Polymorphism

Introduction

The word polymorphism is derived from a Greek word (polumorphos) with two roots

Polus (many) + Morphe (shape/form) = Polumorphos

It, therefore, means many shaped or having many forms. When applied to object oriented programming, it is used to mean different forms of data being handled by the same type of process. This is achieved by various forms of overloading - allowing functions and operators to behave differently in different contexts. This may be contrasted from the term monomorphic which is sometimes used to refer to non-object oriented languages, and simply means having a single form - functions and operators have single and fixed meanings. However, languages tend not to be entirely monomorphic since operators are usually given the polymorphic ability to work with more than one simple data type. Moreover, there are many different forms of polymorphism.

The underlying philosophy of polymorphism is that it ultimately makes programs easier to express because it reduces the number of different names used for processes which are similar but not identical. When used in the context of object oriented programming, polymorphism means that it is possible to overload (use to mean more than one thing) the symbols that are used in a program, so that the same symbol can have different (but related) meanings in different contexts. This includes overloading the operators and methods so that these can have more than one meaning and can be applied to different processes.

�
Method Polymorphism

Function Name Overloading

In a monomorphic language, there is always a one to one relationship between a function name and its implementation. A function such as print, for example, would have one and only one possible definition. In an object oriented system (where functions are replaced by object methods) the relationship may be one of many. There may be many different implementations of a print method. The name of the method becomes a more abstract concept covering a range of different implementations appropriate to different classes of objects.

�

Overloading Method Names

If a method print is defined in the base class, it may be called by any object of the derived class. However, such methods may be restrictive for the derived classes. Object oriented programming provides the facility to override any inherited method by defining a derived class method with the same name. Inherited methods may be called within these new methods so that the functionality of the existing implementation can be reused and extended.

Consider the following base class

class Ship

{

	private:

		int LocX;

		int LocY;

	public:

		Ship(int InLocX,int InLocY)

		{

			LocX = InLocX;

			LocY = InLocY;

		}

		void showPosition(void)

		{

			cout << "*** SHIP'S POSITION ***" << endl;

			cout << "Location X = " << LocX << endl;

			cout << "Location Y = " << LocY << endl;

		}

		int getLocationX(void)

		{

			return(LocX);

		}

		int getLocationY(void)

		{

			return(LocY);

		}

};

Consider the subclass Submarine derived from this base class,

class Submarine : public Ship

{

	private:

		int Depth;

	public:

		Submarine(int InLocX,int InLocY,int InDepth):Ship(InLocX,InLocY)

		{

			Depth = InDepth;

		}

		void showPosition(void)

		{

			cout << "*** SUBMARINE'S POSITION ***" << endl;

			cout << "Location X = " << getLocationX() << endl;

			cout << "Location Y = " << getLocationY() << endl;

			cout << "Depth = " << Depth << endl;

		}

};

As C++ supports polymorphism whereby different methods can have the same name, the compiler decides which one to use depending upon the class of the object which calls it. Thus the base class and the derived class can both have methods with the same names. The appropriate version is bound by the compiler which identifies the classes of the objects.

The subclass uses polymorphism to define its own showPosition() method which overrides (replaces) an inherited method definition. For any object of the Submarine class, a call to the showPosition() method executes the method defined in the Submarine class and not the method defined in the Ship class.

int main(void)

{

	Ship AShip(10,20);

	Submarine ASub(11,22,33);

	AShip.showPosition();

	ASub.showPosition();

	return(0);

}

The output of this program is shown below,

*** SHIP'S POSITION ***

Location X = 10

Location Y = 20

*** SUBMARINE'S POSITION ***

Location X = 11

Location Y = 22

Depth = 33

The statement AShip.showPosition() executes the method in the base class whereas the statement ASub.showPosition() executes the method in the derived class.

In the previous example, the overriding method completely redefined the inherited method. The definition of the inherited methods can also be extended by calling them in the derived class methods that are developed to override them and then adding extra implementation details. Consider the following version of the Ship and Submarine classes,

class Ship

{

	private:

		int LocX;

		int LocY;

	public:

		Ship(int InLocX,int InLocY)

		{

			LocX = InLocX;

			LocY = InLocY;

		}

		void showPosition(void)

		{

			cout << "Location X = " << LocX << endl;

			cout << "Location Y = " << LocY << endl;

		}

		int getLocationX(void)

		{

			return(LocX);

		}

		int getLocationY(void)

		{

			return(LocY);

