Inheritance

Introduction

Inheritance
 is the most powerful feature of object oriented programming. It allows organising classes into a classification hierarchy thus giving an extra dimension to the encapsulation of abstract data types. It allows this by enabling classes (and therefore objects) to inherit attributes and methods from other classes. The inheriting class can then add extra attributes and methods of its own

Basic terminologies used in
inheritance
 are given in the following table

Terminology�Description��Derived class OR

sub-class OR

child class�A class which inherits some of its attributes and methods from another class��Base class OR

super class OR

parent class�A class from which another class inherits��Ancestors�A class’s ancestors are those from which its own super classes inherit��
Descendants
�A class’s
descendants
 are those which inherit from its sub class��

There are two complementary roles of
inheritance
 in an object oriented application,

Specialisation. Extending the functionality of an existing class

Generalisation. Sharing commonality between two or more classes

These are, by no means mutually exclusive and these might be regarded as top down and bottom up approaches respectively to the same type of structure. In the top down approach, the base class is used and specialised classes are derived from it. With the bottom up approach, separate similar classes are generalised into a common base class. Practically the two tend to be part of the same iterative process of analysis and design although the top down specialisation approach is the one more closely associated with the reuse of existing classes.

The product of
inheritance
 is known as a classification hierarchy- a relationship between classes whereby one class is considered to be a kind of another class. As the hierarchy is traversed from top to bottom, more specialised classes are encountered/created by adding functionality and extending what exists at each level of hierarchy to create more specialised versions of the base class. For example, a generalised base class, vehicle, exists at the root of the hierarchy tree from which land vehicle, airborne vehicle and sea- borne vehicle classes inherit. Each of these classes is a kind of vehicle. Other kinds of land vehicles include automobiles, trains, etc. Similarly surface vessels and submarines are kinds of seaborne vehicles.

�

Difference Between a kind of or a part of Relationship

Each level of a classification hierarchy contains more specific classes, each of which must be a kind of class from which it inherits. It is important to make the distinction between a class which is a kind of another class and one which is a part of another class. For example, engine should not be made a derived class of automobiles since it
does not
 make sense to say an engine is a kind of an automobile. An engine is not a kind of an automobile but is a part of an automobile. Such relationships are discussed under aggregation.

Different Classes or Different States?

When designing a class hierarchy, distinction has to be made between objects which need to be represented by different classes and those which belong to the same class but may have different states. This means analysing whether the differences between the objects are
dependent
 on type (e.g., as an automobile being different from a train) or state (i.e. the differences may be accounted for by the state of attribute values). Creating a classification that actually relates to the state of an attribute common to all objects of the parent class is not appropriate. When two objects are being analysed and the differences between them are not significant, then these differences may actually be in the state attribute values rather than the differences in fundamental types.

Identifying Differences in Classes

In certain cases, the distinction between objects of different classes depends upon the context. For example, consider the class automobile. If, in an application, two objects of the automobile class exist, one to carry goods and the other to carry passengers, should two separate subclasses be defined for these
 two objects, or simply include an
attribute
 load_type which may have goods or passengers as state values ?

If the only distinction between them is their load type and all other attributes and behaviour remain the same, then only an attribute is required. If, however, load_type is a key distinction between types leading to different sets of behaviour, then it may be appropriate to make a type distinction between goods_vehicles and passenger_vehicles.

What do Objects Inherit ?

It is important to remember that
inheritance
 mechanism exists between classes and not objects. A class does not contain any state values, it only acts as a blueprint to define what attributes each object in the class will have. The state values of these attributes are contained in individual objects. When it is said that a derived class inherits from a base class, it means that all attributes and methods in the base class are automatically included in the derived class. The derived class is, therefore, by default identical to the base class but it can be extended and refined. Objects of the derived class do not inherit anything from the objects of the base class.

Consider a class Aircraft and another class Bomber derived from Aircraft. As a bomber is a kind of an aircraft that can deliver bombs, its class can be derived from the class Aircraft. Note that the attributes and methods of Aircraft are inherited and will automatically be a part of the derived class definition. Bomber objects can use both their own and inherited methods, i.e., they will understand the message up (an inherited method to make the aeroplane go higher) and drop (a method specific to the Bomber class to drop bombs). However when objects are created from these two classes, there is no reference between them in terms of attribute values. Objects have their own states
independent
 of other objects.

