated near the target line.)

Third, targeted results improve as the maturity of the organization
increases. That is, as a software organization matures, costs decrease,
development time becomes shorter, and productivity and quality increase.
In a Level 1 organization, development time can be quite long because of
the amount of rework that must be performed to correct mistakes. In
contrast, Level 5 organizations use continuous process improvement and
defect prevention techniques to increase process efficiency and eliminate
costly rework, allowing development time to be shortened. (This is
illustrated in Figure 2.4 by the horizontal displacement of the target line
from the origin.)

The improvements in predicting a project's results represented in Figure 2.4
assume that the software project's outcomes become more predictable as
noise, often in the form of rework, is removed from the software process.
Unprecedented systems complicate the picture since new technologies and
applications lower the process capability by increasing variability. Even in
the case of unprecedented systems, the management and engineering
practices characteristic of more mature organizations help identify and
address problems earlier in the development cycle than they would have
been detected in less mature organizations. Earlier detection of defects
contributes to project stability and performance by eliminating the rework
during later phases. Risk management is an integral part of project
management in a mature process. In some cases a mature process means
that "failed" projects are identified early in the software life cycle and
investment in a lost cause is minimized.

24 ■ Capability Maturity Model CMU/SEI-93-TR-24

The Five Levels of Software Process Maturity

2.5 Skipping Maturity Levels

The maturity levels in the CMM describe the characteristics of an
organization at a maturity level. Each level builds a foundation for
succeeding levels to leverage for implementing processes effectively and
efficiently. Organizations can, however, profitably use processes described at
a higher maturity level than they are. Engineering processes, such as
requirements analysis, design, code, and test, are not discussed in the CMM
until Level 3, yet even Level 1 organizations must perform these activities.
A Level 1 or Level 2 organization may be able to perform peer reviews
(Level 3), do Pareto analysis (Level 4), or pilot new technologies (Level 5)
profitably. When prescribing what steps an organization should take to
move from Level 1 to Level 2, frequently one of the recommendations is to
establish a software engineering process group, which is an attribute of
Level 3 organizations. Although measurement is the focus of Level 4, it is
also an integral part of the lower maturity levels.

These processes cannot reach their full potential, however, until the proper
foundation is laid. Peer reviews cannot be fully effective, for example,
unless they are consistently implemented, even when fires threaten the
project. The maturity levels describe the problems that predominate at a
level. The dominant problems of a Level 1 organization are managerial;
other problems tend to be masked by the difficulties in planning and
managing software projects.

Skipping levels is counterproductive because each level forms a necessary
foundation from which to achieve the next level. The CMM identifies the
levels through which an organization must evolve to establish a culture of
software engineering excellence. Processes without the proper foundation
fail at the very point they are needed most – under stress – and they provide
no basis for future improvement.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 25

The Five Levels of Software Process Maturity

A Level 1 organization that is trying to implement a defined process (Level
3) before it has established a repeatable process (Level 2) is usually
unsuccessful because project managers are overwhelmed by schedule and
cost pressures. This is the fundamental reason for focusing on management
processes before engineering processes. It may seem easier to define and
implement an engineering process than a management process (especially
in the eyes of technical people), but without management discipline, the
engineering process is sacrificed to schedule and cost pressures
[Humphrey88].

An organization that is trying to implement a managed process (Level 4)
without the foundation of a defined process is usually unsuccessful because
there is no common basis for interpreting measurements without defined
processes. While data can be collected for individual projects, few of the
measurements have significant meaning across projects, and they do not
significantly increase organizational understanding of the software process.
It is difficult to identify meaningful measurements in the absence of defined
processes because of the variation in the processes being measured.

An organization that is trying to implement an optimizing process (Level 5)
without the foundation of a managed process (Level 4) is likely to fail
because of a lack of understanding of the impact of process changes.
Without controlling the process within statistically narrow boundaries
(small variations in process measures), there is too much noise in the data
to determine objectively whether a specific process improvement has an
effect. Decisions can degenerate into religious wars because little
quantitative foundation exists for making rational, informed decisions.

The process improvement effort should focus on the needs of the
organization in the context of its business environment. The ability to
implement processes from higher maturity levels does not imply that
maturity levels can be skipped.

26 ■ Capability Maturity Model CMU/SEI-93-TR-24

3 Operational Definition of the
Capability Maturity Model

The CMM is a framework representing a path of improvements
recommended for software organizations that want to increase their
software process capability. This operational elaboration of the CMM is
designed to support the many ways it will be used. There are at least four
uses of the CMM that are supported:

❑ Assessments teams will use the CMM to identify strengths and
weaknesses in the organization.

❑ Evaluation teams will use the CMM to identify the risks of selecting
among different contractors for awarding business and to monitor
contracts.

❑ Managers and technical staff will use the CMM to understand the
activities necessary to plan and implement a software process
improvement program for their organization.

❑ Process improvement groups, such as an SEPG, will use the CMM as
a guide to help them define and improve the software process in
their organization.

Because of the diverse uses of the CMM, it must be decomposed in sufficient
detail that actual process recommendations can be derived from the
structure of the maturity levels. This decomposition also indicates the
processes and their structure that characterizes software process maturity
and software process capability.

3.1 Internal Structure of the Maturity Levels

Each maturity level has been decomposed into constituent parts. With the
exception of Level 1, the decomposition of each maturity level ranges from
abstract summaries of each level down to their operational definition in the
key practices, as shown in Figure 3.1. Each maturity level is composed of
several key process areas. Each key process area is organized into five

CMU/SEI-93-TR-24 Capability Maturity Model ■ 27

Operational Definition of the Capability Maturity Model

sections called common features. The common features specify the key
practices that, when collectively addressed, accomplish the goals of the key
process area.

