Persistent Objects, Streams and Files

Object Persistence

The lifetime of an object can vary from a momentary existence inside the body of a function or a method to persistence for the life of the program. However, in all these cases, objects exist at runtime. In C++, an object instantiated as an automatic object in a function exists only as long as the function in which it was declared and is coterminal with the function. The lifetime of variables declared as static or extern is bound to the entire program and is coterminal with the process. Extending the language to account for persistence is
equivalent to introducing an additional storage class that specifies that an object persists beyond the lifetime of either its originative procedure or process. At the very least, the binding must provide for one program to store an object out to non-volatile memory and for another program, or a different execution of the same program to retrieve that object and its associated values.

Practically, therefore, there are 3 levels at which an object may persist:

Objects persisting during the run of a program.

Objects persisting between different runs of a single program.

Objects persisting between different programs.

Objects which only exist while a program is executing are known as transient objects. These objects have no existence independent of a single program runtime. Those objects whose lifetimes extend beyond the boundaries of a single program run are known as persistent objects.

Storing Objects

For an object to be persistent, it must be stored on a disk in some form. However, objects do not fit easily with the traditional formats of stored data. Traditional approaches to programming separate processes and data so that data is easily stored independently of any associated processes. This is not the case with objects, because objects have two aspects,

the data associated with the attributes

the processing associated with the methods

An object’s attributes are unique to that object and, therefore, may be stored as a set of data similar to a record in a traditional file. However, methods are part of the class, shared by all other objects of the class, and these are not so easily stored. If an object is to retain its integrity, both its state and its class need to be stored on disk - not just its state alone. This leads to two approaches to implementation of persistent objects,

Store attributes independently of the methods. This means shifting from an object oriented approach to a more traditional file based approach when storing object data and back again when reloading it. This also includes using the traditional database systems (e.g., relational database technology) to store attribute values.

Use an object oriented database.

Storing Objects in Traditional Files

It is not possible to store all aspects of an object when using traditional types of file organisation, but is possible to maintain pseudo-persistent objects by storing attribute data in files. When a program is in execution, objects can write their state data out to disk as a record or series of records, and then this data can be reloaded later during another execution cycle of the program. Semantically, these are not persistent objects as only the state of the objects have been stored. As already known, an object comprises of three parts - state, identity and behaviour. The state can be saved and the behaviour can, to an extent, be maintained (albeit separately) by the class definition, but the identity of an object is rather different. In fact, when an object is re-built from state data stored in a file, another object is recreated with the same state as the original, rather than maintaining the existence of the original object. However, for most practical purposes, this kind of data storage is adequate, though it puts the onus on the programmer to ensure that objects retain their integrity when their classes are represented in code and their states are saved elsewhere in data files.

Using Relational Database Management Systems (RDBMS)

Relational database management systems (RDBMS) can take the object data structure and store it in a relational database. The mapping from objects to tables is not trivial: a class can map to one or more tables and a table may correspond to more than one class. In addition to other problems, relational model provides a limited support for data types. Thus it may be possible to store object data but not object methods. The types of object data that can be stored is also limited. There are extensions to the relational model that address these limitations, such as the support for binary large objects (BLOBs). BLOBs are files that contain binary information representing an image, a procedure, a complex structure or anything else that does not fit in a relational database. The database contains references to those files and manages them in an indirect way.

There are limitations to the use of BLOBs because they are physically out of the database environment and they cannot contain other BLOBs. Additionally, data and methods cannot be differentiated. Nevertheless, there are many advantages of using relational model such as the availability of set operations and the associative access to data which avoids the complexity of navigating in a database.

Relational databases now support stored procedures, i.e., they allow programs to be written in some procedural language and stored in the database for later loading and execution. However, the stored procedures in relational databases are not encapsulated with data - i.e., they are not associated with any relation or any tuple of a relation. Further, since relational databases do not have the inheritance mechanism, the stored procedures cannot be automatically reused.