�

Specialisation - Extending Functionality

The above mentioned example demonstrates a fundamental principle of object orientation - creating a new class by extending (specialising) one which already exists. Much object oriented software development
centers
 on the reuse of existing software components (classes). However, the particular class, which a programmer requires for a specific application may not be available. Object orientation provides, in such circumstances, the ability to extend an existing class to meet new requirements without having to affect the original class in any way. An abstract data type is both closed (in that it has an encapsulated private part which cannot be affected by external manipulation) and open (in that it allows itself to be used as a part of a larger software unit). The Aircraft class is unaffected by being the base class for the Bomber class. The fact that the base class has been inherited from does not affect it nor its ability to create objects from it. Several different classes may also be derived from a single base class. For example, another class Fighter may be derived from the class Aircraft.

�

As another example of extending for reuse, consider a situation where a programmer needs a class to represent an alarm clock in some kind of a scheduling system. Assume that the programmer already has access to a Clock class which was either written for another program or is available in a certain class library. Objects of the Clock class have the functionality to maintain time but cannot provide an alarm when a certain
pre-specified
 time has occurred. With object orientation, it is a simple task for the programmer to inherit all the existing functionality of the Clock class into a new derived class AlarmClock and add the extra required functionality.

Generalisation - Sharing Commonality

When analysing a particular application, it may be observed that some objects share some of their attributes and associated methods with other objects. This raises an issue of identifying the most appropriate way of partitioning a problem into abstract data types. One possible solution is to implement several closely defined classes, resulting in the duplication of some shared attributes and methods in different similar classes. Another solution would be to implement only a few classes to avoid duplication by putting the similar types into one general class. The latter would mean that the objects share some irrelevant and redundant attributes and methods. For instance, while making a video game, where a submarine needs to be tracked and later destroyed by a frigate, it is possible to have one general class Ship which contains attributes and operations that are common as well as specific to both submarines and frigates. For frigates, only the attributes and methods relevant to it are used.

Inheritance allows the resolution of such problems by enabling the sharing of common elements between classes without having to repeat their definition for each separate class.

�

Abstract Classes

Some of the basic classes in a class hierarchy do not represent anything concrete enough so that these could be instantiated as objects in their own right. Such a class only exists as a holder for the shared (inherited) attributes and methods of the derived classes and is known as an abstract class because it does not represent a concrete type of object.

For instance, in a previous example, a class such as Vehicle does not in itself represent anything other than a generalisation defining the shared characteristics of other classes. Such classes cannot be used effectively to instantiate objects without the further detail provided by the specialised derived class types (e.g., Car, Truck).

In a large classification hierarchy there may be many abstract classes which represent only parts of objects and are not instantiated in their own right. To ensure that only appropriate classes are instantiated, it may be possible to explicitly declare pure abstract classes as abstract so that these cannot be used to create objects.

It may not always be the case that a base class is abstract and no object from that class will ever be instantiated. For instance, depending upon the context, an object may be instantiated from the Ship class. This is required in situations where objects representing general surface vessels exist in the environment.

Inheriting from a Base Class - the Colon Operator (:)

Inheritance
 is declared in a derived class specification by the colon (:) operator. For a derived class to inherit from the base class, the colon operator follows the derived class name and is followed by the derivation type and the name of the base class.

class derived_class_name : public/private base_class_name

Consider a base class Ship. Its attributes include its location on a two dimensional surface. Methods include operations to initialise an object instantiated from this class and operations to move that object on the surface.

Now consider a Submarine class derived from the Ship class. It inherits the attributes and behaviour of the Ship class and extends the functionality of the Ship class by adding another attribute depth (representing the position in the third dimension below the surface) and operations to make the objects of the Submarine class
 dive and surface. These members are exclusive to the derived class and cannot be used by the objects of the base class.

