energy distribution of the photoemitted electrons may be
not completely under control. The space-charge effect and
the reverse current can be possible sources of error mostly
when the applied voltage is near to zero. Finally, the qual-
ity of the results may depend on the physical conditions of
the photocell potassium layer. Notwithstanding these re-
marks, we believe that the quality of the measurements is
fully satisfactory for a student laboratory experiment and
this experiment can be profitably used to introduce under-
graduate students to modern physics.
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The problem of scattering in one dimension by a potential which consists of N identical cells is
solved in a transparent manner. The N-cell transmission and reflection amplitudes are expressed
in terms of the single-cell amplitudes and the Bloch phase. As examples the results are applied
to a row of delta-function potentials, and to a row of square wells, and it is shown that these
expressions provide an immediate understanding of the results of detailed calculations.

L. INTRODUCTION

There is a recurring interest in one-dimensional scatter-
ing problems, particularly cases where the potentlal con-
sists of a finite number of identical “cells.” Kiang' for
example, showed that in the case of N delta-function po-
tentials, even a small N of order 5 is sufficient to give rise
to rather spectacular interference effects on the transmls-
sion probability. More recently, Griffiths and Taussig’
have discussed the same example from a transfer matrix
point of view. In a more general case, of arbitrary potential
cells, Kalotas and Lee® have given a general transfer matrix
formulation and applied it to the square well and parabohc
potential cases. A few years earlier, Vezzetti and Cahay*
formulated a similar transfer matrix approach and derived
a very compact expression for the N-cell transmission
probability in terms of the Bloch phase.

In this paper, we draw together these various develop-
ments in one general formulation, and derive some com-
pact formulas from which one can understand at a glance
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how the N-cell transmission should look. We consider scat-
tering by a potential which consists of NV identical cells. We
show how the solution for a single cell can be easily ex-
tended to the finitely periodic system. In this step, the
Bloch phase angle, which is familiar from the infinite pe-
riodic system, plays a crucial role. By letting N — o, one
recovers the Bloch zones of allowed and excluded wave
numbers. We feel that the simplicity and generality of the
approach developed in this paper should be known to those
teaching quantum mechanics. It may also be useful as a
complement to the traditional presentatlon of the 1nﬁn1te
periodic system, as found for example in Merzbacher.’ The
strong interference effects which are manifest in our solu-
tions illustrate the importance of interference in wave
propagation.

In Sec. II we introduce the transfer matrix which con-
nects the solutions at two ends of one potential cell. In Sec.
II1 we adopt a more convenient form of the transfer matrix
which leads in Sec. IV to an immediate solution for the
transmission and reflection coefficients of the scattering
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problem for N cells. We then apply this in Sec. V to the
case of a row of delta-function potentials. This leads to a
detailed understanding of the results which Kiang' and
others have found by numerical evaluation of their solu-
tions. Most of the interesting structure in the transmission
is due to the periodicity. In Sec. VI we apply our method to
a series of square barriers, one of the examples of Kalotas
and Lee.> The conclusions are given in Sec. VII.

II. THE TRANSFER MATRIX AS A MAPPING

We consider an arbitrary shape potential U(x), defined
on 0 <x <d. The potential Uy(x) is defined to be the same
potential repeated N times, on the interval 0 <x < Nd. This
is what we mean by a finite periodic potential. What we
will show is that the solution for the problem Uy(x) fol-
lows immediately from the solution for the single cell case.
In this section we follow closely the presentation in Ref. 4.

A solution of the Schrédinger equation, #(x), is speci-
fied by the boundary conditions at an arbitrary point x. We
will define a vector

u(x)
v(x)= ,
u'(x)

which conveys this information. Two particular solutions
can be selected corresponding to the conditions v,(0)
=(1,0)" and v,(0)= 0,1)F at x=0. Integrating from O to
d, we arrive at the corresponding boundary values v,(d)
=[ul(d),u{(d)]T and vz(d)=[u2(d),u§(d)]7. We define
the transfer matrix W to be the matrix with these two
vectors as its columns.

u(x) - uz(x))

ui(x) wuy(x)

(1

W(x)= ( (2)
This matrix has the property that if v(0) characterizes an
arbitrary solution of the Schrodinger equation at x=0,
then v(d) =W(d)v(0).

