Structure-free Name Management for
Evolving Distributed Environments

Douglas B. Terry

Computer Science Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

Abstract: Name services facilitate sharing in distributed environments by allowing objects
to be named unambiguously and maintaining a set of application-defined attributes for each
named object. Existing distributed name services, which manage names based on their
syntactic structure, may lack the flexibilty needed by large, diverse, and evolving
computing communities. A new approach, structure-free name management, separates
three activities: choosing names, selecting the storage sites for object attributes, and
resolving an object's name to its attributes. Administrative entities apportion the
responsibility for managing various names, while the name service’s information needed to
locate an object’s attributes can be independently reconfigured to improve performance or
meet changing demands.

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication
Networks]: Distributed Systems; D.4.3 [Operating Systems]: File Systems Management
- Directory structures; H.2.4 [Database Management]: Systems - Distributed systems;
H.2.7 [Database Management]: Database Administration - Data dictionary/directory;

Additional Keywords and Phrases: naming, binding, name servers, distributed name
management, structure-free name resolution.

Structure-free Name Management for Evolving Distributed Environments

Structure-free Name Management for
Evolving Distributed Environments

Abstract: Name services facilitate sharing in distributed environments by allowing objects to be
named unambiguously and maintaining a set of application-defined attributes for each named
object. Existing distributed name services, which manage names based on their syntactic structure,
may lack the flexibility needed by large, diverse, and evolving computing communities. A new
approach, structure-free name management, separates three activities: choosing names, selecting the
storage sites for object attributes, and resolving an object’s name to its attributes. Administrative
entities apportion the responsibility for managing various names, while the name service's
information needed to locate an object’s attributes can be independently reconfigured to improve
performance or meet changing demands.

1. Introduction

The ability to name objects in an evolving distributed computing environment requires
flexible techniques for managing the set of object names. Managing names involves maintaining
information about named objects, hereafter referred to as attributes, and providing facilities for
accessing this information. Often in distributed systems, a name space is cooperatively managed
by a collection of active entities, called name servers.

Early name servers simply mapped host names to network addresses. Contemporary name
services, such as Grapevine [Birrell et al. 82], Clearinghouse [Oppen and Dalal 83], or the Domain
Naming System [Mockapetris 83], manage various types of information about various types of
objects. Even file directory systems and database catalog managers [Lindsay 80] can be considered
name servers for specific classes of objects.

The database facilities needed by individual name servers to store object attributes represent
only one portion of the mechanisms present in a distributed name service for large computing
environments with several participating organizations [Terry 85]. This paper examines three
principal activities that require interactions between different name servers and between servers
and their clients, these activities are central to distributed name management and have received
much |less attention than database management techniques:

Assigning names to objects should be performed, or at least controlled, by the creators of
the objects. Users of a name service attach mnemonics to names unbeknownst to the
servers managing those names. The difficulty lies in naming large numbers of objects when
many autonomous organizations are involved in creating objects.

Selecting name servers to manage a named object, called the naming authorities for the
object, should also be under the control of the object's owner. For large computing
environments, not al name servers can be authorities for all named objects; the authority
for objects must be divided among servers according to administrative concerns.

Locating a named object or information about the object given only its name becomes a
problem if names are distributed among name servers. Name resolution denotes the process

Structure-free Name Management for Evolving Distributed Environments

of determining the naming authorities for a named object. Once the authorities are
discovered, standard database operations can be invoked to read or update the named
object’ s attributes.

The emphasis in this paper is on separating these three activities: choosing names, selecting
the storage sites for object attributes, and resolving an object's name. Being able to distribute
names among name servers and resolve names independent of what structure those names may
possess permits name services to be easily reconfigured in response to changes in the computing
environment; clients of the name service need not be aware of such reconfigurations since the
name space remains the same.

The next section examines current name management techniques and explores how they may
fail to adapt to an evolving distributed environment. The second half of this paper describes a new
approach to name management that achieves the desired flexibility: structure-free name
management.

