
Developing Pedagogical Visualizations of Dense Matrix 
Operations on Interconnection-network SIMD Computers 

 
Justin C. Miller 

Computer Science Department 
University of Wisconsin Oshkosh 
neonprimetime.geo@yahoo.com 

 
Abstract 
 
Parallel algorithm animations provide graphical illustration of a parallel computer 
algorithm.  Parallel algorithms can be difficult for students to understand, but it is 
possible with the right tools, to improve student’s understanding of such algorithms.  This 
paper presents specific detail for creating pedagogical visualizations of parallel 
algorithms for dense matrix operations on interconnection-network SIMD computers.  
 
Section 1 will discuss the motivation behind building visualizations of parallel algorithms 
for dense matrix operations on interconnection-network SIMD computers.  Section 2 will 
explain exactly which parallel algorithms this paper addresses.  Sections 3 & 4 will 
discuss many strategies that should be used when creating these visualizations.  Section 5 
provides discussion about several specific algorithms.  All of the strategies and 
discussions are based upon research I performed for my thesis as well as an informal case 
study I performed on ten computer science undergraduates. 
 
Introduction 
 
Drawing a parallel algorithm by hand can lead to confusion for several obvious reasons.  
One big problem with drawing parallel algorithms by hand is the amount of calculations 
and passing of data that occurs “in parallel”.  The instructor must do lots of erasing and 
re-drawing as quickly as possible in order to make things appear to occur in parallel.  
Another issue that adds potential for confusion is the common occurrence of an instructor 
making a small mistake while drawing.  In a parallel algorithm, this small mistake could 
quickly manifest into tremendous confusion.  In general, as mentioned by Bergin et al. 
(1996), it is very difficult to draw any procedure that involves two dimensions or more, 
such as matrices. 
 
Since drawing by hand has so much potential for adding undesired confusion to a 
classroom setting, instructors can turn to creating a visualization of such an algorithm as 
an alternative.  First, and most importantly, the drawing process of such a difficult 
algorithm could be automated.  By having a predefined visualization to use in lecture, an 
instructor would eliminate the possibility of mistakes made by hand.  Another added 
benefit is, after investing time into creating a visualization, the instructor can use the 
same animation from semester to semester.  This would mean that a good section of a 
lecture is already created, thus making for quicker preparation time for lectures and 
allowing more time to do other things.  Another added benefit of using a visualization in 



a lecture is the notion that it attracts student attention, as mentioned by Bergin et al. 
(1996).  Also, if designed properly, these visualizations can not only be used during a 
lecture, but also outside of class for students to study from or even take online quizzes. 
 
Many papers have been written that perform case studies on students and record their 
benefits from usage of visualization, like Stasko, Badre, and Lewis (1993), Naps, Eagan, 
and Norton (2000), Rößling and Freisleben (2000), Mayer and Anderson (1991).  In 
general, the results show that while an animation definitely doesn’t hurt a students 
understanding, it doesn’t provide the “magic cure-all” that will make every student get 
perfect scores on exams.  Instead, it seems that the animations provide perhaps a slight 
increase in performance, but maybe more importantly they provide added instructor 
benefits such as eliminating the potential for mistakes, making for quicker preparation 
time because of re-use of animations, and also catching the interest of students. 
 
Which Parallel Algorithms? 
 
In this essay, the strategies that will be presented are for a specific class of parallel 
algorithms.  This class includes only algorithms that are for dense matrix operations such 
as multiplication, transposition, and matrix-vector multiplication 

This class is also confined to algorithms that follow the SIMD model of computation as 
described by Akl (1989).  This model allows for each processor to receive the same 
instructions (Single Instruction), and the only difference from processor to processor will 
be the data it is working with (Multiple Data-streams). 

Finally, the class of algorithms discussed in this essay fall under the subclass of SIMD 
computers known as Interconnection-network SIMD computers as described by Akl 
(1989).  Interconnection-networks, as opposed to shared memory, allow processors to 
communicate through a network of channels instead of through shared data. Within the 
class of interconnection-network SIMD computers, there are several simple networks Akl 
(1989) describes, and they are pictured below. 