Note that det W is the Wronskian of two independent
solutions, u,, u,, and this is a constant for the Schrédinger
equation. Computing its value at the origin gives det W
=1. The eigenvalues of W are of the form [see Eq. (4)
below]

M=1/A=p+ P —1=¢", (3)

where 2u=TrW=2 cos ¢. When |p|<1, ¢ will be a real
angle; otherwise we take ¢=i0 or 8=7+i0 according to
the sign of u. Then the cos ¢ becomes *cosh 8. The eigen-
states of W are particular solutions for which the solution
at x=d differs from that at x=0 by a phase, as if periodic
boundary conditions were imposed. In fact, ¢ is the Bloch
phase associated with the infinitely periodic potential
whose unit is cell U(x). When ¢ is imaginary, the eigen-
states are those solutions for which both u and «’ differ by

Wy—KWy,
: Tr W+_ik— Wi—Wyu+
M~1==
2 Wi+ KW Wy — KW
(W“—-sz— 21 s 12) (Tr L) = 12)
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the same real factor between the two ends of the interval.

For the problem Uy, we need only apply the transfer
matrix N times to map an arbitrary solution from x=0 to
Nd. The Cayley-Hamilton theorem (see for example, Ref.
6) tells us that any matrix satisfies its own eigenvalue equa-
tion. Hence (and one can easily check it),

W2=2W cos ¢—1. (4)

This can be used iteratively to write any power of W in
terms of W and the unit matrix. By induction one can show
that (see the Appendix)

1
N=___ " _ . _ )
w sin¢[w sin N¢—1sin(N—1)¢]
This new matrix has determinant unity and Tr WV
=2 cos(N¢), since its eigenvalues are simply the Nth pow-
ers of those of W.

(5)

ITII. AN ALTERNATIVE MAPPING

What is important in Sec. I is the existence and proper-
ties of the transfer matrix, not the way we obtained it.
Before we proceed to solve the transmission problem, it is
convenient to introduce an alternative form of the transfer
matrix. This is based upon a division of the wave function
into right and left-moving components. We define

u(x)=f(+kx)et ™4 f(—kx)e=*,
w (x)=ik[ f(+kx)et ™ — f(—kx)e *]. (6)

It may seem strange that a single function can be replaced
by a pair, but the division is unique because we have im-
posed a condition on the derivatives of the two amplitude
functions f(+k.x), namely that f'(+kx)et™
+f'(—kx)e”*=0. Knowing these two functions is
equivalent to knowing u(x) and its derivative «’(x), and
vice versa. A particular solution of the Schrédinger equa-
tion may therefore be characterized by a vector

ihx
b= i) ™
which is related to v by
v(x)=Le(x), (8)
where
1 1
L= (ik —ik)' ®

Correspondingly, the transfer matrix in this representation,
which translates from x=0 to d is

M- I=L"'WL, ¢(0)=Mc(d). (10)

M~ is seen to retain the property of having determinant
unity. Explicitly one has

ik

W21+k2W12)

(11)
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Since M ! is unimodular, M can be written down trivially.
It is also seen that the trace is preserved by this similarity
transformation, and so are the eigenvalues. The methods
applied to the matrix W apply equally to M; in particular
Eq. (5) holds for M.

IV. IMMEDIATE SOLUTION OF THE
TRANSMISSION PROBLEM

To describe scattering with an incident wave from the
left, we impose the boundary conditions:

et L Rye™ ™, x<0,
T yet* =N x> Nd.

From this we can read off the values of the vector ¢(x):

Y(x)= (12)

oy=( . ay=("¥
c()—(RN» c(N ﬁ=(0). (13)
According to Eq. (10) these are related by

1=(M" Ty, Ry=M"),Ty. (14)

Very useful relations can be obtained when these are com-
bined with Eq. (5):

1
N_ ; —1s5i —
M _sin¢[M sin N¢—1sin(N—1)¢].
First we note that M, =R /T, while (M"),;=Ry/Ty.
However, these off-diagonal elements differ only by a fac-
tor sin N¢/sin ¢, giving
Ry sin N¢ R,
Ty sing T’
By taking the absolute square of this relation we reproduce
the results of the paper of Vezzetti and Cahay, but since

Eq. (16) relates the amplitudes directly it is much more
powerful. Their relation can be put in the form

1 sin? N/ 1
=1+—7 7—1
| Twl sin ¢ \ | 7]
From this it is evident that perfect transmission occurs
whenever 7,=1, but in addition there are N —1 new pos-
sibilities
No=mm, m=12,..(N-1)
in each allowed band, where ¢ increases by .

With a little more work we can solve explicitly for the
amplitudes 7y and Ry from Eq. (14).