2. Towards Flexible Name M anagement
2.1. Traditional approachesto managing names

In existing distributed name services that do not rely on broadcast for locating names, the
assignment of authority for parts of the name space, as well as the mechanisms for resolving object
names, depends heavily on the name structure. Most current name spaces are tree-structured in
which each edge of the tree has a label. Conceptualy, information about objects resides in the
leafs of the tree; an object’s name simply consists of the labels along a path from the root of the
tree to a leaf node. For instance, the Grapevine system manages a naming tree of constant depth
two [Birrell et al. 82]. The Domain Naming Convention, on the other hand, allows names to have
arbitrarily many labels[Su and Postel 82].

Current name services distribute the authority for names to various servers based on the
structure and contents of the name; syntactically similar names, for some similarity criteria, have
the same authorities. For example, in the Grapevine system, al of the names belonging to a
particular registry have the same naming authorities. In the Domain Naming System, the name
tree is divided into subtrees called zones; a hame's zone determines its authorities [Mockapetris 83].
These naming schemes provide less than perfect administrative control over the placement of an
object’s attributes. Because of the syntactic assignment of naming authorities, the choice of a name
for a new object is partially governed by an organization's concerns for the name servers that store
the object’s attributes. Changing an object’s name servers requires changing its name or assigning
new name serversfor al objects in the same syntactic partition of the name space.

Name resolution proceeds by following a path through the name tree starting at its root, that
is, the individual labels of a name are resolved in succession. The amount of information needed
in name servers to resolve names at the various levels of the hierarchy is proportiona to the degree
of branching of the name space tree. For instance, all Grapevine servers must know the storage
sites for every registry. The cost of resolving names is dictated, to a large extent, by the depth of
the nametree.

Unfortunately, existing name services reliance on syntactic structure in order to locate an
object’s attributes place undue constraints on the management of the name space. The inability to

Structure-free Name Management for Evolving Distributed Environments

adapt to growing communities with changing requirements is the main deficiency of traditional
name management techniques. Name services should be able to be reconfigured if the present
servers become overworked or overburdened with data. With current services, reconfiguration
occasionally requires objects to change their names because the name space is distributed among
servers according to syntactic partitions.

2.2. Some scenarios

The lack of adaptability in existing name services can be evidenced in a few simple scenarios.
The following problems can be alleviated through a more flexible approach to name management,
such as the one proposed later in this paper.

scenario #1: splitting Grapevineregistries

Current problems of scale in the Grapevine system exemplify a lack of flexibility. Some of
Grapevine's registries are becoming quite large. Suppose that a particular registry grows too large
to be feasibly managed as a single entity; what can be done?

With the current Grapevine mechanisms, as a registry grows over time, no provisions can be
made for dividing its data between different name servers. The only solution is to split the registry
into two separate registries. Some or al members of the registry must change their names, a costly
operation. Similar problems arise if organizations divide and subsequently want separate naming
authorities. At least one Grapevine registry has aready been split, causing some of its members to
be renamed.

scenario #2: adding more structure to names

The Grapevine designers argue that more labels can be added to a name to handle larger
name spaces [Schroeder et al. 84]. For instance, Grapevine names were expanded to three parts in
the design of the Clearinghouse [Oppen and Dala 83]. Unfortunately, for well-established
systems, adding more levels to the name space forces all objects to change their names.

Designing a system to manage large numbers of names is not particularly difficult; the major
difficulty is trying to predict how big a name space will eventualy become. At best, the system
designers must carefully structure the name space according to the projected growth of the
environment so that no indivisible set of names becomes unmanageably large.

Suppose the designers of a new name service, with incredible foresight, give names a lot of
structure so that the name tree can handle substantial growth without becoming exceedingly broad.
The name space will initially be quite sparse until it fills out. Nevertheless, name service clients
must pay a performance penalty if names are resolved a label at a time, as in current systems; the
cost of name resolution is afunction of the size of names, not the size of the name space.

scenario #3: merging existing name spaces

Occasionally, existing distributed environments that have developed in isolation form
interconnections between them so that information can be shared. Suppose two internets merge
with each other; how can the existing name spaces must be merged together to get a combined
name space? Two things make this well-known problem difficult. First, two different objects may
have been created before the merge with identical names. Second, the different systems will likely

Structure-free Name Management for Evolving Distributed Environments

have different conventions for naming objects.