The source code for the Ship and Submarine classes as well as a test program are given below,

//	Ship.h

//	A simple class

class Ship

{

	private:

		int LocationX;

		int LocationY;

	public:

		void initialise(int InLocX,int InLocY)

		{

			LocationX = InLocX;

			LocationY = InLocY;

		}

		int getLocationX(void)

		{

			return(LocationX);

		}

		int getLocationY(void)

		{

			return(LocationY);

		}

		void move(int IncrementX,int IncrementY)

		{

			LocationX += IncrementX;

			LocationY += IncrementY;

		}

};

//	Simple submarine class that inherits from ship class, public derivation

#include <ship.h>

class Submarine : public Ship

{

	private:

		int depth;

	public:

		void initialise(int LocationX,int LocationY,int InDepth)

		{

			Ship::initialise(LocationX,LocationY);

			depth = InDepth;

		}

		int getDepth(void)

		{

			return(depth);

		}

		void dive(void)

		{

			depth++;

		}

		void surface(void)

		{

			if (depth > 0)

			{

				depth--;

			}

		}

};

#include <iostream.h>

#include <sub.h>

#include <dos.h>

#include <conio.h>

void reportPosition(Submarine *ASub);

int main(void)

{

	Submarine ASub;

	ASub.initialise(10,10,5);

	char UserChoice = 'z';

	reportPosition(&ASub);

	do

	{

		if (kbhit() != 0)

		{

			UserChoice = getch();

			switch(UserChoice)

			{

				case 'f':

				{

					ASub.move(10,0);

					break;

				}

				case 'b':

				{

					ASub.move(-10,0);

					break;

				}

				case 'l':

				{

					ASub.move(0,10);

					break;

				}

				case 'r':

				{

					ASub.move(0,-10);

					break;

				}

				case 's':

				{

					ASub.surface();

					break;

				}

				case 'd':

				{

					ASub.dive();

					break;

				}

			}

			reportPosition(&ASub);

		}

	}

	while(UserChoice != 'x');

	return(0);

}

void reportPosition(Submarine *ASub)

{

	cout << "X = " << ASub->getLocationX() << " ::: Y = ";

	cout << ASub->getLocationY() << " ::: Depth = ";

	cout << ASub->getDepth() << endl;

}

The following is source for the classes Aircraft, Bomber and Fighter discussed in a previous example.

class Aircraft

{

	private:

		int height;

		int x_location;

		int y_location;

	public:

		Aircraft(int inheight,int inx,int iny)

		{

			height = inheight;

			x_location = inx;

			y_location = iny;

		}

		int getHeight(void)

		{

			return(height);

		}

		int getXLocation(void)

		{

			return(x_location);

		}

		int getYLocation(void)

		{

			return(y_location);

		}

		void forward(void)

		{

			x_location++;

		}

		void back(void)

		{

			x_location--;

		}

		void left(void)

		{

			y_location++;

		}

		void right(void)

		{

			y_location--;

		}

		void up(void)

		{

			height++;

		}

		void down(void)

		{

			height--;

		}

};

class Bomber : public Aircraft

{

	private:

		int NumberOfBombs;

	public:

		Bomber(int inheight,int inx,int iny,int InBombs) :

		Aircraft(inheight,inx,iny)

		{

			NumberOfBombs = InBombs;

		}

		int getPayload(void)

		{

			return(NumberOfBombs);

		}

		int drop(int HowMany)

		{

			int flag;

			if ((NumberOfBombs) > 0)

			{

				NumberOfBombs = NumberOfBombs - HowMany;

				flag = 0;

			}

			else

			{

				flag = -1;

			}

			if (NumberOfBombs < 0)

			{

				NumberOfBombs = 0;

			}

			return(flag);

		}

};

#include<aircraft.h>

class Fighter:public Aircraft

{

	private:

		int NumberOfMissiles;

	public:

		Fighter(int InHeight,int InLocationX,int InLocationY,int InMissiles) :

		Aircraft(InHeight,InLocationX,InLocationY)

		{

			NumberOfMissiles = InMissiles;

		}

		int fire(void)

		{

			int Success;

			if(NumberOfMissiles > 0)