28 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

Maturity Levels

Key
Practices

contain

contain

Key Process Areas

Implementation or
Institutionalization

Goals

Process
Capability

describe

achieve

indicate

organized by

Common
Features

address

Infrastructure or
Activities

Figure 3.1 The CMM Structure

CMU/SEI-93-TR-24 Capability Maturity Model ■ 29

Operational Definition of the Capability Maturity Model

3.2 Maturity Levels

A maturity level is a well-defined evolutionary plateau toward achieving a
mature software process. Each maturity level indicates a level of process
capability, as was illustrated in Figure 2.1. For instance, at Level 2 the
process capability of an organization has been elevated from ad hoc to
disciplined by establishing sound project management controls.

3.3 Key Process Areas

Except for Level 1, each maturity level is decomposed into several key
process areas that indicate the areas an organization should focus on to
improve its software process. Key process areas identify the issues that
must be addressed to achieve a maturity level.

Each key process area identifies a cluster of related activities that, when
performed collectively, achieve a set of goals considered important for
enhancing process capability. The key process areas have been defined to
reside at a single maturity level as shown in Figure 3.2. The path to
achieving the goals of a key process area may differ across projects based on
differences in application domains or environments. Nevertheless, all the
goals of a key process area must be achieved for the organization to satisfy
that key process area. When the goals of a key process area are accomplished
on a continuing basis across projects, the organization can be said to have
institutionalized the process capability characterized by the key process area.

30 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

 Quality management
Process measurement and analysis

Initial (1)

Repeatable (2)
 Software configuration management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
Requirements management

Defined (3)

 Peer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program
 Organization process definition
Organization process focus

Managed (4)

 Process change management
 Technology change management
Defect prevention

Optimizing (5)

 Software quality management
 Quantitative process management

Figure 3.2 The Key Process Areas by Maturity Level

CMU/SEI-93-TR-24 Capability Maturity Model ■ 31

Operational Definition of the Capability Maturity Model

The adjective "key" implies that there are process areas (and processes) that
are not key to achieving a maturity level. The CMM does not describe all
the process areas in detail that are involved with developing and
maintaining software. Certain process areas have been identified as key
determiners of process capability; these are the ones described in the CMM.

Although other issues affect process performance, the key process areas were
identified because of their effectiveness in improving an organization's
software process capability. They may be considered the requirements for
achieving a maturity level. Figure 3.2 displays the key process areas for each
maturity level. To achieve a maturity level, the key process areas for that
level must be satisfied. To satisfy a key process area, each of the goals for the
key process area must be satisfied. The goals summarize the key practices of
a key process area and can be used to determine whether an organization or
project has effectively implemented the key process area. The goals signify
the scope, boundaries, and intent of each key process area.5

The specific practices to be executed in each key process area will evolve as
the organization achieves higher levels of process maturity. For instance,
many of the project estimating capabilities described in the Software Project
Planning key process area at Level 2 must evolve to handle the additional
project data available at Levels 3, 4, and 5. Integrated Software Management
at Level 3 is the evolution of Software Project Planning and Software Project
Tracking and Oversight at Level 2 as the project is managed using a defined
software process.

The key process areas of the CMM represent one way of describing how
organizations mature. These key process areas were defined based on many
years of experience in software engineering and management and over five
years of experience with software process assessments and software
capability evaluations.

5 For a listing of the goals for each key process area, refer to Appendix A.

32 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

The key process areas at Level 2 focus on the software project's concerns
related to establishing basic project management controls. Descriptions of
each of the key process areas for Level 2 are given below:

❑ The purpose of Requirements Management is to establish a common
understanding between the customer and the software project of the
customer's requirements that will be addressed by the software project.
This agreement with the customer is the basis for planning (as
described in Software Project Planning) and managing (as described in
Software Project Tracking and Oversight) the software project. Control
of the relationship with the customer depends on following an
effective change control process (as described in Software Configuration
Management).

❑ The purpose of Software Project Planning is to establish reasonable
plans for performing the software engineering and for managing the
software project. These plans are the necessary foundation for
managing the software project (as described in Software Project
Tracking and Oversight). Without realistic plans, effective project
management cannot be implemented.

❑ The purpose of Software Project Tracking and Oversight is to establish
adequate visibility into actual progress so that management can take
effective actions when the software project's performance deviates
significantly from the software plans.

❑ The purpose of Software Subcontract Management is to select qualified
software subcontractors and manage them effectively. It combines the
concerns of Requirements Management, Software Project Planning,
and Software Project Tracking and Oversight for basic management
control, along with necessary coordination of Software Quality
Assurance and Software Configuration Management, and applies this
control to the subcontractor as appropriate.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 33

Operational Definition of the Capability Maturity Model

❑ The purpose of Software Quality Assurance is to provide management
with appropriate visibility into the process being used by the software
project and of the products being built. Software Quality Assurance is
an integral part of most software engineering and management
processes.

❑ The purpose of Software Configuration Management is to establish and
maintain the integrity of the products of the software project
throughout the project's software life cycle. Software Configuration
Management is an integral part of most software engineering and
management processes.

The key process areas at Level 3 address both project and organizational
issues, as the organization establishes an infrastructure that institutionalizes
effective software engineering and management processes across all
projects. Descriptions of each of the key process areas for Level 3 are given
below:

❑ The purpose of Organization Process Focus is to establish the
organizational responsibility for software process activities that
improve the organization's overall software process capability. The
primary result of the Organization Process Focus activities is a set of
software process assets, which are described in Organization Process
Definition. These assets are used by the software projects, as is
described in Integrated Software Management.