		}

};

class Submarine : public Ship

{

	private:

		int Depth;

	public:

		Submarine(int InLocX,int InLocY,int InDepth):Ship(InLocX,InLocY)

		{

			Depth = InDepth;

		}

		void showPosition(void)

		{

			Ship::showPosition();

			cout << "Depth = " << Depth << endl;

		}

};

Here, the showPosition() method of the Submarine class calls the showPosition() method of the Ship class to display the location of the object in x and y coordinates. Extra functionality is added to display the depth of the object as well. To call the overridden method, it is necessary to identify the class to which the method belongs, followed by the scope resolution operator. In the end, the method name should be specified.. A test program for these modified classes is as follows,

int main(void)

{

	Ship AShip(10,20);

	Submarine ASub(11,22,33);

	cout << "DISPLAYING SHIP'S POSITION" << endl;

	AShip.showPosition();

	cout << "DISPLAYING SUBMARINE'S POSITION" << endl;

	ASub.showPosition();

	return(0);

}

The output of this program is as follows,

DISPLAYING SHIP'S POSITION

Location X = 10

Location Y = 20

DISPLAYING SUBMARINE'S POSITION

Location X = 11

Location Y = 22

Depth = 33

�
Parametric Overloading

This refers to the ad hoc overloading of a method name by differences in parameters - each version of the method requires a different implementation. Ad hoc overloading of a function by differences in their parameter lists is a facility available in non-object oriented systems, since it can be applied to any function, whether that function is an object method or not.

In practice, overloading means that more than one function or method can be defined with the same name but different parameter lists, by type and/or number of parameters. For each different set of parameters, a different definition of the named function is implemented. The compiler can deduce which version of the function to call by the type of the parameter argument passed when the function is called.

Consider the following class Ship.

#include <iostream.h>

#include <math.h>

class Ship

{

	private:

		int LocX;

		int LocY;

		int Speed;

	public:

		Ship(int InX,int InY,int Velocity)

		{

			LocX = InX;

			LocY = InY;

			Speed = Velocity;

		}

		void print(void)

		{

			cout << "X = " << LocX << " :: Y = " << LocY << " :: Speed = ";

			cout << Speed << endl;

		}

		void move(int IncX,int IncY);

		void move(int Direction);

};

void Ship::move(int Direction)

{

	switch(Direction)

	{

		case 1:

		{

			LocX += Speed;

			break;

		}

		case 2:

		{

			LocX -= Speed;

			break;

		}

		case 3:

		{

			LocY += Speed;

			break;

		}

		case 4:

		{

			LocY -= Speed;

			break;

		}

	}

}

void Ship::move(int IncX,int IncY)

{

	if (abs(IncX) > Speed)

	{

		if (IncX < 0)

		{

			IncX = -Speed;

		}

		else

		{

			IncX = Speed;

		}

	}

	if (abs(IncY) > Speed)

	{

		if (IncY < 0)

		{

			IncY = -Speed;

		}

		else

		{

			IncY = Speed;

		}

	}

	LocX += IncX;

	LocY += IncY;

}

The Ship class has two overloaded methods (move). One method takes two integers as parameters (representing increments in x and y directions) whereas the other takes only one integer (representing the general direction of movement) as parameter. If, in the calling function, the move method is called and two integer values are passed to it, the first method is executed. However if only one integer value is passed, the second method is executed. Two programs to test these methods are given below,

// Ovrload1.cpp

#include <ship.h>

#include <conio.h>

int main(void)

{

	Ship AShip(10,10,5);

	char UserChoice;

	int IncX;

	int IncY;

	AShip.print();

	do

	{

		cout << "Press 'm' to move, 'x' to exit " << endl << endl;

		UserChoice = getch();

		if (UserChoice == 'm')

		{

			cout << "Enter X & Y increments seperated by a space :: ";

			cin >> IncX >> IncY;

			AShip.move(IncX,IncY);

			AShip.print();

		}

	}

	while (UserChoice != 'x');

	return(0);

}

// Ovrload2.cpp

#include <ship.h>

#include <conio.h>

int main(void)

{

	Ship AShip(10,10,5);

	char UserChoice;

	char DirChoice;

	AShip.print();

	do

	{

		cout << "Press 1 to left up, 2 to go right, 3 to go up, 4 to go down ";

		cout << " x to exit ";

		UserChoice = getch();

		cout << endl;

		switch(UserChoice)

		{

			case '1':

			{

				AShip.move(1);

				break;

			}

			case '2':

			{

				AShip.move(2);

				break;

			}

			case '3':

			{

				AShip.move(3);

				break;

			}

			case '4':

			{

				AShip.move(4);

				break;

			}

		}

		AShip.print();

	}

	while (UserChoice != 'x');

	return(0);

}

In an object oriented system, this facility can be used to define more than one method with the same name in a single class. This is particularly useful in overloading a constructor so that new objects can be created with different sets of arguments.