			{

				NumberOfMissiles--;

				Success = NumberOfMissiles;

			}

			else

			{

				Success = -1;

			}

			return(Success);

		}

		int missilesRemaining(void)

		{

			return(NumberOfMissiles);

		}

};

Test programs for these classes are given below,

#include "aircraft.h"

#include <iostream.h>

#include <dos.h>

#include <conio.h>

void printBomberLocation(Bomber *B);

void printEscortLocation(Aircraft *A);

int main(void)

{

	char Cmd;

	Bomber B1(100,10,10,5);

	Aircraft Escort(150,15,15);

	printBomberLocation(&B1);

	printEscortLocation(&Escort);

	do

	{

		if (kbhit() != 0)

		{

			Cmd = getch();

			switch(Cmd)

			{

				case 'u':

					B1.up();

					Escort.up();

					break;

				case 'd':

					B1.down();

					Escort.down();

					break;

				case 'l':

					B1.left();

					Escort.left();

					break;

				case 'r':

					B1.right();

					Escort.right();

					break;

				case 'f':

					B1.forward();

					Escort.forward();

					break;

				case 'b':

					B1.back();

					Escort.back();

					break;

				case '*':

					if (B1.drop(2) != 0)

					{

						cout << "**************" << endl;

						cout << "* *" << endl;

						cout << "* OUTTA AMMO *" << endl;

						cout << "* *" << endl;

						cout << "**************" << endl;

					}

					break;

			}

			printBomberLocation(&B1);

			printEscortLocation(&Escort);

		}

	}

	while((Cmd != 'x') && (B1.getHeight() > 0));

	if (B1.getHeight() <= 0)

	{

		cout << endl << endl << "CRASHED AND BURNED" << endl;

	}

	return(0);

}

void printEscortLocation(Aircraft *B)

{

	cout << "ESCORT ::: ";

	cout << "x :: " << B->getXLocation() << " | y :: " << B->getYLocation();

	cout << " | z :: " << B->getHeight() ;

	cout << endl;

}

void printBomberLocation(Bomber *B)

{

	cout << "BOMBER ::: ";

	cout << "x :: " << B->getXLocation() << " | y :: " << B->getYLocation();

	cout << " | z :: " << B->getHeight() << " | Bombs = " << B->getPayload();

	cout << endl;

}

Two objects are instantiated here, one (Escort) from the base class and the other (B1) from the derived class. Both the planes fly in formation (i.e. close together and one follows the movements of the other) and B1 can drop bombs.

Consider another example demonstrating an application of the Fighter class,

#include<fighter.h>

#include<iostream.h>

#include<conio.h>

void printFighter(Fighter *AFighter);

int main(void)

{

	Fighter Mirage(100,10,10,4);

	char UserChoice = 'z';

	printFighter(&Mirage);

	do

	{

		if (kbhit() !=0)

		{

			UserChoice = getch();

			switch(UserChoice)

			{

				case 'u':

					{

						Mirage.up();

						break;

					}

				case 'd':

					{

						Mirage.down();

						break;

					}

				case 'f':

					{

						Mirage.forward();

						break;

					}

				case 'b':

					{

						Mirage.back();

						break;

					}

				case 'r':

					{

						Mirage.right();

						break;

					}

				case 'l':

					{

						Mirage.left();

						break;

					}

				case 'k':

					{

						if (Mirage.fire() == -1)

						{

							cout << "OUTTA AMMO"<<endl <<endl;

						}

						break;

					}

			}

			printFighter(&Mirage);

		}

	}

	while((UserChoice!='x') && (Mirage.getHeight() > 0));

	if (Mirage.getHeight() <= 0)

	{

		cout << endl << endl << "YOU CRASHED"<< endl;

	}

}

void printFighter(Fighter *AFighter)

{

	cout << endl << "X = " << AFighter->getXLocation() << " :: Y = ";

	cout << AFighter->getYLocation() << " :: Height = ";

	cout << AFighter->getHeight() << " :: Missiles = ";

	cout << AFighter->missilesRemaining() << endl;

}

Public and Private Derivation

The derivation type may either be private or public. Public derivation is the more usual type. It allows objects of a derived class access to the public part of the base class as well as its own class. Private derivation is less common and means that a derived class object may only use the methods defined in the derived class and not those inherited from the base class. However, the derived class methods may utilise base class methods to implement their own behaviour.

