Introduction to Object Oriented Programming





Objects and Classes


Object oriented analysis, object oriented design and object oriented programming are based on entities known as objects. An object has state (whose representation is hidden) and a defined set of operations which operate on that state. The state is represented as a set of object attributes. Operations associated with an object provide services to other objects (clients) which request these services when some computation is required.





An object may also be defined as a kind of software module that presents a crisply defined interface, encapsulates data and associated operations (methods) and relates to an abstraction of an application relevant activity.





The fundamental idea behind object orientation is to combine into a single unit both data and the functions that operate on that data. This unit is called an object. An object’s functions or methods are the means of accessing that data. This data is actually hidden from the user or other programs. The object’s programmer can implement security measures in the methods so that the object’s state cannot be changed inadvertently, accidentally or maliciously. Thus objects may be represented graphically as follows





�


An Object : Data is accessed only via appropriate operations





Example


Consider an object representing a clock. Its internal data members may include variables of the following data structures





DATE (DAY, MONTH, YEAR)


TIME(HOURS, MINUTES, SECONDS)





These data are private, i.e. no other object or process can access these directly. Operations that may be performed on these data structures include the following





setDate(Date NewDate);


setTime(Time NewTime);


Date getDate();


Time getTime();


tick();





The programmer may implement security measures in these methods. For instance, setDate should flag an error if the NewDate passed to it contains date value for 31 February 1997.





Objects communicate by passing messages to one another. These messages initiate object operations. A message consists of 


(a)	The name of the service requested by the calling object


(b)	Copies of information from the calling object which are required during the execution of the required service and also the name of a holder for the results of service execution.





Object oriented languages allow implementation of messages as procedure or function calls. The name of the service required corresponds to the name of the object operation providing the service. The copies of information needed for the execution of the service are parameters passed to the procedure or function and the holder for the results of the service execution are values returned by a function or output variables in a procedure’s parameter list.





Each object is an instance of a class. A class definition totally defines the behaviour and attribute contents of objects of that particular class. This can best be understood be an example. In the C programming language, every variable is of a specific type. For instance, a variable i of type integer is declared as 


int i;





Any number of variables of type int can be declared in a program. Similarly many objects of the same class can be used in an object oriented program. A class, thus serves as a plan, or a template. It specifies what data and what functions will be included in objects of that class. Defining the class does not create any objects, just as the mere existence of a type int does not create any variable. It is important to note that each object of a specific class will have its own copy of state information and attribute values defined for that class, even though the operations remain the same as of all other objects from that class.





Example


The object described in the previous class was an instantiation of the class clock. Consider an instantiation of this class as the LocalClock and another instantiation as the GMTClock. The GMTClock has its own time information which is 5 hours behind the LocalClock. Both these objects can exist independently in an environment, i.e. a main program or any other object.





Definitions


Object. An object is a software packet containing a collection of data elements and a set of procedures/operations/methods/functions that are the only valid operations on that data. These operations are generally known as the access methods. Once defined, objects can be used as basic data types within a program. An object has a state, presents an interface and exhibits a behaviour. The state is determined by the value of the object’s internal data which results from the operations performed on that data by changing its state. The variables representing the internal state of an object are called instance variables. The collection of methods determines the object’s interface and behaviour.





Class. A class is a generalised description of the characteristics of similar objects. It is a template from which objects may be created by invoking certain methods called the constructor methods. Constructor methods are generally called automatically when an object is instantiated and serve to allocate memory, initialise object state, etc. Similarly, when these objects are destroyed, destructor methods are automatically invoked which are generally used to release the allocated memory, close open files, perform garbage collection etc.





Objects of the same class have common operations and therefore uniform behaviour. Classes have one or more interfaces that specify the operations accessible to clients through that interface. A class body specifies code for implementing operations in the class interface.





Message. Messages are signals sent from one object to another that request the receiving object to execute one of its methods. Messages are similar to function calls, i.e., they tell an object which service or state change it should perform.





Methods. Methods are procedures contained within an object that are executed in response to a message. Depending upon the language, most or all of the communication between objects takes place by sending messages that invoke methods.





Characteristics of Object Oriented Approach


Encapsulation. Encapsulation is a form of information hiding. It allows changes to be made to the implementation of a system with minimal effects on the end user. It is a technique by which data is packaged together with its corresponding procedures (methods). The state data in an object is said to be encapsulated and therefore hidden from the outside world. This means that the internal data of an object can only be accessed through the message interface for that object. The way in which the internal data is accessed is hidden from the requester. This is because it is neither required nor is it convenient that the designer of the application should be aware of the internal implementation details of the method invoked by a message.





Polymorphism. Polymorphism is a word of Greek origin that means having multiple forms. It refers to the ability to hide different implementations behind a common interface. With polymorphism, the same message can be interpreted differently by objects of different classes and therefore produce different but appropriate results.





One of the most common examples of polymorphism is function overloading. An overloaded function appears to perform different activities depending upon the kind of data sent to it. For instance, in the previous example of a clock, there can be two overloaded functions.


setTime(char AmPm, Time NewTime)


setTime(Time NewTime)





The first function takes in the time in am/pm format, converts it into a 24 hour format and sets the clock. The other function takes in the time in the 24 hour format and adjusts the time of the clock accordingly. 





The computer treats overloaded functions separately on the basis of the number of arguments and their types. Overloaded functions can simplify the task of a programmer by reducing the number of function names to be managed.





Inheritance. Inheritance is a mechanism through which class definitions can be built up from other class definitions. If a class definition specifies a use of another class definition, it inherits the definition and may then customise this by adding further attributes and operations of its own. Moreover the inheriting or the child class may redefine operations inherited from the parent class. Multiple inheritance is also possible in which the class has several parents and it inherits the properties of all its parents. The parent class is also known as a superclass where as the child class may also be referred to as a subclass or a derived class.