�

�
Operator Overloading

Operator overloading allows operator symbols known to the compiler to work with abstract data types defined by the programmers. Operators such as the arithmetic operators +-/* have certain fixed meanings to the compiler. They can be used with various numeric data types such as int and float. For new data types, these symbols can be used to mean operations on these new data types even though the compiler does not automatically recognise them. This is made possible in object oriented programming languages by overloading the meaning of an operator so that its behaviour is polymorphic, i.e., it is implemented differently for different classes.

For example, consider an abstract data type StringClass and operations similar to the ones available for the built in numeric data types are required to be used. In that case, the chosen operators need to be explicitly overloaded so that the compiler is aware of the expected behaviour when a specific operator is applied to objects of this class. In this case the addition operator (+) is used for the concatenation operation,

	StringClass S1;

	StringClass S2(“My Name is”);

	StringClass S3(“ Omar Bashir”);

	S1 = S2 + S3;

	S1.print();

The print() method of the StringClass class displays the string. In this case, the statement S1.print() will display My Name is Omar Bashir on the screen. Note that the contents of S2 and S3 are concatenated. Such a behaviour is only possible if it is coded explicitly. In effect the + operator will have to be overloaded to become a method of the class (i.e. one which objects of the class can use). By overloading operators in such a way all the classes in a system can be given a common interface, thus allowing similar operations to be performed on a range of different objects.

Overloading and Assignment Operator (=)

The assignment operator (=) is already overloaded to work with objects as well as simple data types. This operator is used to initialise the attribute values of a newly instantiated object by making them equal to those of another object of the same class that already exists. The syntax is as follows,

	class_name object2 = object1;

This means that object2 is instantiated with the same state as object1. The use of the assignment operator is not restricted in a copy constructor - it has a default behaviour of making an object’s attributes equal to that of another object, i.e.,

	object2 = object1;

and all the corresponding attributes will be copied from object1 to object2. Although this default behaviour is provided by the compiler, it can be overridden with overloaded versions of the assignment operator.

A Simple Example - Operators for StringClass

The syntax required for overloading operators in C++ is

The operator keyword.

Any of the 40 overloadable operators.

Operator overloading is usually preferred for arithmetic and relational operators.

In this example, the StringClass class is modified to use the overloaded operators. Some of the operators used are listed in the table shown below,

�

Operator�
Example�
�
=�
StringClass AString;

AString = “Hello”;

The string “Hello” is copied to the array acting as the attribute of the AString object �
�
+�
StringClass String1(“Hello”);

StringClass String2(“ World”);

StringClass String3;

String3 = String1 + String 2

The contents of the array acting as the attribute of the String1 object contain the string “Hello World”�
�
= =�
StringClass S1;

StringClass S2;

...

if (S1= =S2)�{

 cout << “Strings are equal”;

}

If the contents of the attributes of S1 and S2 are equal,

S1= =S2 operation will return 1, otherwise it will return a 0.�
�

The prototype of the class is given below

// Modified StringClass. Uses overloaded operators

//	strcls.h

#include <string.h>

class StringClass

{

	private:

		char Data[100];

		char TempStr[255];

	public:

		StringClass(char *InData);

		StringClass(void);

		char* getString(void);

		char* operator + (char *InData);

		StringClass operator + (StringClass InString);

		void operator = (char *InData);

		int operator == (char *InData);

		int operator == (StringClass InString);

		void operator += (char *InData);

		void operator += (StringClass InString);

};

The implementation of the class is given below,

//	Implementation of StringClass

//	strcls.cpp

#include <strcls.h>

StringClass::StringClass(void)

{

	strcpy(Data,"");

}

StringClass::StringClass(char *InData)

{

	strcpy(Data,InData);

}

char* StringClass::getString(void)

{

	return(Data);

}

char* StringClass::operator + (char *InData)

{

	strcpy(TempStr,Data);

	strcat(TempStr,InData);

	return(TempStr);

}

StringClass StringClass::operator + (StringClass InString)

{

	StringClass TempData;