Consider an example of a Submarine3 class derived from a Ship class. If the derivation is private, Submarine3 class needs to implement its own methods that provide the required functionality. Although these methods may use the public methods of the Ship class, any object of the Submarine3 class cannot present the public part of the Ship class as its interface. The implementation the Submarine3 class is given below.

//	Simple submarine class that inherits from ship class, private derivation

#include <ship.h>

class Submarine3 : private Ship

{

	private:

		int depth;

	public:

		void move(int Direction);

		int getXLocation(void)

		{

			return(getLocationX());

		}

		int getYLocation(void)

		{

			return(getLocationY());

		}

		void initialise(int LocationX,int LocationY,int InDepth)

		{

			Ship::initialise(LocationX,LocationY);

			depth = InDepth;

		}

		int getDepth(void)

		{

			return(depth);

		}

		void dive(void)

		{

			depth++;

		}

		void surface(void)

		{

			if (depth > 0)

			{

				depth--;

			}

		}

};

void Submarine3::move(int Direction)

{

	switch(Direction)

	{

		case 1:

		{

			Ship::move(5,0);

			break;

		}

		case 2:

		{

			Ship::move(-5,0);

			break;

		}

		case 3:

		{

			Ship::move(0,5);

			break;

		}

		case 4:

		{

			Ship::move(0,-5);

			break;

		}

	}

}

Here the move method has been implemented to move an object of the Submarine3 class in a specified direction. This object is move
d
 5 units in the specified direction. This method actually uses the move in the base class to perform the required task. A simple test program is given below.

#include <iostream.h>

#include <sub3.h>

#include <conio.h>

void reportPosition(Submarine3 *ASub);

int main(void)

{

	Submarine3 ASub;

	ASub.initialise(10,10,5);

	char UserChoice = 'z';

	reportPosition(&ASub);

	do

	{

		if (kbhit() != 0)

		{

			UserChoice = getch();

			switch(UserChoice)

			{

				case 'f':

				{

					ASub.move(1);

					break;

				}

				case 'b':

				{

					ASub.move(2);

					break;

				}

				case 'l':

				{

					ASub.move(3);

					break;

				}

				case 'r':

				{

					ASub.move(4);

					break;

				}

				case 's':

				{

					ASub.surface();

					break;

				}

				case 'd':

				{

					ASub.dive();

					break;

				}

			}

			reportPosition(&ASub);

		}

	}

	while(UserChoice != 'x');

	return(0);

}

void reportPosition(Submarine3 *ASub)

{

	cout << "X = " << ASub->getXLocation() << " ::: Y = ";

	cout << ASub->getYLocation() << " ::: Depth = ";

	cout << ASub->getDepth() << endl;

}

Accessing the Inherited Attributes - the protected Keyword

A derived class can use the public methods of the base class. The public members of the base class also form a part of the interface if the derivation is public. However the access to the private members (attributes as well as methods) of the base class is restricted even for the derived class. Should a situation arise while developing a class that the programmers/designers believe that direct access to the attributes may be required in the derived classes, these attributes may be declared as protected rather than private. Class members may be declared
protected in the following manner,

	protected:

		int x;

		float y;

		...

The protected section of any class A is treated exactly like the private section of class A for the code outside the class. However it is accessible to any class B that
 is
 derive
d
 from class A. This allows the definition of three levels of abstraction in a set of classes. Access to the private section of a class is restricted to the immediate members of that class. The
protected
 section is available only to the members of a class and to the members in its derived classes. Finally the public section is always available to the rest of the program an
d
 defines an interface between the class and the code outside it.

Making the class members protected has its disadvantages. For example, consider a programmer who writes a class library and distributes it. Another programmer buys that library and accesses the protected members of the classes in that library by simply deriving other classes from them. Thus that programmer is actually in a position to write code that can corrupt the attribute values in the base class and develop systems with bugs hidden in them.

