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MGMG 522 : Session #4
Choosing the Independent Variables

and a Functional Form

(Ch. 6 & 7)
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Major Specification Problems

1. Problem with the selection of the 
independent variables.

2. Problem with the functional form.
3. Problem with the form of the error 

term.
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Problems with the Selection of the 
Independent Variables

The choice of independent variables is up to 
the researcher to decide.
This freedom does not come without a cost.
Problems

1. Omitted variables
2. Irrelevant variables

Your underlying theory should give you 
some hints about what independent 
variables should be included in your 
regression model.
The statistical fit is less important than the 
underlying theory.
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Case 1: Omitted Variables
It occurs when you don’t include important 
independent variables in your regression model 
when you should, either because you don’t think 
of them or you think of them but you can’t get 
the data.
True model: Y = β0+β1X1+β2X2+ε
Your model: Y = β0+β1X1+ε*

where, ε* = β2X2+ε
If X1 and X2 are not completely independent, ε*
will not be independent of X1, a violation of the 
classical assumption #3 (all X’s are uncorrelated 
with ε).
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Problems:
1. OLS is no longer BLUE.
2. Coefficient estimates are biased,           .      
3. , variances of the coefficient 

estimates decrease.  See p. 4-8.
For a 2-independent variable model, it 
can be shown that,
E(β1) = β1+β2α1
where α1 is from: X2 = α0+α1X1+u
and u is a classical error term

Coefficient estimates could be unbiased if 
β2 = 0 or α1 = 0.  But, that is unlikely.

( ) kkE ββ ≠ˆ

( )kVAR β̂
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E(β1) = β1+β2α1

The amount of bias = β2α1.
Or, the amount of bias = β2f(rx1,x2).
The direction of the bias can be determined by 
the signs of β2 and α1.  For example, (-)(-)=(+) 
or (-)(+)=(-).
To correct for the omitted variables problem,

1. Think again about your theory.  What other 
important variables could be missing?

2. If the signs of the included coefficient estimates 
are unexpected, you could probably tell the 
direction of the bias and have some clues about 
the missing variables.
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Case 2: Irrelevant Variables

It occurs when you have some 
unnecessary independent variables in your 
regression model.
True model: Y = β0+β1X1+ε
Your model: Y = β0+β1X1+β2X2+ε**

where, ε** = ε-β2X2

The coefficient estimates will still be 
unbiased, but            increase, lowing the 
reported t-values.

( )kVAR β̂
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For the model, Y = β0+β1X1+β2X2.

If r12 ≠ 0, the variance will increase.
If r12 = 0 or the irrelevant variable is not 
in the regression model, the variance will 
stay the same.
Now, it seems like having extra 
unnecessary variables is not as serious a 
problem compared to the omitted 
variables problem.
In fact, we want neither one of these 
problems.
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Four Criteria to Help You Choose 
the Independent Variables

1. Theory
2. t-Test
3. Adj-R2

4. Bias
If all four conditions are met, that 
variable should be in your model.
If not, that variable doesn’t belong in 
your model.
If some conditions are met while some 
are not, use your judgment.
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When you add an omitted variable, usually
– Adj-R2 will rise
– Coefficient estimates will change
When you add an irrelevant variable, 
usually
– Adj-R2 will fall
– Coefficient estimates will not change
– t-values become less significant
Don’t rely on the Adj-R2 criterion alone, 
because it can be shown that Adj-R2 will 
rise if you include a variable with t-value 
> 1 but not significant.
Adj-R2 will also rise if you delete a variable 
with t-value < 1 from your regression 
model.  See an example on pp. 173-176.
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Three Methods to Avoid When 
Choosing Independent Variables

1. Data Mining
2. Stepwise Regression
3. Sequential Search

You should specify as few models as 
possible.
The more you look, the higher the 
chance you will find a model that has a 
good statistical fit with not much 
theoretical support.
Do not select a variable based on its t-
value, because that technique creates a 
systematic bias.  How?
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Lagged Variable

Sometimes, the change in Y is not 
caused by the change in X from the 
current period, but from the other 
period.
The coefficient estimate of a lagged 
variable measures the change in Y 
this period as a result of a change in 
X in the other period.
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Other Specification Criteria

Besides the four criteria outlined on 
p. 4-9, there are other specification 
criteria.

1. Ramsey’s Regression Specification 
Error Test (RESET)

2. Akaike’s Information Criterion (AIC)
3. Schwarz Criterion (SC)
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Ramsey’s Regression Specification 
Error Test (RESET)

H0: There is no specification error.
H1: There is a specification error.
If F-value from the RESET is higher than the 
critical F-value, we can reject H0, meaning that 
there is a specification error.  However, RESET 
doesn’t tell how to correct it.
If F-value from the RESET is lower than the 
critical F-value, we cannot reject H0, meaning 
that we probably have a correct specification.
RESET is more useful in confirming our model 
than telling us what’s wrong and how to correct 
our model.
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AIC and SC

AIC and SC are used to compare two 
regression models.
Both AIC and SC penalize the 
addition of another independent 
variable if it doesn’t improve the 
overall fit significantly.
Between two regression models, the 
one with lower AIC and SC values is 
preferred.
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Choosing a Functional Form