If name conflicts do not exist, the second problem can be avoided by separating name
management from the structure of names. A uniform name management policy can be adopted
for the combined name space even though names may be of non-uniform structure.

2.3. Adapting to environmental changes

The previous scenarios indicate that effectively managing a distributed name space is
complicated by the fact that internet computing environments are constantly evolving in various
ways. hew computing resources, software systems, and users frequently join the environment; the
usage patterns of resources change over time as new liasons form between members of the
environment and their work behavior fluctuates, networks occasionally interconnect with other
networks forming larger internets. Trying to predict the changes that will occur within an
environment during an object’slifetimeis difficult.

Due to the unpredictability of an evolving system, a name service should separate how an
object’s name is managed from the name assigned when the object is created. In this way, name
management can adapt to changes in the computing environment (the name service can be
reconfigured), while object names remain immutable. Changing the name of an object is an
expensive operation since al of the references to the named object becomeinvalid.

If the selection of naming authorities for objects is done independent of the objects’ names,
then some of an overloaded name server's responsibilities may be offloaded to a lightly loaded
server, a server may be upgraded to a different processor or get more disk space alowing it to store
alarger part of the name space, additional servers may be introduced, and so on.

Also, it is desirable to separate the assignment of authority for the name space from the
resolution of object names. In this way, the name resolution process can be dynamically adjusted
to tune the performance of name service operations without impacting the authority assignments.
Moreover, the distribution of object attributes among servers is likely dictated by administrative
concerns for the integrity and privacy of information about objects, whereas the information
needed to resolve namesis used solely within the name service.

3. Structure-free Name M anagement
3.1. Functions

Distributed name services generally provide many operations for manipulating the set of
attributes for a named object. The Clearinghouse client interface, providing dozens of operations,
is a good example of the range of operations that might be desired [Oppen and Dala 83]. This
paper is not concerned with such database operations; rather, this section introduces functions for
the three activities previously outlined.

Register[name] — {OK, AlreadyUsed}

A name service client presents a name to be registered. The name service returns OK if the
name has not been previously registered; if the name is currently used for a different object
then AlreadyUsed is returned. Names should be globally unambiguous so that they can be
freely passed between processes at different sites, and names should be location-

Structure-free Name Management for Evolving Distributed Environments

independent so that their referents can migrate between sites without having to change their
names. In a widely distributed environment, names may have structure agreed upon by
clients to reduce the chance of independently generating conflicting names. The name
service does not enforce this structure. When a name is registered with the name service, a
default set of naming authorities may be assigned.

AssignAuthorities[name, servers] — OK

A client can specify the naming authorities, or authoritative name servers, for a given object.
If attributes are currently being maintained for the named object, then the request
represents a reassignment of authority; the object’s attributes must be transferred to the new
authorities. (Techniques for synchronizing updates to replicated data have been extensively
studied in the literature [Ellis 77][Gifford 79], and are not addressed in this paper.)
Typicaly, the creator of an object, wishing to choose the authorities for the object, cals
AssignAuthorities immediately after registering the object. In this case, no updates to
the object attribute database are required. Allowing organizations control over the storage
sites for information about their objects, ensures that they do not have to give up their
autonomy when they agree to participate in a shared global name space. In practice, only
certain clients may be authorized to assign authorities for an object.

Resolve[name] — servers

A name can be resolved to a list of its authoritative servers by presenting the name to any
name server. When the naming authorities are returned, either directly to a client or to a
name server servicing a client request, one or more authorities can be contacted to perform
an operation on the name service attribute database. Thus, the process of resolving a name
remains separated from the database activity that manages object attributes.

The following sections describe the mechanics of structure-free name management that permit
names to be resolved independent of the name structure and choice of naming authorities.