Figures 1-4: Each simple network is picture below  
  

 
 

 

 
 

 
 



These networks define how the processors in a SIMD computer can communication.  The 
common networks discussed in this essay are 1.) Linear Array 2.) Two-Dimensional 
Array or Mesh (wrap-around connections are optional) 3.) Tree Connection 4.) Perfect 
Shuffle Connection (neighboring connections are optional).   Wrap around connections 
for mesh networks are defined as connections that go the last row to the first row and or 
the last column to the first column allowing those processors to communicate. 
 
Since the simple networks of this particular class of parallel algorithms are so visual by 
nature, as seen in figures 1-4, their algorithms have great potential to be animated.  The 
remaining parts of the paper will now discuss what strategies should be used when 
creating such animations.  First, the paper will discuss several general strategies that 
apply to all algorithm animations.   Then there will be a section describing several 
strategies specific to dense matrix operations on interconnection-network SIMD 
computers.  Finally, there will be a section that analyzes the details of animating several 
specific algorithms. 
 
General Strategies 
 
Many papers have already been written describing some general strategies that should be 
used in all algorithm visualizations. Still, it is worthwhile to briefly cover some of these 
important general strategies that thus hold true for dense matrix operations on 
interconnection-network SIMD computers as well. 
 
Use Everywhere 
 
One major factor that comes into play is designing a visualization that will run across 
multiple platforms so it can be used during lectures, labs, or at a student’ s home.  
Luckily, this is not a major concern because tools have already been created to help build 
“use everywhere” visualizations.  The tools used and discussed in this paper are Rößling 
and Freisleben's (2001) AnimalScript and Naps and Chan's (1999) JHAVÉ.  Both are 
written in Java, thus they have the capability of being run on any machine that has a Java 
Virtual Machine, and they will look the same across all platforms.  AnimalScript is a 
scripting language, and so one must simply write a program in any language, and have it 
output some script into a file.  The Java-based Animal program will then use the script 
file to generate an animation.  JHAVÉ is a web-based client-server tool that offers the 
capability of taking an AnimalScript file and introducing such features as HTML pop-up 
windows and stop-and-think/quiz questions. 
 
Descriptive Text 
 
Providing descriptive text, such as HTML pop-up windows in JHAVÉ or simple text on 
the animation screen in Animal, have been well discussed by Mayer and Anderson 
(1991), Rößling and Naps (2002), and Kehoe (1996). During each step of the algorithm, 
there should be some sort of descriptive text describing the action that is occurring. It is 
also important that if the descriptive text is going directly on the animation, it should to 



have a high-contrast text-box so that the text is easily readable. Since Animal allows you 
to do layering, the high-contrast text-box is very easy to create. 
 
Step Through, Rewind, and Video Motion 
 
It has been well documented by Naps et al. (2000) and Rößling and Naps (2002) that 
there is a need to have full forward and rewind capabilities. Full capabilities are defined 
as an animation that allows the user to manipulate the algorithm by going through one 
step at a time (forward or backwards) or playing it in full motion like a video.  It is 
necessary to have rewind capabilities because, if a student has a question about a 
previous slide, the instructor won’ t have to re-run the entire visualization.  Being able to 
step forward in the animation is necessary so that the instructor may go through the 
animation, one step at a time and explain what is occurring.  Video motion is also a 
necessity because there are many concepts that become easier to grasp when they’ re seen 
occurring in a smooth motion. Fortunately, by using Animal and JHAVÉ, all the features 
mentioned above are provided. 
 
Fancy Graphics != Quality Animations 
 
One final important issue already described by Miller (1993) and Rößling and Naps 
(2002) is the concept that fancy graphics are not necessary to provide a quality animation.  
Instead, an animation should be simple, yet effective.  Thus, it is necessary to only use a 
few simple fonts, and only a few high contrast colors in the animation.  It has also been 
mentioned in a few papers that red-green color blindness is quite common, and therefore 
one should not attempt to use red versus green to distinguish important differences in an 
algorithm.  By using tools such as Animal and JHAVÉ, you can easily manipulate the 
fonts and colors that you use in the animation. 
 
Specific Strategies 
 
Along with the strategies mentioned in Section 3, there are more specific strategies that 
deal directly with developing visualizations of dense matrix operations on 
Interconnection-network SIMD computers. Through my thesis research and an informal 
case study of ten computer science undergraduates, I have determined that the following 
strategies should be applied to any visualizations of a dense matrix operations on 
Interconnection-network SIMD computers. 
 