	TempData = Data;

	TempData += InString;

	return(TempData);

}

void StringClass::operator = (char *InData)

{

	strcpy(Data,InData);

}

int StringClass::operator == (char *InData)

{

	int CompareValue;

	CompareValue = strcmp(Data,InData);

	return(CompareValue);

}

int StringClass::operator == (StringClass InString)

{

	int CompareValue;

	CompareValue = strcmp(Data,InString.getString());

	return(CompareValue);

}

void StringClass::operator += (char *InData)

{

	strcat(Data,InData);

}

void StringClass::operator += (StringClass InString)

{

	strcat(Data,InString.getString());

}

A simple test program that demonstrates the use of these operators is shown below

//	teststr2.cpp

#include <strcls.h>

#include <iostream.h>

#include <stdio.h>

int main(void)

{

	StringClass String1("Hello");

	char *Temp;

	char Temp2[100];

	StringClass String2;

	cout << "Original :: "<< String1.getString() << " :: ";

	cout << String2.getString() << endl << endl;

	Temp = String1+" everyone";

	cout << "String1 + 'every one' = " << Temp<< endl;

	String2 += "A Test Message";

	cout << "String2 += 'A Test Message' = "<< String2.getString() << endl;

	String2 += String1;

	cout << "String2 += String1 = "<< String2.getString() << endl;

	return(0);

}

The output of this program is given below,

Original :: Hello ::

String1 + 'every one' = Hello everyone

String2 += 'A Test Message' = A Test Message

String2 += String1 = A Test MessageHello

Multiple Overloading

An operator, for example +, can be used to perform multiple operations. For example, + can be used to add complex numbers, vectors, to concatenate strings etc. All these classes can be included in a program and the system would still know how to interpret the + operator. It selects the correct function to carry out the operation based on the type of the operands.

Pitfalls of Operator Overloading

Operator overloading provides the opportunity to create an entirely new language. When a, b and c are objects from user defined classes and + is overloaded, the statement

	a = b + c;

means something quite different than it does when a, b and c are variables of basic data types. The ability to redefine the building blocks of the language can be a blessing in that it can make the programming intuitive and more readable. If not used properly, it has an opposite effect, i.e., it makes the programs more obscure and hard to understand.

Following are some guidelines for using operator overloading.

Use Similar Meanings. Use overloaded operators to perform operations that are as similar as possible to those performed on basic data types. + sign can be overloaded to perform subtraction but that would hardly make the program comprehensible. Overloading an operator assumes that it makes sense to perform a particular operation on objects of a certain class. If + operator is going to be overloaded in class X, then the result of adding two objects of class X should have a meaning at least somewhat similar to addition.

Use Similar Syntax. Use overloaded operators in the same way as they are used for the variables of basic data types. For example, if alpha and beta are two objects, the operator += in the statement

	alpha += beta;

sets alpha to the sum of alpha and beta. Any overloaded version of this operator should do something analogous. It should probably do the same thing as

	alpha = alpha + beta;

Show Restraint. If + is overloaded in a class, anyone unfamiliar with the code will need to do considerable research to find out what a statement like a = b+c really means. If the number of overloaded operators grows too large and if they are used in non-intuitive ways, then the whole point of using them is lost and the program listing becomes less readable. Overloaded operators should be used sparingly and only when the usage is obvious. In case of a doubt, a function should be used instead of an overloaded operator since a function name can state its own purpose.

Not All Operators can be Overloaded. The following operators cannot be overloaded: the member access or dot operator (.), the scope resolution operator (::) and the conditional operator (?:).

Operator Overloading and Inheritance.

Like other methods, operators which are overloaded in one class are inherited by any other class derived from it. The exception to this is the = operator which, because of its default behaviour for all objects, can only be explicitly overridden for individual classes and not automatically for their descendants. The user defined behaviour of any of the other operators may be inherited by their descendant classes, but this may well mean that an inappropriate use of the operator is being inherited, perhaps more so than when methods are inherited. This is the case because function type methods are often related to single attributes so that a method returning or setting an attribute inherited by other classes will be appropriate to all other classes. However, operators tend to work on the whole object rather than just one attribute. Therefore any changes to the attribute set of classes deriving from a base class would require changes to the behaviour of the overloaded operator. Thus in general terms, although overloaded operators (operators other than =) are inherited by derived classes, it is often necessary to redefine their behaviour for all classes in a hierarchy.

�
Genericity

Parametric Polymorphism (Genericity).