❑ The purpose of Organization Process Definition is to develop and
maintain a usable set of software process assets that improve process
performance across the projects and provide a basis for cumulative,
long-term benefits to the organization. These assets provide a stable
foundation that can be institutionalized via mechanisms such as
training, which is described in Training Program.

34 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

❑ The purpose of Training Program is to develop the skills and
knowledge of individuals so they can perform their roles effectively
and efficiently. Training is an organizational responsibility, but the
software projects should identify their needed skills and provide the
necessary training when the project's needs are unique.

❑ The purpose of Integrated Software Management is to integrate the
software engineering and management activities into a coherent,
defined software process that is tailored from the organization's
standard software process and related process assets, which are
described in Organization Process Definition. This tailoring is based on
the business environment and technical needs of the project, as
described in Software Product Engineering. Integrated Software
Management evolves from Software Project Planning and Software
Project Tracking and Oversight at Level 2.

❑ The purpose of Software Product Engineering is to consistently
perform a well-defined engineering process that integrates all the
software engineering activities to produce correct, consistent software
products effectively and efficiently. Software Product Engineering
describes the technical activities of the project, e.g., requirements
analysis, design, code, and test.

❑ The purpose of Intergroup Coordination is to establish a means for the
software engineering group to participate actively with the other engineering
groups so the project is better able to satisfy the customer's needs effectively
and efficiently. Intergroup Coordination is the interdisciplinary aspect of
Integrated Software Management that extends beyond software engineering;
not only should the software process be integrated, but the software
engineering group's interactions with other groups must be coordinated and
controlled.

❑ The purpose of Peer Reviews is to remove defects from the software
work products early and efficiently. An important corollary effect is to

CMU/SEI-93-TR-24 Capability Maturity Model ■ 35

Operational Definition of the Capability Maturity Model

develop a better understanding of the software work products and of
the defects that can be prevented. The peer review is an important and
effective engineering method that is called out in Software Product
Engineering and that can be implemented via Fagan-style inspections
[Fagan86], structured walkthroughs, or a number of other collegial
review methods [Freedman90].

The key process areas at Level 4 focus on establishing a quantitative
understanding of both the software process and the software work products
being built. The two key process areas at this level, Quantitative Process
Management and Software Quality Management, are highly
interdependent, as is described below:

❑ The purpose of Quantitative Process Management is to control the
process performance of the software project quantitatively. Software
process performance represents the actual results achieved from
following a software process. The focus is on identifying special causes
of variation within a measurably stable process and correcting, as
appropriate, the circumstances that drove the transient variation to
occur. Quantitative Process Management adds a comprehensive
measurement program to the practices of Organization Process
Definition, Integrated Software Management, Intergroup Coordination,
and Peer Reviews.

❑ The purpose of Software Quality Management is to develop a
quantitative understanding of the quality of the project's software
products and achieve specific quality goals. Software Quality
Management applies a comprehensive measurement program to the
software work products described in Software Product Engineering.

The key process areas at Level 5 cover the issues that both the organization
and the projects must address to implement continuous and measurable
software process improvement. Descriptions of each of the key process areas
for Level 5 are given below:

36 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

❑ The purpose of Defect Prevention is to identify the causes of defects and
prevent them from recurring. The software project analyzes defects,
identifies their causes, and changes its defined software process, as is
described in Integrated Software Management. Process changes of
general value are transitioned to other software projects, as is described
in Process Change Management.

❑ The purpose of Technology Change Management is to identify
beneficial new technologies (i.e., tools, methods, and processes) and
transfer them into the organization in an orderly manner, as is
described in Process Change Management. The focus of Technology
Change Management is on performing innovation efficiently in an
ever-changing world.

❑ The purpose of Process Change Management is to continually improve
the software processes used in the organization with the intent of
improving software quality, increasing productivity, and decreasing the
cycle time for product development. Process Change Management
takes the incremental improvements of Defect Prevention and the
innovative improvements of Technology Change Management and
makes them available to the entire organization.

3.4 Common Features

For convenience, the key process areas are organized by common features.
The common features are attributes that indicate whether the
implementation and institutionalization of a key process area is effective,
repeatable, and lasting. The five common features are listed below:

CMU/SEI-93-TR-24 Capability Maturity Model ■ 37

Operational Definition of the Capability Maturity Model

Commitment to
Perform

Commitment to Perform describes the actions the
organization must take to ensure that the process is
established and will endure. Commitment to Perform
typically involves establishing organizational policies and
senior management sponsorship.

Ability to Perform Ability to Perform describes the preconditions that must
exist in the project or organization to implement the
software process competently. Ability to Perform typically
involves resources, organizational structures, and
training.

Activities
Performed

Activities Performed describes the roles and procedures
necessary to implement a key process area. Activities
Performed typically involve establishing plans and
procedures, performing the work, tracking it, and taking
corrective actions as necessary.

Measurement and
Analysis

Measurement and Analysis describes the need to measure
the process and analyze the measurements. Measurement
and Analysis typically includes examples of the
measurements that could be taken to determine the status
and effectiveness of the Activities Performed.

Verifying
Implementation

Verifying Implementation describes the steps to ensure
that the activities are performed in compliance with the
process that has been established. Verification typically
encompasses reviews and audits by management and
software quality assurance.

38 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

The practices in the common feature Activities Performed describe what
must be implemented to establish a process capability. The other practices,
taken as a whole, form the basis by which an organization can
institutionalize the practices described in the Activities Performed common
feature.