3.2. Authority attributes

Sructure-free name distribution places no restrictions on the administrative control over parts
of the name space. In particular, the owner of an object may choose its naming authorities, subject
to administrative constraints, independent of the object’'s name. This permits maximum flexibility
in the administrative assignment (and reassignment) of authority.

To determine the authoritative name servers for every named object, the name service
maintains authority attributes that contain lists of the authoritative name servers for every object.
Essentially, an object’'s naming authorities are attributes of that object used solely by the name
service. These attributes that are internal to the name service comprise the configuration database.

If all name servers store the complete set of authority attributes, name resolution involves a
single query on the local configuration database. However, for large numbers of objects, the
configuration database is undoubtedly too cumbersome to be stored everywhere in its entirety.
The configuration database itself must be distributed so that no server needs complete knowledge
of the authorities for al named objects. The primary difficulty in resolving a name then lies in
locating the authority attribute for an object. Severa interactions between servers may be required

Structure-free Name Management for Evolving Distributed Environments

as the name resolution activity migrates from one name server to a potentially more knowledgeable
server until the set of authoritative serversis determined.

3.3. Contexts

The notion of a context has proven useful for partitioning a name space into smaller
components [Saltzer 78]. Often, contexts represent a division of the name space along natural
geographical, organizational, or functiona boundaries. This paper adopts a more concrete
working definition: a context is a collection of authority attributes. A name is said to exist in a
context if and only if the authority attribute for the name is stored in the context.

For the purpose of name management, contexts provide a means of partitioning the
configuration database so that it may be distributed among servers. Contexts represent indivisible
units for storage and replication of authority attributes. A given context may be maintained at any
collection of name servers, and a given name server may store any number of contexts. Means
must exist for identifying contexts, but the choice of particular names for contexts is not important
since context names are only used internally within the name service.

Since contexts do not contain information about objects provided by clients, the
decomposition of the configuration database into contexts and the choice of authorities for those
contexts can be done to facilitate name resolution, rather than being governed by administrative
desires. Ideally, names should be assigned to contexts such that checking whether a given name
exists in a particular context is a simple operation and can be performed without having a copy of
the context.

3.4. Clustering conditions

A clustering condition is an expression that allows the name space to be conveniently
partitioned into contexts. Specifically, a clustering condition applied to a name yields either a
TRUE or FALSE value. Any procedure that exhibits this behavior might serve as a clustering
condition. The particular value returned, TRUE or FALSE, indicates whether or not the given name
existsin the particular context.

Names can be clustered algorithmically according to the value that results from applying a
function to them. In this case, the clustering condition is of the form ‘‘function(name) = value'’.
For instance, a hash function is awell-known technique for clustering names into buckets.

More typically, clustering is done syntactically through pattern matching. Patterns are
templates against which a name is compared. They range from names that may simply contain
wildcards, which are denoted by ‘‘*'* and match any sequence of characters, to regular expressions.
Names matching a particular pattern, such as names with a common prefix ‘‘prefix.*’’, are
considered part of the same context. That is, the clustering condition, when applied to a name,
returns TRUE if the name matches the pattern.

Clustering conditions are used to assign names to contexts, and they may be applied to an
existing context to further partition the context into smaller contexts. Thus, starting with the
complete configuration database as a single context, a sequence of clustering conditions can be
applied to yield a group of reasonably sized contexts. To check if a given name exists in a
particular context, a server need only apply the same clustering conditions to the name.

3.5. Context bindings

When presented with a name to be resolved, a server might first look in local contexts for an

Structure-free Name Management for Evolving Distributed Environments

authority attribute for the named object; if the naming authorities can not be readily determined,
additional configuration data, called context bindings, must exist locally for the name resolution to
proceed. A context hinding associates a clustering condition with the name of a context (the
context containing names that satisfy the clustering condition) and the name servers that store the
context. Contexts may contain both authority attributes and context bindings.