Show Original and Solution Matrices 
 
In the attempt to visualize any dense matrix operation, one will most likely have part or 
most of the animation devoted to the many processors working on the algorithm.  It is 
also very helpful to visualize the original matrices the algorithm is working with and keep 
it displayed throughout the entire animation.  Also, it is a very good idea to provide an 
empty matrix that, by the end of execution, will hold the solution. For example, when 
visualizing a transposition one should devote most of the screen to the processors that are 
passing data and number crunching, but there should also be a visual assignment 



statement (Figure 5) with the original matrix on the left, and an empty solution matrix 
that by the end of the animation will contain the solution. For a multiplication, there 
should be another visual assignment statement that seems to be multiplying the two 
matrices and assigning it to the solution matrix.  The purpose of having the original 
matrix animated on the screen is so before the algorithm starts execution, steps can be 
created that take the values in the original matrices and properly disperse them into the 
processors’ registers. This can help the student understand how or why the processors 
receive initial values in their registers.  The empty solution matrix is displayed because, 
for all networks except the linear tree, in general each processor will halt, holding a 
particular number that belongs in the solution matrix.  This is very convenient then, 
because now each processor can place or pass its value to the correct location in the 
solution matrix. In general, the original and solution matrices should be smaller than the 
processors that are drawn, because the processors are obviously of more importantce.   
 
 
Finally, for matrix transpositions specifically, having both the original matrix and 
solution matrix displayed can allow the animation to do a simple but effective proof that 
the transposition worked by highlighting each row in the original and the corresponding 
column in the solution matrix (see Figure 5).  Since the Animal scripting language will 
allow you to move objects and change their colors, it is possible to do everything with the 
original and solution matrices that was mentioned above. 
 

Figure 5: This is a visual assignment statement for a matrix 
being transposed.  Currently, highlighting is occurring to prove 

or re-emphasize that the transposition worked properly. 
 

 
Processors 
 
When visualizing a parallel algorithm, it is necessary to display all the processors 
involved.  These processors are connected in some network mentioned in Section 2.  It is 
important to give each processor a label, for example P0, P1, P2, etc.  The labels are 
needed so that in class an instructor can tell students to focus on a particular processor, 
and they will easily be able to find it and do so.  In the matrix operations, a processor is 
usually required to hold some data in its local registers.  Thus, in the animation it is 
necessary to show these registers and their contents at all times.  For example, in a 
multiplication, there might be three registers: two for the numbers being multiplied and 
one for the sum accumulated by the multiplications.  These registers can be visualized 
either by having a simple assignment statement inside the processor or by having a small 
box and label to designate a register.  One final thing needed inside a processor is an 



“action window”.  This is an area in the processor that notifies the viewer what action the 
processor is taking at that current time.  For example, if currently the processor is 
multiplying it's two registers (A and B) together and adding it to another register C, the 
action window could contain a statement similar to C += A * B, or as seen in Figure 6, it 
may be better to show the two numbers being multiplied, for example: C += 7 * 3.  An 
action window is necessary in an algorithm where a calculation is occurring, but it could 
also be used in algorithms where the main action is passing and receiving data.  In the 
cases where the processor is actually just passing and receiving data, the action window 
could show statements such as “passing data”, “receiving data”, or “reading from the 
input queue”.  The Animal scripting language will easily allow you to animate the 
processors in a readable, well organized way like mentioned above. 
 

Figure 6: This processor (P5) is currently 
performing a multiplication and storing the sum.  Notice the 

three registers and their values denoted by assignment statements. 
In this example, the action window contains the statement 

C += 7 * 3, and the sum (21) will soon be added to register C’ s total. 
 

 
 
Communication Channels 
 
Communication channels are vital to the visualization of any algorithms done on an 
Interconnection-network SIMD computer.  The communications channels, usually 
animated as a line connecting two processors, define how processors can communicate 
with each other.  Depending on the network (described in section 2) the algorithm is built 
for, the channels will be located in different locations.  In order to help the viewer better 
understand how the channels work, arrows heads should be placed on the channel in the 
direction the data will be passed.  If a pair of processors both pass to and receive from 
each other (bi-directional), it is necessary to then draw two separate lines instead of 
drawing one line with arrow heads at both ends.  The reason is that during the animation 
numbers will literally be sliding along these lines, and it will become confusing if more 
than one number is traveling across the same line at the same time.  The Animal scripting 
language allows you to move objects from one point to another, and therefore it is quite 
easy to make numbers smoothly slide across a channel from one processor’ s register to 
another. 
  