3.5 Key Practices

Each key process area is described in terms of the key practices that
contribute to satisfying its goals. The key practices describe the
infrastructure and activities that contribute most to the effective
implementation and institutionalization of the key process area.

Each key practice consists of a single sentence, often followed by a more
detailed description, which may include examples and elaboration. These
key practices, also referred to as the top-level key practices, state the
fundamental policies, procedures, and activities for the key process area.
The components of the detailed description are frequently referred to as
subpractices. Figure 3.3 provides an example of the structure underlying a
key practice for the Software Project Planning key process area.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 39

Operational Definition of the Capability Maturity Model

address

Implementation or
Institutionalization:

Implementation

Level 2, Repeatable

contains

disciplined process

achieves

indicates

Software Project Planning

Key Process Area:

Goal 1:

Process Capability:

Maturity Level:

Software estimates are documented
 for use in planning and tracking the

software project. Activities Performed

Common Feature:

organized by

Activity 9. Estimates for the size of the
software work products (or changes to the
size of software work products) are derived

according to a documented procedure.

Key Practice:

Infrastructure
or Activities:

Activity

contains

describes

Figure 3.3 Building the CMM Structure: An Example of a Key Practice

40 ■ Capability Maturity Model CMU/SEI-93-TR-24

Operational Definition of the Capability Maturity Model

As illustrated in Figure 3.3, to ensure consistent accomplishment of the goal
of documenting plans for planning and tracking the project, the
organization must establish a documented procedure for deriving estimates
of software size. If these estimates are not developed from a documented
procedure, they may vary wildly as differences in sizing assumptions are
never surfaced. The detailed description of what would be expected in such
a procedure includes using historical size data, documenting assumptions,
and reviewing the estimates. These criteria guide the judgment of whether
a reasonable size estimating procedure is followed.

The key practices describe "what" is to be done, but they should not be
interpreted as mandating "how" the goals should be achieved. Alternative
practices may accomplish the goals of the key process area. The key practices
should be interpreted rationally to judge whether the goals of the key
process area are effectively, although perhaps differently, achieved. The key
practices are contained in the "Key Practices of the Capability Maturity
Model, Version 1.1" [Paulk93b], along with guidance on their interpretation.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 41

Operational Definition of the Capability Maturity Model

42 ■ Capability Maturity Model CMU/SEI-93-TR-24

4 Using the CMM

The CMM establishes a set of public in available criteria describing the
characteristics of mature software organizations. These criteria can be used
by organizations to improve their processes for developing and maintaining
software, or by government or commercial organizations to evaluate the
risks of contracting a software project to a particular company.

This chapter focuses on two SEI-developed methods for appraising the
maturity of an organization's execution of the software process: software
process assessment and software capability evaluation.

❑ Software process assessments are used to determine the state of an
organization's current software process, to determine the high-
priority software process-related issues facing an organization, and to
obtain the organizational support for software process improvement.

❑ Software capability evaluations are used to identify contractors who
are qualified to perform the software work or to monitor the state of
the software process used on an existing software effort.

This overview is not sufficient by itself for readers to conduct either an
assessment or evaluation. Anyone wishing to apply the CMM through
these methods should request further information on assessment and
evaluation training.

The CMM is a common foundation for both software process assessments
and software capability evaluations. The purpose of the methods are quite
different, however, and there are significant differences in the specific
methods used. Both are based on the model and the products derived from
it. The CMM, in conjunction with the CMM-based products, enables the
methods to be applied reliably and consistently.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 43

Using the CMM

4.1 Software Process Assessment and Software
Capability Evaluation Methods

Software process assessments focus on identifying improvement priorities
within an organization's own software process. Assessment teams use the
CMM to guide them in identifying and prioritizing findings. These
findings, along with guidance provided by the key practices in the CMM, are
used (by a software engineering process group, for example) to plan an
improvement strategy for the organization.

Software capability evaluations are focused on identifying the risks
associated with a particular project or contract for building high-quality
software on schedule and within budget. During the acquisition process,
software capability evaluations may be performed on bidders. The findings
of the evaluation, as structured by the CMM, may be used to identify the
risks in selecting a particular contractor. Evaluations may also be performed
on existing contracts to monitor their process performance, with the intent
of identifying potential improvements in the software process of the
contractor.

The CMM establishes a common frame of reference for performing software
process assessments and software capability evaluations. Although the two
methods differ in purpose, the methods use the CMM as a foundation for
appraising software process maturity. Figure 4.1 provides a summary
description of the common steps in assessments and evaluations.

44 ■ Capability Maturity Model CMU/SEI-93-TR-24

Using the CMM

Maturity
Questionnaire

Response
Analysissamples

the
CMM

(1) (2)

On-site Visit
based
on the
CMM

KPA
Profile

(3)

(5) (6)

Findings

Team
Selection

(4)

Interviews
 and document

reviews

Figure 4.1 Common Steps in Software Process Assessments and Software
Capability Evaluations

The first step in is to select a team. This team should be trained in the
fundamental concepts of the CMM as well as the specifics of the assessment
or evaluation method. The members of the team should be professionals
knowledgeable in software engineering and management.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 45

Using the CMM

The second step is to have representatives from the site to be assessed or
evaluated complete the maturity questionnaire and other diagnostic
instruments. Once this activity is completed, the assessment or evaluation
team performs a response analysis (step 3), which tallies the responses to the
questions and identifies those areas where further exploration is warranted.
The areas to be investigated correspond to the CMM key process areas.