(15)

(16)

(17)

(18)

1 1
7o (MN)“=®[M“ sin N¢—sin(N—1)¢]
1

1
(— sin N¢ —sin(N — 1)¢) (19)

“sin o\T
where M without a superscript is the case N=1, and use
has been made of Eq. (15). Again, one sees that when
sin N¢ vanishes, Ty={(—)". On the other hand, when
sin(N— 1)¢ vanishes, Ty==+T,. [This of course says
that if (W—1) barriers are transparent, it is only the last
one which causes reflection.] For large N, these two points
will be very close together, showing that T is a rapidly
fluctuating function of wave number k or of the Bloch
phase ¢ (k) when it is real.
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When N¢ is an odd multiple of /2, the sin > Né on the
right of Eq. (17) takes its maximum value of one. For
large N, this will be the most rapldly varying term, hence
one will have a minimum |7 y| % Even for moderate N, the
minimum occurs very close to this point as we will see
below.

To complete the derivation of Ry, on the right hand side
of Eq. (16) we replace T, from Eq. (19), giving

Ry 1 sin(N—1)¢
T 1(?;+—s;1¢—)‘ (20)
Then
sin(N—1)
RN=R1(1+—SI—1'I¢‘_£TN)
sin(N—1)¢ _\~
=R1(1-——'—sin—N¢—T1) (21)

Here, we have used 7'y from Eq. (19) and have cleared a
common factor of sin ¢ in the second line.

To conclude this section, we will note that in Eq. (11),
W is a real matrix. This, together with Eq. (14) allows us
to write in general that

{ R:
T, Tf
M= R i (22)
1
T, T%

This is the easiest way to construct the transfer matrix,
after one has solved the single-cell transmission problem.
Taking the trace shows that

cos ¢=ReM;=Re(1/T). (23)

V. CASE OF A ROW OF DELTA FUNCTIONS

As an application of our result, we consider scattering by
a row of N delta-function potentials of strength C, and
spacing d. We choose this example because the solution is
simple and it nicely illustrates the prev1ous results. We can
compare with the calculations of Kiang! and obtain a bet-
ter understanding of his result.

The unit cell U(x) may be taken to have the delta func-
tion at its center; any other placement simply alters the
phase of the reflection amplitude. The Schrédinger equa-
tion for the single cell is

P (x) + kM (x) =2Q8(x—d/2)P(x), 24)
where
2m 2m
k2=7E and 20 2?'670.

One finds that

k —iQ}
- ikd " ikd
T=rim®  ®=rrm’ (25)
The transmission probability
ey 26
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Fig. 1. Transmission probability through an array of N=10 delta func-
tions, with }/d=>5, plotted against kd/#. The zone boundaries and the
envelope of the minima [the dotted line, Eq. (30)] are independent of N.
In the upper part of the figure, Eq. (29) for the Bloch phase is plotted.

is a very structureless function, so all the structure which
Kiang' found for the N delta case must arise from the
Bloch phase.

To compute this Bloch phase, it is convenient to define

tan B=Q/k. (27)

(This B= —8y,, the even-parlty phase shift for a single
delta, if we follow Lipkin’s’ treatment of one-dimensional
scattering.) Look at Eq. (22), we see that

e~ itkd—B)

M, =Tr'= , (28)

cos B
where Egs. (25) and (27) have been used. Using Eq. (23),
one has

cos(kd—p3) Q
—CO—S_B—=COS kd—l-’];

Supposing that >0, 8 begins at zero energy at + /2,
and decreases slowly. In order to have real ¢, kd must
increase until 28 < kd <, and in this interval ¢ rises from
zero to 7. There is then an excluded region of width 28, in
which cos ¢ < —1. This is illustrated in the upper part of
Fig. 1. Following this ¢ is real until kd=2, and so on. In
the excluded region, ¢ becomes complex, as explained ear-
lier, and the cosine becomes a cosh. In the second allowed
region, ¢ starts again at 7 and increases to 2w, etc. Of
course, while kd is rising, S is falling from 7/2 towards
zero, but the latter is a slow variation. As a result, the
widths of the excluded regions become progressively nar-
rower as the energy (and, hence, k) increases.