Input Queues 
 
In some algorithms, certain processors are receiving input from some sort of queue.  In 
these situations, processors do not receive initial values immediately from the original 



matrix.  Instead, the initial values are passed directly from the original matrix to the 
queue and stored there until the processor needs them.  In order for the processor to then 
grab the next element from the queue, there should be some sort of communication 
channel drawn between the queue and the processor.  Then, when the processor wants to 
grab the next element, the element can slide smoothly across this channel into the 
appropriate register location where the processor can perform its calculations.  Once 
again, since the Animal scripting language allows you to move objects, creating and 
manipulating an input queue is made quite easy. 
 
Slide by Slide Abstraction 
 
As discussed in several papers, there needs to be a certain level of abstraction when 
visualizing algorithms.  In particular, when visualizing a parallel algorithm, all the 
communication delays and differences in processor speeds must be abstracted.  What this 
means is that all processors must be synchronized so that they all pass data at the same 
time and they all do calculations at the same time.  Fortunately, in AnimalScript “ slides”  
can be created by putting curly braces around several script statements.  A “ slide”  forces 
all operations within the curly braces to occur at the exact same time. In Figure 7, the 
next instruction is for every processor to pass its data in register A to the right.  Since this 
action was created on a “ slide” , the animation will show every processor passing its data 
right at the exact same time. When creating slides using the Animal scripting language,  I 
initially used multiple threads to solve the algorithm and pretend things were happening 
in parallel.  What I learned was that for the purpose of creating animations and “ slides”  in 
particular, it is much easier to just write a purely sequential solution to the parallel 
algorithm and use the “ slides”  to make it look like it’ s happening in parallel.  If you are 
using threads, then because of their unpredictable scheduling, the animation can begin to 
look chaotic and confusing.   
 

Figure 7: Processor P5 is passing it’ s ‘A’  value to the right. 
During the 3 steps, the dashes show where a number has been. 
The dashes are not in the actual animation, just in this picture. 

 

 



 
Tracking Data 
 
In some instances there may be a desire to follow a particular data element throughout the 
execution of a program.  This can be accomplished by giving this particular data element 
a different color that all the other data elements and perhaps even bolding it.  This would 
be particularly useful when visualizing the mesh transposition algorithm that has one of 
the more confusing paths the data must follow.  In general, tracking data becomes very 
useful in helping a student understand the path data travels during execution.  Since 
animal allows you to change the colors of any object, tracking data can easily be 
accomplished. 
 
Matrix Size 
 
One crucial issue when creating an animation is choosing a good default size for the 
matrices.  Obviously, as the matrices get larger, the screen fills up and therefore it 
becomes quite hard to even follow the animation.  Also, as the matrices get larger, the 
complexity increases and the animations become more confusing than helpful.  Because 
of these reasons, it may be necessary to have a maximum size that your animation can 
handle.  This maximum size is the largest matrix sizes that can be manipulated in a 
“ visually pleasing”  and understandable way.  Normally, command line parameters or 
pull-down menus in JHAVÉ will allow the user to choose the size of the matrix being 
manipulated.  Still, it is necessary to choose one default size that is most “ visually 
pleasing”  and easy to follow.  Thus, the default size would kick in if no command line 
parameters were given or if the user just wanted to view the generic animation.  Typically 
from my studies I’ ve discovered that 3 by 3 or 4 by 4 matrices are good default sizes.   
 