Therefore,
 the protected members of a class are considerably less secure than its private members. To avoid corrupted data, it
 is
 often safer to force the derived classes to access and modify data in the base class using only the public methods. Using the protected section simplifies programming. Therefore, programmers tend to rely on it. They should rather weigh the disadvantages of using a protected section against its advantages.

The following code shows a Ship2 class which has its attributes declared as protected. Submarine2 class inherits from Ship2 class and therefore has a direct access to the attributes of the Ship2 class.

//	Ship2.h

//	A simple class using protected members

class Ship2

{

	protected:

		int LocationX;

		int LocationY;

	public:

		void initialise(int InLocX,int InLocY)

		{

			LocationX = InLocX;

			LocationY = InLocY;

		}

		int getLocationX(void)

		{

			return(LocationX);

		}

		int getLocationY(void)

		{

			return(LocationY);

		}

		void move(int IncrementX,int IncrementY)

		{

			LocationX += IncrementX;

			LocationY += IncrementY;

		}

};

//	Simple submarine class that inherits from ship class, public derivation

#include <ship2.h>

class Submarine2 : public Ship2

{

	private:

		int depth;

	public:

		void initialise(int InLocationX,int InLocationY,int InDepth)

		{

			LocationX = InLocationX;

			LocationY = InLocationY;

			depth = InDepth;

		}

		int getDepth(void)

		{

			return(depth);

		}

		void dive(void)

		{

			depth++;

		}

		void surface(void)

		{

			if (depth > 0)

			{

				depth--;

			}

		}

};

Inheriting Constructors and Destructors

A derived class will always inherit the constructors of the base class as well as having its own. The base class constructor is always called first, followed by the derived class constructor, and so on down the tree if there are several levels of
inheritance
. This is because a constructor reserves memory appropriate to the needs of its class - the inherited constructor reserves memory for inherited attributes.

If the base class constructor takes no parameters, then this
inheritance
 of the constructor is implicit but if it does take parameters, then these must be stated explicitly in each derived class. This is because the derived class constructor looks for a base class constructor with a matching argument list.

The syntax for in line constructors in a class are as follows

	class Base

	{

		private:

			...

		public:

			Base(Parameter list...)

			{

				...

			}

			...

	};

	class Derived

	{

		private:

			...

		public:

			Derived(Parameter list...):Base(Base Class Constructor Parameter

							 List)

			{

				...

			}

			...

	};

Derived classes also inherit the destructors of the base classes and these are called in the reverse order of the constructors. For example, if class B inherits from class A and class C inherits from class B, then the sequence of constructor calls for an object of class C would be A, then B and then C. In contrast, its sequence of destructor calls would be C, then B and then A. Since destructors do not take any argument, explicit
inheritance
 of parameters is not an issue.

Consider the following code,

//	Constdest.cpp

//	Program to demonstrate how constructors and destructors are invoked in

//	a hierarchy tree

#include <iostream.h>

class BaseClass

{

	public:

		BaseClass(void)

		{

			cout << "Invoking Base Constructor" << endl;

		}

		~BaseClass(void)

		{

			cout << "Invoking Base Destructor" << endl;

		}

};

class Level1Child : public BaseClass

{

	public:

		Level1Child(void) : BaseClass()

		{

			cout << "Invoking Level 1 Child's Constructor" << endl;

		}

		~Level1Child(void)

		{

			cout << "Invoking Level 1 Destructor" << endl;

		}

};

class Level2Child : public Level1Child

{

	public:

		Level2Child(void) : Level1Child()

		{

			cout << "Invoking Level 2 Child's Constructor" << endl;

		}

		~Level2Child(void)

		{

			cout << "Invoking Level 2 Destructor" << endl;

		}

};

int main(void)

{

	Level2Child AnObject;

	cout << endl << endl << endl;

	return (0);

}

The output of this program is as follows,

Invoking Base Constructor

Invoking Level 1 Child's Constructor

Invoking Level 2 Child's Constructor

Invoking Level 2 Destructor

Invoking Level 1 Destructor

Invoking Base Destructor