The structure-free name resolution algorithm works as follows: Given a name to be resolved in
some context, the particular context is searched for either an authority attribute for the named
object or a context binding containing a clustering condition that yields TRUE when applied to the
name; in the latter case, the name is then resolved in the new context specified by the context
binding, perhaps on a different server. Thus, resolving a name is a matter of successively binding
names within contexts until the authoritative name servers for the named object are discovered.
That is, the name resolution mechanism traverses a resolution chain of context bindings until it
encounters an authority attribute.

When a name is originally presented for resolution, an initial context must be chosen in which
to start the resolution chain. The initial context must contain authority attributes or context
bindings for al names in the name space. Global names result if and only if the initial context is a
global one, that is, al name servers share a common initial context. Relative names arise if the
initial context used in name resolution is not a globa one, but is relative to the particular server
presented with the resol ution request.

3.6. Nameresolution trees: putting it all together

For simplicity, the set of clustering conditions chosen by a given naming system should
partition the name space such that each name exists in exactly one context. Typicaly, the initia
context will contain just context bindings. The bindings between contexts form a hierarchical tree
structure in which contexts containing context bindings form internal nodes of the tree while
contexts containing only authority attributes form the leafs. Names are resolved by following a
path through this name resolution tree.

Importantly, the name resolution tree need bear little resemblance to the name space tree.
Specifically, the name resolution tree may have different branching factors than the syntactic view
of the name space. Moreover, the name resolution tree can change over time by choosing a
different set of clustering conditions or adding new clustering conditions to further divide existing
contexts. The name resolution chains for a given name may vary in length for the different
clustering strategies. Such changes do not affect the actual name space, only the resolution of
names. Therein lies the strength of structure-free name management.

As far as the name service is concerned, names could be completely void of structure.
Algorithmic clustering allows a headthy name resolution tree to be built even for flat names. In
practice, names will undoubtedly have structure so that parts of the name space can be
administratively allocated to different organizations to avoid name conflicts [Abraham and Dala
80]. Syntactic clustering allows names to be resolved in a manner similar to their structure, as is
done by virtually al current name management systems, simple pattern matching suffices for
emulating existing name services. A mixture of syntactic and non-syntactic clustering should prove
useful for resolving namesin evolving systems.

3.7. Scenariosrevisited

Structure-free Name Management for Evolving Distributed Environments

scenario #1: splitting Grapevine registries

In Grapevine, with names of the form *‘‘subnameregistry’’, pattern matching based on registry
names is used to syntactically cluster the name space. Registries serve as contexts. The initia
context, called "GV", contains a context binding for every registry.

Using structure-free name management, large registries can be algorithmically partitioned into
smaller contexts. The resolution chains for some object names would grow from one link to two;
the first context binding being done syntactically, while the second is done perhaps by a hash
function. The structure of Grapevine's names do not change. A sample name resolution tree for
such aschemeis depicted in Figure 1.

- figure goes here -

Figure 1. Clustering large Grapevineregistriesalgorithmically
scenario #2: adding more structure to names

Although existing name management mechanisms for hierarchical name spaces resolve names
a label at a time, syntactic clustering conditions are not restricted to matching a single additional
label in each step. That is, even using syntactic clustering, the length of the resolution chain for
various names need not correspond exactly to the number of labels in the names. Name resolution
can be tailored according to the desired response time for resolving names and the size of contexts.

Syntactic clustering in which a variable number of labels can be matched alows potential
performance advantages to be obtained over traditional resolution schemes. Particularly, regions
of the name space that are abnormally sparse may be clustered together for purposes of name
resolution. As these sparse regions fill out over time, intermediary context bindings can be easily
reintroduced; no names need to change, only their clustering.

scenario #3: merging existing name spaces

Merging independently created name spaces with different naming conventions can be
accomplished with the techniques outlined in this paper since the name management mechanisms
ignore the structure of names. Working out name conflicts becomes solely an administrative
problem.

That is, if no name exists in both environments referring to different objects, then clustering
conditions can be applied to the combined name space to alow the existing names to be resolved
by clients in either environment. One way of dealing with conflicting names, which doesn’t require

Structure-free Name Management for Evolving Distributed Environments

changing the names imbedded in software systems, is to treat the current names as partially
qualified names; client software can expand partialy qualified names into globally unambiguous
names before submitting them to the name service.