Pseudo Code 
 
Many papers such as Rößling and Freisleben (2000), have talked about the importance of 
showing pseudo code that traces the execution of the program.  Since these are SIMD 
(that is single instruction) computers, showing pseudo is possible because all the 
processors share the same instructions.  It is important, just like the descriptive text 
mentioned in Section 3, that the pseudo code is placed on a high contrast “ text-box”  so 
that it is readable. Of course, it is also then necessary to highlight the current line of 
pseudo code that is executing.  During my studies, I found that pseudo code was only 
helpful for certain algorithms.  Specifically, the algorithms such as in Figure 7, where 
every processor is performing the same generic action (like passing data right) then the 
action windows should be substituted with on section of pseudo code.  Pseudo code 
sections can be created easily with the Animal scripting language or it can be displayed in 
a JHAVÉ HTML pop-up window.  One thing to note is that, as of the time of this writing, 
if text is placed in a JHAVÉ HTML pop-up window, it is static text and therefore 
highlighting of the active line cannot be accomplished. 
 

 
 



Figure 8: Sample pseudo code section that could appear during an animation. 
Notice that the second line is highlighted, which means it is active. 

 

 
 
With many of the algorithms though, different processors end up executing different parts 
of the code at the same time, as will be seen in the next section.  For example, if the code 
told odd numbered processors to do one thing, and even numbered processors to do 
another, then the odd and even numbered processors would not be executing the same 
line of code, and thus pseudo code wouldn’ t be feasible.  With these algorithms, it is then 
necessary to use the action window, so that it can be specifically shown what each 
processor is doing.  

 
Step Counter 
 
Finally, each algorithm executes a certain number of times relative to some variables 
(usually the matrix size).  It is nice to follow these algorithms step-by-step and so it is 
logical to have some text that displays what step the algorithm is currently executing.  It 
may also be useful to display the equation that determines how many steps the algorithm 
runs in and also display the values of the variables this equation relies on.  Once again, it 
is important to put all this text on a high-contrast “ text-box”  to make it readable.  The 
step counter can easily be created using the Animal scripting language. 
 

Figure 9: A step counter that includes vital information to the algorithm. 
The step counter would update on each pass of the algorithm. 

 

 
 
 
Algorithm Specifics 
 
Now it’ s time to give specific attention to the different parallel algorithms that fall under 
the category of dense matrix operations on Interconnection-network SIMD computers.  In 
this section, there will be a brief discussion of the issues that arose while creating 
visualizations of the different parallel algorithms I worked with during my research. 
 
Mesh Multiplication 
 



To accomplish a mesh multiplication, such as the ones described in Akl (1989) and 
Chaudhuri (1992), the mesh network described in Section 2 must be used (without wrap-
around connections).  These algorithms require that certain “ edge”  processors have an 
input queue (as mentioned in the previous section) that holds the numbers from the 
original matrices.  In these algorithms, typically the processor would grab from the input 
queue as soon as the processor had an empty register to fill.  In order to make the 
visualization easier to follow though, the “ edge”  processors should not grab a number 
from the input queue until they receive a number from one of their neighbors.  Thus, the 
processor seems to only grab data when it’ s preparing to do some calculations on that 
number.  The processor receives both the numbers it needs, multiplies them, adds the 
total to its other register, and passes the numbers to the appropriate neighbors.   
 
It is also interesting to take a look at the scenario that occurs when a processor is 
preparing to pass a number to its neighbor, but it turns out to have no neighbor (it’ s in the 
last column or row).  When this occurs in the visualization, the number can be considered 
“ dead” , and therefore it needs to be discarded.  The best way to discard a number is to 
just make it disappear using the AnimalScript hide feature. 
 
Torus Mesh Multiplication (Canon’s Algorithm) 
 
The torus mesh multiplication as described in Lester (1993) and Chaudhuri (1992) uses 
the mesh network that includes wraparound connections as described in Section 2.  The 
wraparound connections can be tricky to design visually.  To make the design as easy to 
understand as possible, the wraparound channels should be drawn together and travel 
around the entire matrix (see Figure 2).  This way, the concept of each processor passing 
data through the wraparound connection can be grouped together and seen easily.   
 
In the torus mesh multiplication, the initial distribution of the numbers and the 
rearrangement that occurs before algorithm execution is crucial.  Because of the 
importance as well as the complexity, it is very beneficial to animate the pre-execution 
rearrangement.  The rearrangement can be accomplished by giving each processor its 
initial value and then having that processor pass to its neighbors along the 
communication channels as described by the algorithm until the rearrangement has 
concluded.   
 