The team is now ready to visit the site being assessed or evaluated (step 4).
Beginning with the results of the response analysis, the team conducts
interviews and reviews documentation to gain an understanding of the
software process followed by the site. The key process areas and key practices
in the CMM guide the team members in questioning, listening, reviewing,
and synthesizing the information received from the interviews and
documents. The team applies professional judgment in deciding whether
the site's implementation of the key process areas satisfies the relevant key
process area goals.6 When there are clear differences between the key
practices in the CMM and the site's practices, the team must document its
rationale for judging that key process area.

At the end of the on-site period, the team produces a list of findings (step 5)
that identifies the strengths and weaknesses of the organization's software
process. In a software process assessment, the findings become the basis for
recommendations for process improvement; in a software capability
evaluation, the findings become part of the risk analysis performed by the
acquisition agency.

Finally, the team prepares a key process area profile (step 6) that shows the
areas where the organization has, and has not, satisfied the goals of the key
process areas. A key process area can be satisfied and still have associated
findings, provided the findings do not identify major problems that inhibit
achieving any goals of the key process areas.

6 These judgements may have to take place without complete information when company proprietary
or security issues may be involved.

46 ■ Capability Maturity Model CMU/SEI-93-TR-24

Using the CMM

In summary, the software process assessment and software capability
evaluation methods both:

❑ use the maturity questionnaire as a springboard for the on-site visit,

❑ use the CMM as a map that guides the on-site investigation,

❑ develop findings that identify software process strengths and
weaknesses in terms of the key process areas in the CMM,

❑ derive a profile based on an analysis of the satisfaction of the goals
within the key process area, and

❑ present their results, to the appropriate audience, in terms of findings
and a key process area profile.

4.2 Differences Between Software Process
Assessments and Software Capability
Evaluations

In spite of these similarities, the results of a software process assessment or
software capability evaluation may differ, even on successive applications of
the same method. One reason is that the scope of the assessment or
evaluation may vary. First, the organization being investigated must be
determined. For a large company, several different definitions for
"organization" are possible. The scope may be based on common senior
management, common geographical location, designation as a profit and
loss center, common application domain, or other considerations. Second,
even in what appears to be the same organization, the sample of projects
selected may affect the scope. A division within a company may be assessed,
with the team arriving at findings based on a division-wide scope. Later, a
product line in that division may be evaluated, with that team arriving at
its findings based on a much narrower scope. Comparison between the
results without understanding the context is problematic.

Software process assessments and software capability evaluations differ in
motivation, objective, outcome, and ownership of the results. These factors

CMU/SEI-93-TR-24 Capability Maturity Model ■ 47

Using the CMM

lead to substantive differences in the dynamics of interviews, the scope of
inquiry, the information gathered, and the formulation of the outcome.
The assessment and evaluation methods are quite different when the
detailed procedures employed are examined. Assessment training does not
prepare a team to perform evaluations, or vice versa.

Software process assessments are performed in an open, collaborative
environment. Their success depends on a commitment from both
management and the professional staff to improve the organization. The
objective is to surface problems and help managers and engineers improve
their organization. While the questionnaire is valuable in focusing the
assessment team on maturity level issues, the emphasis is on structured
and unstructured interviews as tools for understanding the organization's
software process. Aside from identifying the software process issues facing
the organization, the buy-in to improvement, the organization-wide focus
on process, and the motivation and enthusiasm in executing an action plan
are the most valuable outcomes of an assessment.

Software capability evaluations, on the other hand, are performed in a more
audit-oriented environment. The objective is tied to monetary
considerations, since the team's recommendations will help select
contractors or set award fees. The emphasis is on a documented audit trail
that reveals the software process actually implemented by the organization.

This does not mean, however, that the results of software process
assessments and software capability evaluations should not be comparable.
Since both methods are CMM-based, the points of comparison and
difference should be evident and explainable.

48 ■ Capability Maturity Model CMU/SEI-93-TR-24

Using the CMM

4.3 Other Uses of the CMM in Process
Improvement

For software engineering process groups or others trying to improve their
software process, the CMM has specific value in the areas of action
planning, implementing action plans, and defining processes. During
action planning, the members of the software engineering process group,
equipped with knowledge of their software process issues and business
environment, can compare their current practices against the goals of the
key process areas in the CMM. The key practices should be examined in
relation to corporate goals, management priorities, the level of performance
of the practice, the value of implementing each practice to the organization,
and the ability of the organization to implement a practice in light of its
culture.

The software engineering process group must next determine which process
improvements are needed, how to effect the change, and obtain the
necessary buy-in. The CMM aids this activity by providing a starting point
for discussion about process improvement and by helping to surface
disparate assumptions about commonly accepted software engineering
practices. In implementing the action plan, the CMM and the key practices
can be used by the process groups to construct parts of the operational action
plan and to define the software process.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 49

Using the CMM

50 ■ Capability Maturity Model CMU/SEI-93-TR-24

5 Future Directions of the CMM

Achieving higher levels of software process maturity is incremental and
requires a long-term commitment to continuous process improvement.
Software organizations may take ten years or more to build the foundation
for, and a culture oriented toward, continuous process improvement.
Although a decade-long process improvement program is foreign to most
U.S. companies, this level of effort is required to produce mature software
organizations. This time frame is consistent with experience from other
industries, such as the U.S. automotive industry, that have achieved
significant gains in process maturity [Gabor90].

5.1 What the CMM Does Not Cover

The CMM is not a silver bullet [Brooks87] and does not address all of the
issues that are important for successful projects. For example, the CMM
does not currently address expertise in particular application domains,
advocate specific software technologies, or suggest how to select, hire,
motivate, and retain competent people. Although these issues are crucial to
a project's success, some of these issues have been analyzed in other
contexts [Curtis90]. They have not, however, been integrated into the CMM.
The CMM was specifically developed to provide an orderly, disciplined
framework within which to address software management and engineering
process issues.