When N is at all large, in the “excluded zones” of com-
plex ¢, the factor sin N¢ in Eq. (16) will be huge. The only
way to satisfy this equation is for | Ty| to approach zero,
giving essentially zero transmission. In each of the “al-
lowed” zones, there will be exactly N—1 places where the
sin N¢ vanishes, giving unit transmission. These are the
points corresponding to Eq. (18). In the case of the single
delta-function potential, there are no points with perfect

cos ¢p= sin kd. (29)
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transmission, as seen from the dashed line of Fig. 1; oth-
erwise these would show as additional resonances. This
explains Kiang’s figure 2 perfectly.' The slow decline of B
explains why the allowed zones become slowly wider as kd
increases.

In Fig. 1 we show calculated results for |7 y(k)|?* for
N=10, and Q/d=35, the values chosen by Kiang. All the
features discussed above are evident. In addition we have
drawn the locus of the transition minima as a dotted line in
the allowed zones. These minima occur very close to the
points where sin 2 N¢=1. Hence, by settmg sin? N¢=1 in
Eq. (17) we obtain the envelope of these minima, which is
a curve independent of N:

1

|TN|mm

1 1
+sin2¢(|T1|2 1). (30)
The line is drawn as a dotted line in Figs. 1 and 3 and
agrees well with the calculations. Notice that at the center
of an allowed band, where ¢ =7/2, the sin ¢ in the denom-
inator will also be unity, and hence for odd N this mini-
mum value of |Ty| will be equal to |T|. Indeed the
envelope of the minima just touches the curve for | T,|?
(the dashed line) at these points in Flg 1.

For very large N, and real ¢, the sin® N¢ in Eq. (17) will
oscillate rapidly around the value ;. The transmission prob-
ability will therefore on average approach the curve ob-
tained by setting this value into Eq. (17):

1 1 1
T ) oh
So although the regions of real ¢ correspond in the limit of
infinite NV to the allowed bands of the infinite periodic sys-
tem, the transmission probability is not unity, whereas in
the forbidden zones it is zero. However in the case of an
infinite periodic lattice one is not interested in measuring
the transmission and reflection coefficients, but simply in
the fact that in the allowed zones one has solutions which
have constant amplitude over the whole lattice. To put it
another way, so long as N is finite, there is an outside and
an inside to the region of the potential. One can then apply
boundary conditions as in Eq. (12) and derive the trans-
mission and reflection coefficients. At a given energy or
momentum &, ¢ may be a rational or an irrational multiple
of 7. In the rational case, as N varies, the transmission will
be very often either unity or the minimum value, while in
the irrational case it will always take intermediate values.
Since the irrational numbers are much more numerous
than the rationals, this is the most common situation. If
one fixes NV at some large value and averages Over a narrow
k interval, the average value of sin> N¢ in an allowed band
will also be one-half.

It is surprising that the limit N— o of the scattering
states are not the Bloch waves; rather the limit is a linear
combination of the two Bloch states. By considering the
scattering state with incident wave from the right we
would get an orthogonal linear combination. It is the in-
terference between the two Bloch states which gives rise to
the nonperfect transmission in the limit. By combining the
left-incident and right-incident scattering states of the form
Eq. (12) one can form the individual Bloch states which
do proceed without reflection through the infinite crystal.
One could also consider that it is the end of the finite
periodic system which generates the reflected wave.
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Griffiths and Taussig? have recently discussed this same
example. Since their paper solves only the repeated delta
potential, they did not produce a general method such as
ours. They drew several very nice pictures of the transmis-
sion probability, for N=1, 2, 3, 5, 9, and 101, and dis-
cussed at length the factors which influence the transmis-
sion minima, especially in the forbidden zones. Lackin%
our Eq. (30), they did not realize the connection to | T |
in the allowed zones. In discussing the limit N — co, they
give an incorrect explanation. They assumed that points
giving | Ty|*=1 would be dense in the allowed band, in
the limit. However, as pointed out above, these points cor-
respond to rational values of ¢/, and these are a set of
zero measure as compared to the irrational numbers for
which |7y|®<1. Blundell® in a comment on that paper
has made the same point concerning the limit of infinite N.

VI. SQUARE BARRIERS

Although this example has a long history, going back to
the Kronig-Penney model,’ it actually has some topical
interest. Ulloa et al.'” have considered electron transport in
a mesoscopic device or quantum wire formed by a linear
array of potential wells separated by finite height square
potential barriers, which can be created on a GaAs chip.
Their device is shown schematically in Fig. 2. Because the

. i
e—:al

M=

2 2
i amf® Y\ tial
2e (y . sin(yb) e

Here, a*=2mE/#* and *=2m(E—V,)/#. When the en-
ergy E is below the barrier height ¥, ¥ —i¥, and the above
matrix remains valid with this substitution.