Now, you have a set of independent 
variables, you still need to specify a 
functional form.
That is, how Y is related to each X.
About the intercept term:

1. Do not suppress the intercept term even 
if the theory suggests.

2. Do not rely on the estimate of the 
intercept term for analysis or inference.
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Different Functional Forms
1. Linear Form: Y = β0+β1X1+ε
2. Double-Log Form: lnY = β0+β1lnX1+ε
3. Semilog Form: lnY = β0+β1X1+ε , or

Y = β0+β1lnX1+ε
4. Polynomial Form:

Y = β0+β1X1+β2(X1)2+β3(X1)3+ε
5. Inverse Form: Y = β0+β1(1/X1)+ε
• Theory usually suggests only the signs of the 

coefficients, not the functional form.
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Linear Form
Y = β0+β1X1+β2X2+…+ε
The slope is constant.

But, the elasticity of Y with respect to X 
is not constant.

Unless the theory suggests otherwise, 
the linear form should be used.
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Double-Log Form
lnY = β0+β1lnX1+β2lnX2+…+ε
This is another popular form besides the 
linear form.
It is also known as the “Log-linear” form.
The slope is not constant.
But, the elasticity of Y with respect to X is 
constant.

See p. 212 for more information.
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Semilog Form

lnY = β0+β1X1+β2lnX2+ε , or
Y = β0+β1lnX1+β2X2+ε
Similar to the Double-Log form, 
except that some variables, but not 
all, are in log form.
See p. 214 for more information.
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Polynomial Form

Y = β0+β1X1+β2(X1)2+β3(X1)3+ε
Appropriate for a model where 
changes in X cause Y to 
increase/decrease over some range 
and decrease/increase over other 
range.
See p. 217 for more information.

4-22

Inverse Form

Y = β0+β1(1/X1)+ε
Appropriate for a model where the 
impact of an independent variable 
approaches zero as its value gets 
large.
See p. 219 for more information.
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Selecting a Functional Form
Rely on your theory.  What does your 
theory tell you about the relationships?
Do not compare Adj-R2 from a linear in 
variable model with a nonlinear in variable 
model. Because
– Adj-R2 are not comparable when Y is

transformed.  Use                                    for 
comparison instead.

– Adj-R2 may look good inside the range of the 
sample, but could look bad outside the range 
of the sample.
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Dummy Variables
1. Dummy Intercept takes the form:

Y = β0+β1X1+β2D+ε
2. Dummy Slope takes the form:

Y = β0+β1X1+β2X1D+ε
3. Both Dummy Intercept and Dummy 

Slope take the form:
Y = β0+β1X1+β2X1D+β3D+ε

** We will discuss the concept and use of 
dummy variables again in “Panel Data 
Regression” if we have time.
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Appendix: General F-Test
Any F-test we’ve seen so far can be 
thought of as a special case of the general 
F-test.
The general F-test tests more than one 
coefficient at a time.
The null hypothesis for the general F-test 
is what we think is correct.
We usually want to “accept” H0.
This contrasts to the traditional way of 
hypothesis testing we’ve learned.
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Steps in General F-Test
1. Specify the null and alternative 

hypotheses.
2. The null hypothesis will be used as a 

constraint to be put on the equation.
3. Calculate RSSs from the constraint and 

the unconstraint equations.
4. If the fits of the two equations are not 

significantly different, we will “accept”
H0.  If the fits are significantly different, 
reject H0.
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F-statistic:

RSSC = Residual Sum of Squares 
from the constraint equation

RSSU = Residual Sum of Squares from the 
unconstraint equation

M   = # of constraints
K   = # of independent variables in the 

unconstraint equation
n   = # of observations
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Example of General F-Test
Y = β0+β1X1+β2X2+β3X3+β4X4+ε ----- (1)
Suppose you think β1=β3=β4=0
In other words, Y = β0+β2X2+ε. ----- (2)
Therefore, your H0 is β1=β3=β4=0.
And your H1: The original model fits the data OK.
You’ll run OLS of (1) and obtain RSSU.
You’ll run OLS of (2) and obtain RSSC.
Substitute RSSU and RSSC from (1) and (2) into 
the F-statistic formula.
Then, compare your F-value with the critical F-
value and make the decision whether or not to 
reject H0.
Note for this example, K = 4, M = 3.
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Chow Test
Chow test is a test whether two data sets 
can be combined into one data set 
because the slopes are not statistically 
different.
Put differently, there is no structural 
change in the model between the two data 
sets (e.g., before and after a war.)
H0: Slopes in the two data sets are not 
different (no structural change).
H1: Slopes in the two data sets are 
different (there is structural change).
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Steps in Chow Test
1. Run two separate OLS regressions with the 

same specification for each data set and record 
RSS from each data set.  Call these, RSS1 and 
RSS2.

2. Combined the two data sets into one and run 
OLS with the same specification again, and 
record RSS.  Call it, RSST.

K  = # of independent variables
N1 = # of observations in sample 1
N2 = # of observations in sample 2

3. Reject H0 if F-value > critical F-value.
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