Run Time Polymorphism


Static Binding


Inheritance polymorphism, as mentioned above is implemented by method overriding. Here, identically named methods are defined in different classes in an inheritance hierarchy. The compiler has to resolve which method is being called by a particular object and binds the appropriate method to that object. This is done by identifying the class to which that object belongs, a process similar to the one which identifies the classes of objects used in an overloaded operator. In both cases, there may be more than one interpretation of the operator or method depending on the class of objects with which it is used. When this process takes place at compile time, it is known as static binding or early binding.





Consider the following class hierarchy





�


FuelPump and WaterPump are derived from Pump. Both these derived classes have turnOn() methods which override the turnOn() method in the base class. Consider the following code segment,





	FuelPump fp;


	fp.turnOn();





The turnOn() method being called must be that of the FuelPump class since the source code states that this is the class of fp object. If the method is overloaded by other classes, then the same clarity of binding applies. Now consider the following code segment,





	FuelPump fp;


	WaterPump wp;


	fp.turnOn();


	wp.turnOn();





The compiler is able to identify the classes to which the two objects belong, and bind their respective overloaded methods to them. As the classes to which the objects belong (and therefore the methods that need to be bound to them) are identified at the compile time, the binding process is known as static binding. All types of objects including dynamic objects are statically bound by default.





Dynamic Binding


In certain situations, it may not be feasible or possible to identify the class of an object at compile time. Depending upon the various reasons, the class of an object that has been instantiated may need to be identified at run time. For instance, in a movie theater, the person standing in front of the ticket window may either be a student, a soldier or an ordinary civilian. All three have to pay different amounts for the same kind of ticket. The type of a person (student/soldier/civilian) is only determined (in the real world) once the person comes to the window and talks to the ticketing clerk. To simulate this scenario in software, the programmer would not be able to determine at compile time the actual kind of person that should be instantiated.





When the class of an object cannot be identified at compile time, static (or early) binding of methods (and overloaded operators) cannot take place. The identification of which polymorphic methods are being called by the object must be deferred until runtime - this is known as dynamic binding (or late binding). In C++, dynamic binding is made possible through the use of base class pointers (static identifiers) to reference dynamic objects of the derived classes.





Consider the previous hierarchy of pump classes. The base class represents the common characteristics of both fuel and water pumps, but is not specialised enough to represent an object in its own right. The turnOn() method in the base class is implemented as an abstract method. Abstract methods do nothing functionally. These exist in the base class only as place holders for the name of methods so that the derived classes may implement their own versions of the respective methods. This is because the consistency in method names in a classification hierarchy is important for dynamically bound objects.





Thus even if the turnOn() methods in the respective derived classes are different from one another, the base class will need to have an abstract method with the same name. Abstract methods are implemented as follows,





	class Pump


	{


		private:


			...


		public:


			void turnOn(void){}


			...


	};





Base classes essentially allow the implementation of dynamic binding. Messages may be passed via a pointer of the base class to objects of other derived classes at runtime. In other words, all that needs to be known at compile time is that some kind of Pump object will be instantiated, but is not known until runtime whether that object will be a FuelPump or a WaterPump.





The unspecified Pump object will, however, need to receive messages at runtime, so the base class pointer must be able to reference the polymorphic method name. If the Pump class does not have turnOn() method, then it would be unable to receive that message on behalf of an instantiated object of the WaterPump or FuelPump class at runtime.





Base Class Pointers to Derived Class Objects


Consider the following code segment,





	FuelPump *fp = new FuelPump;


	WaterPump *wp = new WaterPump;





Here two dynamic objects are instantiated and are referenced by pointers of their own class. However, it is also possible to reference objects of any derived or descendant class via a pointer of the base class. For example, consider the following code segment,





//	Dynamic Binding, example of pumps





//	pump.cpp





#include <iostream.h>


#include <string.h>





class Pump


{





	public:


		Pump(void)


		{


			cout << "Pump created" << endl;


		}





		virtual ~Pump(void)


		{


			cout << "Destroying pump" << endl;


		}





		virtual void turnOn(void)


		{


			cout << "Pump started" << endl;


		}





};





class WaterPump : public Pump


{


	public:


		WaterPump(void)


		{


			cout << "Water pump created" << endl;


		}





		virtual ~WaterPump(void)


		{


			cout << "Water pump destroyed" << endl;


		}





		virtual void turnOn(void)


		{


			cout << "Water pump started" << endl;


		}


};





class FuelPump : public Pump


{


	public:


		FuelPump(void)


		{


			cout << "Fuel Pump created" << endl;


		}





		virtual ~FuelPump(void)


		{


			cout << "Fuel Pump destroyed" << endl;


		}





		virtual void turnOn(void)


		{


			cout << "Fuel pump started" << endl;


		}


};








//	A program the asks the user to enter the level of water in a oil well.