Mesh Transposition 
 

The mesh transposition, as written about by Akl (1989) and Chaudhuri (1992), uses a 
simple mesh network as described in Section 2.  Actually though, there are certain 
channels that are not used during execution and thus don’t need to be drawn (as seen in 
Figure 10).  The algorithm because easier to understand when only the communication 
channels that are used are included.   
 
Also, in this particular algorithm, data is being passed from processor to processor until it 
reaches its destination processor.  In an algorithm like this one, it is necessary to 
distinguish between a number than is still active and being passed and a number that has 
found its destination processor.  These numbers can be distinguished by changing the 



color of the number when it reaches its destination processor.  Also, in an algorithm like 
this one, when a particular processor has done all of its passing and is finished executing, 
it can change color as well.   
 

Figure 10: The Mesh Transposition only requires a  
few communication channels, and 

the rest can be eliminated from the animation. 
 

 
 
Perfect Shuffle Transposition 
 
The perfect shuffle transposition, described in Akl (1989) and Chaudhuri (1992), is the 
animation I used during my small case study.  The algorithm is can be thought of as very 
visual in nature, and therefore it can be animated quite elegantly.  Initially, the animation 
should have the original matrix as well as an empty matrix displayed on the screen as 
seen in Figure 5.  Now, in order to disperse the initial values to the proper processors, a 
very simple but effective trick can be played.  First of all, the processors are supposed to 
be placed in ‘perfect shuffle format’ , as displayed in Figure 3.  Instead of just making the 
processors appear out of nowhere, the processors can grow out of the original matrix.  
Basically, the animations should actually draw two copies of the original matrix, one on 
top of the other, so that initially it appears that there is only one original matrix drawn.  
Then, for each element in row one, the second copy of the matrix should break apart and 
move below into perfect shuffle format.  The process should then continue for each row 
until all of the initial values have been dispersed.  This helps the student understand 
where the initial placement of values came from. 
 
Next, it is necessary to explain how the processors are connected with the communication 
channels because this can be a confusing item with the perfect-shuffle network.  Each 
communication channel should be drawn separately, and it along with it should be drawn 
a small text box explaining why this channel connects one processor to another.  Also, 
just fitting all the communication channels on the screen can be a tricky process.  The 
channels must be drawn very similar to Figure 3 so that they do not just become a bunch 
of confusing lines that cross each other.  It is a good idea to put the first half on the top of 
the linear array and the second half of the channels below.  Also, since this algorithm 
requires the number of processors to be a power of two, the matrix that is being 
transposed almost has to be a 4x4 matrix.  The reason being, a 2x2 matrix is too 



simplistic and an 8x8 matrix becomes too confusing with all communication channels 
and processors required. 
 
Finally, after the actual shuffling has occurred, the data is ready to return to the solution 
matrix.  This can be accomplished by simply reversing the initial placement process.  
Every processor will slide back over the appropriate position in the solution matrix.  
What you will then end up with is the animation looking almost exactly as it did when it 
began.  The only difference is that the solution matrix will now be full. 
 

Figure 11: The perfect shuffle transposition animation in the process of shuffling.   
 

 
 
Perfect Shuffle Multiplication 
 
The perfect shuffle multiplication described in Chaudhuri(1992) looks similar to Figure 3 
and the perfect shuffle transposition, except it also includes communication channels 
connecting each processor to its neighbor on the right.  The trickiest part of animating the 
shuffle multiplication, is fitting all the communication channels so that they do not look 
like just a bunch of crossing lines. The setup is going to be almost exactly the same as the 
perfects shuffle transposition, except that there needs to be spaces between each of the 
processors in order to show the connecting communication channels.   
 
Tree Matrix-Vector Multplication 
 
The tree matrix-vector multiplication, as described by Akl (1989), is a very interesting 
algorithm.  In many ways, it is similar to the mesh multiplication and matrix-vector 



multiplication mentioned earlier in this section, except that it’s in the form of a tree.  
There are input queues, just like a mesh multiplication, that will have to be drawn for the 
leaf nodes.  Since the children are allowed to pass to their parents, each non-leaf 
processor will have two incoming communication channels that need to be drawn.   
 
One thing to note is that the root of the tree performs a special task in the animation.  As 
soon as the root calculates a final answer, it should send it to the proper position in the 
solution vector.  This ends up being different than the other algorithms then, because the 
solution matrix needs to actually be filled as the algorithm is running instead of waiting 
until the algorithm terminates and then doing it all at once. 
 