In view of Eq. (23), the Bloch phase may be obtained
from Re M, giving

1
cos ¢(a) =cos(al)cos(yb) —5(%+£)sin(a1)sin(yb),
(33)

which remains real when y-iy.

In Fig. 3 we show the cosine of the Bloch phase and the
single-cell transmission probability, and the transmission
probabilities for the cases N=6 and 51. The steep rise in
transmission to a plateau is seen to be associated with the
second allowed band beginning at 1.5E;, where as before
Eo=(#2/2m) (w/a)* The sharp resonances which appear
in the vicinity of the barrier height occur precisely in the
allowed band between E=0.46E, and 1.18E, as expected.
In a few cases, the peaks fail to reach unity due to the finite
resolution of the drawing. In the N=51 case, the depres-
sion near E=4.5E, is seen to be due to a very weak for-
bidden band just at this energy; it requires a large N for the
-sinh N8 to become appreciable.

In Fig. 4 we show a second case in which the barrier
height has doubled. Here the first allowed band is nar-
rower, and the corresponding sub-barrier resonances more
compressed. The forbidden band near E=5.0E, is much
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a i .
cos(yb) ——-(;+£)sin(yb)] +—etial

Fig. 2. The structure of a quantum dot superlattice. The electrons are
confined between the two horizontal lines and experience a periodic
blocking potential ¥=V in the regions marked in black. The potential
elsewhere is zero. The entrance/exit lead at each end is considered to be
infinitely long.

width a (of the order of 100 nm) is uniform throughout,
the problem is strictly one dimensional, as we showed in a
recent paper.!! For the sake of discussion, we will some-
times express energies in terms of the threshold for the first
propagating channel which is at E,= (#/2m) (7/a)? even
though a does not enter into the one-dimensional problem
which we treat.

Since the square well barrier is easily solved, we skip the
details of the single barrier case and present the results.
The barriers are of height V,;, width b, and separated by /,
so the cell is of width b+/. The transfer matrix given in
Ref. 11 can be put into the present representation Eq. (22)
as follows:

LENAW
(;—a)sm(}’b)

ifa y\ . )
COS(‘}/b)-JrE(;-{-E)Sln(}’b)]

(32)

[

cos(¢)

—‘..T—.‘,:,ﬁ

1 ! | i
1F ” ]
0.8 3
a._o.a_E 7
Eoal N=51 i
0.2 - -
0 ) i | 1 | PR | ) | L
0 1 2 3 4 5 6

E/Eq

Fig. 3. Transmission for device with Vy=E,, [=0.5g, and b=0.5a. Upper
part: cosine of Bloch phase, Eq. (23). Middle part: N=6 cells. Lower
part: N=>51. The single-cell transmission probability is shown as a dashed
line, and the envelope of minima, Eq. (30), as a dotted line.
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stronger in this case and is seen in the N =6 case already.
The envelope of the transmission minima is lower in this
figure because the single-cell transmission (the dashed
line) is lower than in Fig. 3. As a result, the oscillations in
the plateau region are more pronounced. Once again this
shows the power of the present formulation to explain re-
sults that are otherwise obscure.

After we completed thlS work, we became aware of the
paper by Kalotas and Lee® in which a similar treatment of
the finite periodic potential was expounded. The matrix Il
of their Eq. (14) is our M. Their T, is twice our cos ¢,
but the relation of Tx; to the Bloch phase was not used.
They deduced an algebraic recurrence relation to construct
TV, equivalent to our Eq. (5), whose coefficients they
called P,,(Tg;). Clearly, the simple trigonometric rela-
tions underlying our Eq. (5) are much more familiar and
less intimidating. They were able to work out the condition
for perfect transmission in a form equivalent to our Eq.
(18), and they illustrated it graphically. Perhaps, if they
had recognized that their P, (7T ;) were the Chebysheff
polynomials of the second kind (as pointed out by Ref. 2),
they might have made the connection with the Bloch
phase. They recognized that the “forbidden bands” are
associated with | T | >2, but they did not discuss how
the closely spaced resonances in the “allowed bands” go
over to the nondecaying states of the Kronig-Penney
model.

VII. CONCLUSION

We have shown that the problem of transmission
through N identical potential cells, can be best understood
in terms of the Bloch phase and the single-cell transmission
amplitude. Essentially we have extended a theorem of Vez-
zetti and Cahay to apply the amphtude rather than the
probability of transmission. By gomg over to a transfer
matrix based on the representation in terms of left- and
right-moving waves, the derivation becomes trivial.