With single inheritance, an inheritance hierarchy or tree is created. Here a class can inherit attributes from a single superclass. For example, an alarm clock inherits from a clock. Here, an alarm clock retains the basic functionality of a clock, with an added functionality of setting an alarm and providing an alarm signal when the current time becomes equal to the alarm setting. Similarly a stop watch also retains the basic functionality of a clock with an added functionality to start and stop the stop watch. Moreover, the granularity of time is also finer for a stop watch.





�


Single Inheritance





With multiple inheritance, an inheritance network evolves rather than an inheritance hierarchy or an inheritance tree. For instance, the above mentioned example can be extended to develop a multi-function watch which provides the functionality of a stop watch as well as an alarm clock.





�


Multiple Inheritance





Inheritance is a useful mechanism for supporting adaptation for reuse and for practically reusing software. However, as classes are reused by implementing subclasses, the class lattice becomes more complex. It, therefore, becomes progressively more difficult to understand individual components.





With inheritance, the code of a class is not collected together in one place. Rather it is spread throughout the class lattice and the reuser must examine a number of classes before a component can be completely understood. Furthermore, adaptation through inheritance tends to lead to extra unwanted functionality being inherited which can make components inefficient and bulky. Thus inheritance should be exploited carefully. An established method is to employ inheritance only if a specialised version of a generic base class needs to be developed. 





Another very interesting aspect of inheritance is that the reference to the inherited class may be marked private, the biological analogy of which is obscure. In programming terms, the operations of parents specified by private inheritance are not visible to the external interface of objects that are instances of the child class, but the children’s own internal operations can make use of the privately inherited operations of the parent.





Aggregation. Aggregation relationships apply when objects of one class are composed (at least partially) of objects of another class. For example, an aeroplane may consist of one or more engines. 





Aggregations are more flexible than inheritance because they can be more readily re-organised. Objects which contain other objects (but are not composed of them) are also forms of aggregation. This includes forms when an object uses another object to accomplish a task. In such cases, the object that uses another object is not composed of the object it is using. Moreover, several other objects may use the same object and a particular object may use may several other objects. For instance, a bomber may use a number of different types of bombs and missiles to accomplish a specific bombing mission.





Object Based, Class Based and Object Oriented. Because there is some separation between the different object oriented concepts, some languages provide more facilities than others for object orientation. Some texts make a distinction between 3 types of programming, depending on the facilities available.





Object based programming involves some aspects of encapsulation inside objects which can be created from a specified set of existing classes, but does not provide mechanisms for creating new classes. Class based programming includes facilities for creating classes, but these classes cannot be organised into a classification hierarchy in order to implement inheritance and therefore full polymorphism. A truly object oriented language has all the facilities for encapsulation, inheritance, and polymorphism.





Structured Programming Vs. Object Oriented Programming


Structured programming is based on dividing a program into a set of interacting functions. These functions perform well defined operations and provide clearly specified interfaces to other functions in a program. These functions only have local states. Key data elements are defined outside the functions and are generally accessible to all functions. This increases the vulnerability of data as a programmer modifying an existing program may write functions that accidentally manipulate data. Furthermore as functions need to have clearly defined interfaces, any change in the data structure means that all the functions accessing the data need to be modified to accommodate the change.





Object oriented programming is based on objects. Objects encapsulate data and operations that need to be performed on that data. Objects have interfaces which only allow authorized operations to be performed on data. Thus data remains safe from malicious or inadvertent changes. 





Objects maintain their state. Their states change when certain operations are performed on the data they encapsulate. Objects relate more closely to real world entities. It, therefore, becomes easier to model the user domain as a set of interacting objects, and then transform that model into a suitable application using an object oriented language. As the data and operations are hidden inside an object, programmers need not worry about unnecessary details while building an application. They need only concern themselves with the interfaces to that object. Object orientation, therefore, tends to reduce complexity to a considerable extent.





Specialised objects may be derived from more generic classes of objects. This not only allows code reuse but also enables the semantic definition of application components. Polymorphism further reduces the complexities seen by the programmers by allowing them to be presented with common and unified interfaces for related operations.





Problems Associated with Object Orientation


Object orientation has its own set of problems. Many of these are simply because the languages are still in their infancy, and the analysis and design tools even more so. So there is still much work to be done in providing support for large scale projects using object oriented methods. Software developers need proven tools which include compilers, libraries, databases or CASE tools. All these are in relatively early stages of development.





Specific problems encountered when applying the object oriented approach to a software problem include :





Resource Overload. Since an object oriented program has a much greater processing overhead than one written using traditional methods, it may work much more slowly.


Object Persistence. An object’s natural environment is in RAM as a dynamic entity. This is in contrast to traditional data storage in files or databases where the natural environment of the data is on external storage. This causes problems when objects need to persist between runs of a program, even more so between different applications. However, later versions of different object oriented programming languages and some new object oriented languages (e.g. Java) provide object serialisation. Serialisation provides the much needed persistence for objects. Thus objects can be saved on disks when a program exits and then can be restored when the program is restarted. 


Reusability. It is not easy to produce reusable objects between applications when inheritance is used. This is because it makes their classes closely coupled to the rest of the hierarchy. With inheritance, objects can become too application specific for reuse. It is extremely difficult to link together different hierarchies, making it difficult to coordinate very large systems.


Complexity. Message passing between many objects in a complex application can be difficult to trace and debug.





Nevertheless, all of these problems are easily outweighed by the potential benefits of object technology. As the technology matures and develops, it becomes more and more pervasive in all aspects of computing to the point where it will become impossible to