Linear Matrix-Vector Multiplication 
 
The linear matrix-vector multiplication, as described by Akl (1989) and Chaudhuri 
(1992), requires input queues similar to the mesh multiplication described earlier in this 
section.  Linear matrix-vector multiplication also requires one to deal with the issue of 
“ dead”  numbers like in the mesh multiplication.  The linear matrix-vector multiplication 
actually ends up being just a simplified version of the mesh multiplication and therefore it 
is very easy to animate. 
 
Summation 
 
Through my studies, I have come to the conclusion that an instructor can greatly benefit 
from the usage of visualizations of parallel algorithms in the classroom.  Simply 
attempting to draw them by hand can only lead to more confusion than intended.  
Sections 3-5 of this paper provided instructors with a variety of strategies for creating 
quality animations.  Animations created using these strategies can then be used in lecture 
or outside of class for studying or quiz purposes.  From my research and informal case 
study, I have concluded that the animation of parallel algorithms for dense matrix 
operations on interconnection-network SIMD computers can be very beneficial in a 
classroom setting and deserves more attention in the future. 
 
Downloads 
 
AnimalScript can be downloaded at http://www.animal.ahrgr.de/ 
JHAVÉ can be downloaded at http://csf11.acs.uwosh.edu/ 
 
References 
 
Akl, S. G. (1989). The Design and Analysis of Parallel Algorithms.  Englewood Cliffs, 

NJ: Prentice Hall. 
Bergin, J., Brodile, K., Goldweber, M., Jimenez-Peris, R., Khuri, S., Patino-Martinez, M., 

McNally, M., Naps, T., Rodger, S., & Wilson, J. (June 1996). An overview of 
visualization: its use and design: Report of the Working Group on Visualization. 
Proceedings of 1st Conference of Innovation and Technology in Computer Science 
Education, 192-200. 



Chaudhuri, P. (1992). Parallel Algorithms: Design and Analysis. Brunswick, Victoria: 
Prentice Hall. 

Lester, B. P. (1993). The Art of Parallel Programming.  Englewood Cliffs, NJ: Prentice 
Hall. 

Mayer, Richard E., and Anderson, Richard B. (1991). Animations Need Narrations: An 
Experimental Test of a Dual-Coding Hypothesis. Journal of Education Psychology, 
83(4),  484-490. 

Miller, B.P. (June 1993). What to draw? When to draw? An Essay on Parallel Program 
Visualization.  Journal of Parallel and Distributed Computing, 18, 265-269. 

Naps, T., Eagan, J., and Norton, L. (Mar. 2000).  JHAVÉ: An Environment to Actively 
Engage Students in Web-based Algorithm Visualizations.  31st SIGCSE Technical 
Symposium on Computer Science Education, 109-113. 

Naps, T., and Chan, E. (Mar. 1999).  Using Visualization to Teach Parallel Algorithms.  
30th SIGCSE Technical Symposium on Computer Science Education, 232-236. 

Rößling, G., and Freisleben, B. (Feb. 2001).  AnimalScript: an Extensible Scripting 
language for Algorithm Animation.  32nd SIGCSE Technical Symposium on Computer 
Science Education, 70-74. 

Rößling, G., and Freisleben, B. (Mar. 2000). Experiences in Using Animations in 
Introductory Computer Science Lectures.  31st SIGCSE Technical Symposium on 
Computer Science Education, 134-138. 

Rößling, G., and Naps, T. (June 2002).  A Testbed for Pedagogical Requirements in 
Algorithm Visualizations.  Proceedings of 7th Conference of Innovation and 
Technology in Computer Science Education, 96-100. 

Stasko, J., Badre, A., and Lewis, C. (April 1993).  Do Algorithm Animations Assist 
Learning? An Empirical Study and Analysis.  Amsterdam Netherlands, Proceedings 
of INTERCHI ’93 Conference on Human Factors in Computing Systems, 61-66. 

 
Acknowledgements 
 
I would like to acknowledge the assistance of Dr. Naps, my college professor and thesis 
advisor during my undergraduate career at the University of Wisconsin Oshkosh. 
 