//	If the level of water is above a certain threshold, an object of the


//	water pump class is instantiated and is turned on. Alternatively, an


//	object of the fuel pump class is instantiated and is turned on.





int main(void)


{


	Pump *APump;


	int WaterLevel;


	do


	{


		cout << "Enter water level ";


		cin >> WaterLevel;


		if (WaterLevel > 100)


		{


			APump = new WaterPump;


		}


		else


		{


			APump = new FuelPump;


		}


		APump->turnOn();


		delete APump;


	}


	while (WaterLevel >= 0);


	return(0);


}





In the main function, a pointer of the base class is being used to reference an object of the derived class. In this case type checking has been relaxed. Thus the pointers to objects of a derived class are type compatible with the pointers to objects of the base class. 





The turnOn() method is called via the base class pointer, but the message turnOn() in fact has more than one possible interpretation depending upon the class of the object receiving it. To achieve the desired behaviour at runtime, the compiler needs to be instructed to wait until the method call is executed at runtime before attempting to bind the appropriate method. At that point, the class of the object will be known because the constructor would have been executed. This deferring of binding until the class of an object is known at runtime is known as dynamic binding and allows the implementation of runtime polymorphism.





The virtual Keyword


Even if the objects of the derived classes have been created, the message returned from the object is from the method of the base class. This is because the compiler statically binds the inherited method at compile time, when the identity of the object is not known. Therefore, the compiler binds the method which belongs to the class of the pointer which is not necessarily the same as the class of the object at runtime.





Thus, by default the compiler will always statically bind a method to the class of the pointer. However, the compiler can be forced not to bind the method at compile time, but to allow dynamic binding of the object method at runtime when the identity of the object being referenced is known. This is achieved by the virtual keyword. 





Whenever a method is declared as virtual, the compiler will not statically bind it at compile time - it will be dynamically bound at runtime. In this version of the class declarations, the turnOn() methods have been declared to be virtual in the respective classes. In fact, as long as the base class methods are declared virtual, all other polymorphic versions of the method will automatically be virtual too.





The Virtual Destructor


The behaviour of the destructor is another important aspect of dynamic binding. Even though a pointer to the base class is used, the constructor explicitly instantiates an object of a named derived class, reserving memory appropriate for an object of that class. For example,





	apump = new WaterPump;





However, to delete this object at the end of its useful life, the following statement is used,





	delete apump;





This raises an issue as to what size of object should the destructor destroy? In fact it only deletes that part of the object which has been derived from the base class and not those parts which have been constructed from the derived classes. This is because the destructor would have, by default, been statically bound to the class of the pointer. To ensure that the whole of the object is destroyed, the destructor must too be dynamically bound. This means that a virtual destructor will have to be declared for each class in the hierarchy even if the destructor has no extra functionality.





Pure Virtual Functions


Pure virtual functions are functions in the base classes that have no implementation. Pure virtual functions are declared in base classes for dynamic binding when the implementation of these methods is defined only in the derived classes. These are declared as follows,





	virtual aFunction() = 0;





A class with even a single pure virtual function becomes an abstract class. No object can be instantiated from it.





Example


The following example demonstrates runtime polymorphism. It is a system for calculating tariffs in a travel agency. Here, two types of tickets are issued, student and non-student. Two types of tickets can be issued, first class and second class. All students are given a 25% discount and students below 15 years of age a given a further 10% discount. No discount is given to non-students, but all non-students above the age of 65 years are given a 10% old age discount.





In the main program, an object of the Student or the NonStudent classes is instantiated on the basis of the option selected by the user. The user is then asked to enter the age. The tariff is calculated and displayed to the user. In the end the instantiated object is deleted.





// 