Our main results are as follows: Once the single-cell

cos(¢)
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Fig. 4. Same as Fig. 3, but for Vy;=2E,.
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transmission problem has been solved, the transfer matrix
can be constructed as in Eq. (22), and the Bloch phase
found as in Eq. (23). The N-cell transmission and reflec-
tion amplitudes are then given by Egs. (19) and (21),
respectively. The transmission probability is given by Eq.
(17), from which one deduces the conditions for transpar-
ency. The N-cell problem is transparent whenever the sin-
gle cell is transparent, and in addition at N—1 points in
each allowed band, in which the Bloch phase ¢ is real; see
Eq. (18). In between each maximum of |Ty| there is a
minimum, and the envelope of the minima is given by Eq.
(30). At the midpoint of each band, where ¢=
2(mod =), the envelope equals the single-cell transmission
probablhty so this sets the vertical scale for variation of
| Ty|? in each allowed band. Knowing this one can sketch
out the N-cell transmission probability qualitatively with-
out detailed calculation, workmg from T, and cos ¢

When the Bloch phase is complex, the sin®> N¢ in Egq.
(17) becomes a sinh? N6, and for large N this becomes
very large, which forces | TNI to become very small. This
situation corresponds to the forbidden Bloch zones. In Fig.
4 we have an example where 8 happens to be very small, so
the forbidden zone is only weakly expressed, even for
N=51.

The formalism was applied to the case of a finite number
of delta functions and square barriers. This allows us to
understand the features of this system which were noted by
Kiang. Equations (17), (19), and (30) are the essential
tools.

Scattering by a finite series of barriers is much richer
than for a single barrier. We hope that this formulation
will make it more accessible to students.
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- APPENDIX A: RECURRENCE FOR EQ. (5)

Write Eq. (5) as

W= [WUN_l(#)—lUN_z(#)]y (A1)
where p=cos ¢ and from Eq. (4)
sin(2¢) ‘
Uy(p)= sin 6 Up(p)=1. (A2)

Multiply by W, 11neanze usmg Eq. (4), and one will have
the correct form for WY*! providing that

Un(p)=2pUy_1(p) = Uy_(p). (A3)
The solution of this recurrence is
Uy_1(n)=sin N¢/sin ¢. (A4)

According to Arfken,'? this is a definition of the Chebyshef
polynomlals of the second kind. If we compare with Kalo-
tas and Lee, we see that Py(2u)=Uxy(u).
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A new integrated computer-assisted personalized assignment (CAPA) system that creates
individual assignments for each student has been developed and found to be a powerful
motivator. The CAPA system allows students to enter their answers to personalized assignments
directly via networked terminals, gives immediate feedback and hints (allowing challenging
questions), while providing the instructor with on-line performance information. The students
are encouraged to study together which is known to be an effective learning strategy, but each
must still obtain his/her own correct answers. Students are allowed to re-enter solutions to the
problems before the due date without penalty, thus providing students with different skills levels
the opportunity and incentive to understand the material without being judged during the
learning process. The features and operation of the system are described, observations on its use
in an introductory general physics class are reported, and some of the highly favorable student

reactions are included.

I. INTRODUCTION

Universities continue to search for more effective ways
to provide students a quality education. Scientific literacy,
an important component of a modern education, is an elu-
sive goal requiring the study and understanding of unfa-
miliar concepts and the ability to solve numerical prob-
lems. Physics education relies heavily on numerical
treatment of problems which appear daunting to many be-
ginning students.

In all of their studies, students are challenlged to achieve
certain levels of understanding and skills.” Meeting the
goals is a cooperative task, and diligent instruction does
not insure success without a commensurate effort by stu-
dents. In the traditional format, the instructor sets the

1124 Am. J. Phys. 61 (12), December 1993

level, explains the material and assigns practice problems
for the student. The instructor can then guide and help, but
the student learns and achieves the goals? by serious work.
The instructor can “explain” or “clarify” effectively only
after the student has tried to solve example problems. Usu-
ally, the student works on the problems independently, or
in peer groups, and does not know if the solutions are
correct at the time they are worked out. The student needs
timely feedback on the correctness of his or her problem
solution. For effective learning, each student should do
some independent work. When students work together to
solve similar but not identical problems, both collaboration
and independence can be fostered.

We have developed a computer based system to create
personalized, that is, individual numerical and multiple-
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