The primary application of parametric polymorphism, also termed as genericity, is in object oriented systems, since it is a means of handling all types including user defined types in a generic way. Such methods are, therefore, applicable to a range of objects. There is an important distinction to be made between functions which are simply overloaded by their parameters and truly generic functions. In contrast to function overloading, where different implementations of a function are executed depending upon the types of parameters it is passed, a generic methods executes the same implementation but be able to accept a range of types as parameters. This is illustrated in the following figure.

�

In C++ genericity is achieved by the use of templates. A template will operate on any data type for which the internal implementation is appropriate. For example, a template function which compares two objects using the > operator and returns the higher will operate on any data type for which the > symbol is applicable. Since, through operator overloading, the > operator can explicitly be overloaded to work with user defined abstract data types, templates can be a very useful tool in object oriented systems.

Specific points related to parametric overloading and genericity are listed below,

Both are generally used when similar operations need to be performed on different data types

Data types being processed are passed to a method as parameters.

With parametric overloading, each type of parameter will cause the compiler to use a different (type specific) method.

With genericity, a single generic function is able to process all data types including those defined by the programmer (i.e. objects) - all data types are handled by one (type generic) method.

Genericity allows the creation of generic classes as well as simply using generic function.

Generic Functions

Genericity is a more powerful tool than parametric overloading for object oriented systems because it does not have to anticipate the type of data parameters which may be supplied at runtime. Therefore, it is able to handle objects of disparate types. However this facility only works if the facility exists to process all the data types in a particular way.

Consider a function isEqualTo. This function takes in two objects and returns a TRUE if they are equal.

�

With a generic function like this, the parameters can be of any type. However they must be able to be processed by the function, which in this case means that they must be able to use the = = operator. The clear implication here is that all objects which are liable to be used by this function must have an overloaded version of the = = operator.

If a generic function applicable to all classes is not available, then it will be necessary to have different implementations of a function for each data type in the system, i.e., parametric overloading must be used to cater for all possible parameter types. The problem with this approach is that not only does a separate function has to be defined for each data type when the program is written, but if any new types are added later, new functions are to be written for each one. With a generic function, new types can easily be accommodated, provided they have the appropriate overloaded operators and / or operators.

Simple parametric overloading, however, does have uses which do not overlap with generic functions. For example, it can be used to provide several similar methods in a single class which in effect give the users options about whether or not to pass parameters to these methods. This can be particularly useful in overloading constructors, i.e., objects can be created with various sets of parameters depending upon the context.

Template Functions

Consider the following program,

//	Program to check the greaterThan template function

//	tstgreat.cpp

#include <iostream.h>

#include <cmplxnum.h>

#include <vector.h>

template <class AType>

AType greaterThan(AType Object1,AType Object2)

{

	AType TempObject;

	if (Object1 > Object2)

	{

		TempObject = Object1;

	}

	else

	{

		TempObject = Object2;

	}

	return(TempObject);

}

int main(void)

{

	int ix,iy,ig;

	float fx,fy,fg;

	ComplexNumber cx(3,2);

	ComplexNumber cy(2,-4);

	ComplexNumber cg;

	Vector vx(10,-5);

	Vector vy(-6,5);

	Vector vg;

	ix = 90;

	iy = 15;

	fx = 1.15;

	fy = 12.12;

	cout << ix << " :: " << iy << endl;

	cout << fx << " :: " << fy << endl;

	cx.display();

	cy.display();

	vx.print();

	vy.print();

 cout << "GREATERS" << endl << "========" << endl;

	ig = greaterThan(ix,iy);

	fg = greaterThan(fx,fy);

	cg = greaterThan(cx,cy);

	vg = greaterThan(vx,vy);

	cout << ig << endl;

	cout << fg << endl;

	cg.display();

	vg.print();

	return(0);

}

The key innovation in function templates is to represent the data type used by the function not as a specific type, such as int, but by a name that can stand for any type. In the function template above, this name is Atype. The template keyword signals the compiler that a function template is about to be defined. The variable following the keyword class within the angle brackets is called the template argument.

Throughout the implementation of the function, whenever a specific data type, like int, would ordinarily be written, the template argument is substituted. In the greaterThan function, it appears thrice, twice as argument types and once as return type. In more complex functions, it may appear numerous times throughout the function body as well (e.g. variable definitions).

The output of the program shown above is listed below,

90 :: 15

1.15 :: 12.12

3+2j

2-4j

10i -5j

-6i + 5