4. Conclusions

This paper dispels the common belief that the structure of names directly dictates their
resolution. The information maintained by a name service consists of two types: attribute data and
configuration data (embodied in the name resolution tree). Name structure need not, but can, be
exploited to partition and distribute the configuration data among name servers. The important
result of the new name resolution mechanisms presented herein is that the name resolution tree
can change in response to changes in the distributed environment without requiring changes to the
actual name space.

The distinction between attribute data and configuration data is also important. Autonomous
organizations may supply their own name servers or freely choose other servers to store the
attributes for their objects. Organizations may enforce required access controls on attribute data
maintained on their name servers; on the other hand, configuration data used to resolve names can
be freely shared by al sinceit contains no private information.

Separating three activities: choosing names, selecting the storage sites for object attributes, and
resolving an object’'s name, is both feasible and desirable. Structure-free name management
provides the flexibility needed to manage names in evolving distributed environments.
Specifically, a distributed name service employing structure-free name management can be easily
reconfigured to improve performance or meet changing demands.

5. Further reading

See [Terry 85] for a more formal and thorough discussion of structure-free name management.
That report formalizes the space/time tradeoffs allowed by structure-free name management,
presents a more general notion of context bindings that can support other styles of naming such as
naming networks, and includes a prototype implementation of the mechanisms needed to support
this new scheme for managing names.

6. References

[Abraham and Dalal 80]
S. M. Abrahamand Y. K. Daldl.
Techniques for decentralized management of distributed systems.
Proceedings 20th IEEE Computer Society International Conference (COMPCON), San
Francisco, California, February 1980, pages 430-436.
[Birrell et al. 82]
A. Birrdl, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An exercise in distributed computing.
Communications of the ACM 25(4):260-274, April 1982.

10

Structure-free Name Management for Evolving Distributed Environments 1

[Ellis 77
C.A. HEllis.
Consistency and correctness of duplicate databases.
Proceedings Sxth Symposium on Operating Systems Principles, Princeton, New Jersey,
November 1977, pages 67-84.

[Gifford 79]
D. K. Gifford.
Weighted voting for replicated data.
Proceedings Seventh Symposium on Operating Systems Principles, Pacific Grove, California,
December 1979, pages 150-162.
[Lindsay 80]
B. Lindsay.
Object naming and catalog management for a distributed database manager.
Proceedings Second International Conference on Distributed Computing Systems, Paris, France,
April 1981, pages 31-40.
Also available as IBM Research Report RJ2914, August 1979.

[Mockapetris 83]
P. Mockapetris.
Domain names -- Concepts and facilities.
USC Information Sciences Ingtitute, RFC 882, November 1983.

[Oppen and Dalal 83]
D. C.Oppenand Y. K. Dalal.
The Clearinghouse: A decentralized agent for locating named objects in a distributed
environment.
ACM Transactions on Office Information Systems 1(3):230-253, July 1983.
An expanded version of this paper is available as Xerox Report OPD-T8103, October 1981.

[Saltzer 78]
J. H. Saltzer.
Naming and binding of objects.
In R. Bayer, R. M. Graham, and G. Seegmuller, editors. Operating Systems. An Advanced
Course, Springer-Verlag, 1978, pages 99-208.
[Schroeder et al. 84]
M. D. Schroeder, A. D. Birrell, and R. M. Needham.
Experience with Grapevine: The growth of a distributed system.
ACM Transactions on Computer Systems 2(1):3-23, February 1984.

[Su and Postel 82]
Z. Suand J. Postel.
The domain naming convention for internet user applications.
Network Information Center, SRI International, RFC 819, August 1982.
[Terry 85]
D. B. Terry.
Distributed Name Servers: Naming and Caching in Large Distributed Computing Environments.
Ph.D. Thesis, University of California at Berkeley, February 1985.
Available as Xerox Palo Alto Research Center, Technical Report CSL-85-1.