5.2 Near-Term Activities

Tutorials and courses on the CMM are being presented at major conferences
and seminars throughout the United States to ensure that the software
industry has adequate awareness of the CMM and its associated products.
CMM-based tools (e.g., the maturity questionnaire), software process
assessment training, and software capability evaluation training are being
developed and/or revised to incorporate the CMM.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 51

Future Directions of the CMM

The near-term focus on CMM development activities will be oriented
towards tailored versions of the CMM, such as a CMM for small projects
and/or small organizations. CMM v1.1 is expressed in terms of the
normative practices of large, government contracting organizations, and
these practices must be tailored to the needs of organizations that differ
from this template.

5.3 Long-Term Activities

During the next few years, the CMM will continue to undergo extensive
testing through use in software process assessments and software capability
evaluations. CMM-based products and training materials will be developed
and revised as appropriate. The CMM is a living document that will be
improved, but it is anticipated that CMM v1.1 will remain the baseline until
at least 1996. This provides an appropriate and realistic balance between the
needs for stability and for continued improvement.

For the next version of the CMM, Version 2, the SEI will turn its attention
to improving the overall model. While all levels of the model may be
revised, the emphasis will be on Levels 4 and 5. Currently the key process
areas for Levels 2 and 3 have been the most completely defined. Since few
organizations have been assessed to be at Levels 4 or 5 [Humphrey91a,
Kitson92], less is known about the characteristics of such organizations. The
practices for these two levels will be refined as the SEI works closely with
organizations that are striving to understand and achieve Levels 4 and 5.
The CMM may also become multi-dimensional to address technology and
human resource issues.

The SEI is also working with the International Standards Organization (ISO)
in its efforts to build international standards for software process
assessment, improvement, and capability evaluation. The development of
the ISO standards will influence CMM v2, even as the SEI's process work
will influence the activities of the ISO.

52 ■ Capability Maturity Model CMU/SEI-93-TR-24

Future Directions of the CMM

5.4 Conclusion

Continuous improvement applies to the maturity model and practices, just
as it does to the software process. The potential impact of changes to the
CMM on the software community will be carefully considered, but the
CMM, the maturity questionnaire, and the software process assessment and
software capability evaluation methods will continue to evolve as
experience is gained with improving the software process. The SEI intends
to work closely with industry, government, and academia in continuing
this evolution.

The CMM provides a conceptual structure for improving the management
and development of software products in a disciplined and consistent way.
It does not guarantee that software products will be successfully built or that
all problems in software engineering will be adequately resolved. The CMM
identifies practices for a mature software process and provides examples of
the state-of-the-practice (and in some cases, the state-of-the-art), but it is not
meant to be either exhaustive or dictatorial. The CMM identifies the
characteristics of an effective software process, but the mature organization
addresses all issues essential to a successful project, including people and
technology, as well as process.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 53

Future Directions of the CMM

54 ■ Capability Maturity Model CMU/SEI-93-TR-24

6 References

Brooks87 F.P. Brooks, "No Silver Bullet: Essence and Accidents of
Software Engineering," IEEE Computer, Vol. 20, No. 4,
April 1987, pp. 10-19.

Crosby79 P.B. Crosby, Quality is Free, McGraw-Hill, New York, NY,
1979.

Curtis90 B. Curtis, "Managing the Real Leverage in Software
Productivity and Quality," American Programmer , Vol. 3,
No. 7, July 1990, pp. 4-14.

Deming86 W. Edwards Deming, Out of the Crisis, MIT Center for
Advanced Engineering Study, Cambridge, MA, 1986.

DoD87 Report of the Defense Science Board Task Force on
Military Software, Office of the Under Secretary of Defense
for Acquisition, Washington, D.C., September 1987.

Fagan86 M.E. Fagan, "Advances in Software Inspections," IEEE
Transactions on Software Engineering, Vol. 12, No. 7, July,
1986, pp. 744-751.

Fowler90 P. Fowler and S. Rifkin, Software Engineering Process
Group Guide, Software Engineering Institute, CMU/SEI-
90-TR-24, ADA235784, September, 1990.

Freedman90 D.P. Freedman and G.M. Weinberg, Handbook of
Walkthroughs, Inspections, and Technical Reviews, Third
Edition, Dorset House, New York, NY, 1990.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 55

References

Gabor90 A. Gabor, The Man Who Discovered Quality, Random
House, New York, NY, 1990.

GAO-92-48 Embedded Computer Systems: Significant Software
Problems on C-17 Must Be Addressed, GAO/IMTEC-92-48,
May 1992.

Humphrey87a W.S. Humphrey, Characterizing the Software Process: A
Maturity Framework, Software Engineering Institute,
CMU/SEI-87-TR-11, ADA182895, June 1987.

Humphrey87b W.S. Humphrey and W.L. Sweet, A Method for Assessing
the Software Engineering Capability of Contractors,
Software Engineering Institute, CMU/SEI-87-TR-23,
ADA187320, September 1987.

Humphrey88 W.S. Humphrey, "Characterizing the Software Process,"
IEEE Software, Vol. 5, No. 2, March, 1988, pp. 73-79.

Humphrey89 W.S. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1989.

Humphrey91a W.S. Humphrey, D.H. Kitson, and J. Gale, "A Comparison
of U.S. and Japanese Software Process Maturity,"
Proceedings of the 13th International Conference on
Software Engineering, Austin, TX, 13-17 May 1991, pp. 38-
49.

56 ■ Capability Maturity Model CMU/SEI-93-TR-24

References

Humphrey91b W.S. Humphrey, "Process Fitness and Fidelity,"
Proceedings of the Seventh International Software Process
Workshop , 16-18 October 1991.

IEEE-STD-610 ANSI/IEEE Std 610.12-1990, "IEEE Standard Glossary of
Software Engineering Terminology," February 1991.

Imai86 M. Imai, Kaizen: The Key to Japan's Competitive Success,
McGraw-Hill, New York, NY, 1986.

Juran88 J.M. Juran, Juran on Planning for Quality, Macmillan,
New York, NY, 1988.

Juran89 J.M. Juran, Juran on Leadership for Quality, The Free
Press, New York, NY, 1989.

Kitson92 D.H. Kitson and S. Masters, An Analysis of SEI Software
Process Assessment Results: 1987-1991, Software
Engineering Institute, CMU/SEI-92-TR-24, July 1992.

Paulk91 M.C. Paulk, B. Curtis, M.B. Chrissis, et al, Capability
Maturity Model for Software, Software Engineering
Institute, CMU/SEI-91-TR-24, ADA240603, August 1991.

Paulk93a M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber,
Capability Maturity Model for Software, Version 1.1,
Software Engineering Institute, CMU/SEI-93-TR-24,
February 1993.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 57

References

Paulk93b M.C. Paulk, C.V. Weber, S. Garcia, M.B. Chrissis, and M.
Bush, Key Practices of the Capability Maturity Model,
Version 1.1, Software Engineering Institute, CMU/SEI-93-
TR-25, February 1993.

Radice85 R.A. Radice, J.T. Harding, P.E. Munnis, and R.W. Phillips,
"A Programming Process Study," IBM Systems Journal,
Vol. 24, No.2, 1985.

Siegel90 J.A.L. Siegel, et al., National Software Capacity: Near-Term
Study, Software Engineering Institute, CMU/SEI-90-TR-12,
ADA226694, May 1990.

Weber91 C.V. Weber, M.C. Paulk, C.J. Wise, and J.V. Withey, Key
Practices of the Capability Maturity Model, Software
Engineering Institute, CMU/SEI-91-TR-25, ADA240604,
August 1991.

58 ■ Capability Maturity Model CMU/SEI-93-TR-24

Appendix A: Goals for Each Key
Process Area

Goals for each key process area are listed by maturity level below.

A.1 The Key Process Areas for Level 2:
Repeatable

Requirements Management

Goal 1 System requirements allocated to software are controlled to
establish a baseline for software engineering and management use.

Goal 2 Software plans, products, and activities are kept consistent with the
system requirements allocated to software.

Software Project Planning

Goal 1 Software estimates are documented for use in planning and
tracking the software project.

Goal 2 Software project activities and commitments are planned and
documented.

Goal 3 Affected groups and individuals agree to their commitments related
to the software project.

Software Project Tracking and Oversight

Goal 1 Actual results and performances are tracked against the software
plans.

Goal 2 Corrective actions are taken and managed to closure when actual
results and performance deviate significantly from the software
plans.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 59

Goals for Each Key Process Area

Goal 3 Changes to software commitments are agreed to by the affected
groups and individuals.

Software Subcontract Management

Goal 1 The prime contractor selects qualified software subcontractors.

Goal 2 The prime contractor and the software subcontractor agree to their
commitments to each other.

Goal 3 The prime contractor and the software subcontractor maintain
ongoing communications.

Goal 4 The prime contractor tracks the software subcontractor's actual
results and performance against its commitments.

Software Quality Assurance

Goal 1 Software quality assurance activities are planned.

Goal 2 Adherence of software products and activities to the applicable
standards, procedures, and requirements is verified objectively.

Goal 3 Affected groups and individuals are informed of software quality
assurance activities and results.

Goal 4 Noncompliance issues that cannot be resolved within the software
project are addressed by senior management.

Software Configuration Management

Goal 1 Software configuration management activities are planned.

Goal 2 Selected software work products are identified, controlled, and
available.

Goal 3 Changes to identified software work products are controlled.

Goal 4 Affected groups and individuals are informed of the status and
content of software baselines.

60 ■ Capability Maturity Model CMU/SEI-93-TR-24

Goals for Each Key Process Area

A.2 The Key Process Areas for Level 3: Defined

Organization Process Focus

Goal 1 Software process development and improvement activities are
coordinated across the organization.

Goal 2 The strengths and weaknesses of the software processes used are
identified relative to a process standard.

Goal 3 Organization-level process development and improvement
activities are planned.

Organization Process Definition

Goal 1 A standard software process for the organization is developed and
maintained.

Goal 2 Information related to the use of the organization's standard
software process by the software projects is collected, reviewed, and
made available.

Training Program

Goal 1 Training activities are planned.

Goal 2 Training for developing the skills and knowledge needed to
perform software management and technical roles is provided.

Goal 3 Individuals in the software engineering group and software-related
groups receive the training necessary to perform their roles.

Integrated Software Management

Goal 1 The project's defined software process is a tailored version of the
organization's standard software process.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 61

Goals for Each Key Process Area

Goal 2 The project is planned and managed according to the project's
defined software process.

Software Product Engineering

Goal 1 The software engineering tasks are defined, integrated, and
consistently performed to produce the software.

Goal 2 Software work products are kept consistent with each other.

Intergroup Coordination

Goal 1 The customer's requirements are agreed to by all affected groups.

Goal 2 The commitments between the engineering groups are agreed to by
the affected groups.

Goal 3 The engineering groups identify, track, and resolve intergroup
issues.

Peer Reviews

Goal 1 Peer review activities are planned.

Goal 2 Defects in the software work products are identified and removed.

A.3 The Key Process Areas for Level 4: Managed

Quantitative Process Management

Goal 1 The quantitative process management activities are planned.

Goal 2 The process performance of the project's defined software process is
controlled quantitatively.

Goal 3 The process capability of the organization's standard software
process is known in quantitative terms.

62 ■ Capability Maturity Model CMU/SEI-93-TR-24

Goals for Each Key Process Area

Software Quality Management

Goal 1 The project's software quality management activities are planned.

Goal 2 Measurable goals for software product quality and their priorities
are defined.

Goal 3 Actual progress toward achieving the quality goals for the software
products is quantified and managed.

A.4 The Key Process Areas for Level 5:
Optimizing

Defect Prevention

Goal 1 Defect prevention activities are planned.

Goal 2 Common causes of defects are sought out and identified.

Goal 3 Common causes of defects are prioritized and systematically
eliminated.

Technology Change Management

Goal 1 Incorporation of technology changes are planned.

Goal 2 New technologies are evaluated to determine their effect on quality
and productivity.

Goal 3 Appropriate new technologies are transferred into normal practice
across the organization.

Process Change Management

Goal 1 Continuous process improvement is planned.

Goal 2 Participation in the organization's software process improvement
activities is organization wide.

CMU/SEI-93-TR-24 Capability Maturity Model ■ 63

Goals for Each Key Process Area

Goal 3 The organization's standard software process and the projects'
defined software processes are improved continuously.

64 ■ Capability Maturity Model CMU/SEI-93-TR-24

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Capability Maturity ModelSM for Software, Version 1.1

Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber

In November 1986, the Software Engineering Institute (SEI), with assistance from the Mitre
Corporation, began developing a process maturity framework that would help organizations improve
their software process. This effort was initiated in response to a request to provide the federal
government with a method for assessing the capability of its software contractors. In September
1987, the SEI released a brief description of the process maturity framework [Humphrey 87a] and a
maturity questionnaire [Humphrey87b]. The SEI intended the maturity questionnaire to provide a
simple tool for identifying areas where an organization's software process needed improvement.
Unfortunately, the maturity questionnaire was too often regarded as "the model" rather than as a
vehicle for exploring process maturity issues.

After four years of experience with the software process maturity framework and the preliminary
version of the maturity questionnaire, the SEI evolved the software process maturity framework into
the Capability Maturity Model for Software (CMM) [Paulk91, Weber91]. The CMM is based on
knowledge acquired from software process assessments and extensive feedback from both industry
and government. By elaborating the maturity framework, a model has emerged that provides
organizations with more effective guidance for establishing process improvement programs. The
initial release of the CMM, Version 1.0, was reviewed and used by the software community during
1991 and 1992. A workshop was held in April, 1992 on CMM v1.0, which was attended by about 200
software professionals.

This version of the CMM, Version 1.1, is the result of the feedback from that workshop and ongoing
feedback from the software community. The CMM is the foundation for systematically building a set of
tools, including a maturity questionnaire, which are useful in software process improvement. The
essential point to remember is that the model, not a questionnaire, is the basis for improving the
software process. This paper is intended to introduce the reader to CMM v1.1. .c2.

91

CMU/SEI-93-TR-024

ESC-TR-93-177

February 1993

	Table of Contents
	List of Figures
	Acknowledgments
	To the Reader
	What is the Purpose of This Paper?
	Who Should Read This Paper?
	How is This Paper Organized?
	What Are the Other CMM Products?
	How Do You Receive More Information?

	1 The Process Maturity Framework
	1.1 Immature Versus Mature Software Organizations
	1.2 Fundamental Concepts Underlying Process Maturity
	1.3 Overview of the Capability Maturity Model

	2 The Five Levels of Software Process Maturity
	2.1 Behavioral Characterization of the Maturity Levels
	2.1.1 Level 1 - The Initial Level
	2.1.2 Level 2 - The Repeatable Level
	2.1.3 Level 3 - The Defined Level
	2.1.4 Level 4 - The Managed Level
	2.1.5 Level 5 - The Optimizing Level

	2.2 Understanding the Maturity Levels
	2.2.1 Understanding the Initial Level
	2.2.2 Understanding the Repeatable and Defined Levels
	2.2.3 Understanding the Managed and Optimizing Levels

	2.3 Visibility Into the Software Process
	2.4 Process Capability and the Prediction of Performance
	2.5 Skipping Maturity Levels

	3 Operational Definition of the Capability Maturity Model
	3.1 Internal Structure of the Maturity Levels
	3.2 Maturity Levels
	3.3 Key Process Areas
	3.4 Common Features
	3.5 Key Practices

	4 Using the CMM
	4.1 Software Process Assessment and Software Capability Evaluation Methods
	4.2 Differences Between Software Process Assessments and Software Capability Evaluations
	4.3 Other Uses of the CMM in Process Improvement

	5 Future Directions of the CMM
	5.1 What the CMM Does Not Cover
	5.2 Near-Term Activities
	5.3 Long-Term Activities
	5.4 Conclusion

	6 References
	Appendix A: Goals for Each Key Process Area
	A.1 The Key Process Areas for Level 2: Repeatable
	A.2 The Key Process Areas for Level 3: Defined
	A.3 The Key Process Areas for Level 4: Managed
	A.4 The Key Process Areas for Level 5: Optimizing