Object Oriented Databases

According to Booch, in object oriented databases, not only does the state of an object persist, but its class must also transcend any individual programs so that every program interprets this saved state in the same way.

Object oriented databases allow the storage of both the class and the state of an object between programs. They take the responsibility for maintaining the links between stored object behaviour and the state away from the programmer and manage objects outside the programs with their public and private elements intact. They also simplify the whole process of rendering objects persistent by performing such tasks invisibly.

As well as recognising that persistence has to do with time (i.e., a persistent object can exist beyond the program which created it), it is also related with space (the location of the object may vary between processes and even change its representation in the process).

Unification Architectures for RDBs and OODBs

Broadly there are 3 possible approaches to bringing together OODBs and RDBs. These include using a gateway, an object oriented layer on RDB engine and a single engine.

With a gateway, an OODB request is simply translated and routed to a single RDB for processing and the result returned from RDB is sent to the user issuing the original request. The gateway appears to the RDB as an ordinary user of the RDB. Current implementations of gateways impose various restrictions on OODB requests. For instance, they can accept only read requests, or only one request (rather than a series of requests as a single transaction) or only simple requests (i.e., not all those types of queries that RDBs are capable of processing). Although the gateway approach makes it possible for an application program to use data retrieved from both an OODB and a RDB, it is not a serious alternative for unifying relational and object oriented technologies. Its performance is not acceptable because of the cost of translating requests and returned data and the communication overhead with the RDB. Further, its usability is unacceptable because the application programmers or users have to be aware of the existence of two different databases.

In the object oriented layer approach, the user interacts with the system using an OODB language and the object oriented layer performs all translations of the object oriented aspects of the database language to their relational equivalents for interaction with the underlying RDB. The translation overhead can be significant and this architecture inherently compromises performance. For example, the object oriented layer would map objects to records of tables and generate the object identifiers of objects. These are then passed to the RDB as an attribute of the record using the interface the RDB makes available. It would also map an object identifier found in an object to its corresponding object stored in the RDB, again using the RDB interface.

A RDB consists of two layers, the data manager layer and the storage manager layer. The data manager layer processes the SQL statements and the storage manager layer maps the data to the database. The object oriented layer may be interfaced with either the data manager layer (i.e., talk to the RDB using the SQL statements) or the storage manager layer (i.e., talk to the RDB using the low level procedure calls). The interface at the data manager layer is much slower than the one at the storage manager layer. Since this approach assumes that the underlying RDB will not be modified to better accommodate the needs of the object oriented layer, it can incur serious performance and operational problems when sophisticated database facilities need to be supported.

The rationale for the object oriented layer approach is to be able to port the object oriented layer on top of the existing RDBs. This flexibility is obtained at the expense of performance. The object oriented layer approach is the basis of a database system that makes a variety of databases appear to be a single database to the application program. Such a database system is known as a multidatabase system that makes it possible for the application programs to work with the data retrieved from OODBs and RDBs.

The unified approach melds the object oriented layer and the RDB into a single layer while making all the necessary changes in both the storage manager layer and the data manager layer of the RDB. The database system must fully support all the facilities the database language allows. This should include dynamic schema changes, automatic query optimisation, automatic query processing, access methods, concurrency control, recovery from crashes, transaction management and authorisation control. The richness of the unified data model adds to implementation difficulties.

Extended Relational Database Systems

The widespread use of relational databases has prompted many organisations to look for a transition path to object technology that does not require a major conversion to their existing data repositories. In many cases, a relational database (RDB) has been used successfully to dematerialise objects, i.e., to store their attribute values in the cells of relational tables, and later retrieve the object data to recreate or materialise the object. This technique requires a good design. There are many performance implications in the choices that have to be made, but it is feasible and compatible solution, particularly useful in case of business applications.

The relational database technology has many advantages. It provides a simple data model based on the use of tables, their columns and rows, integrity constraints and so forth. It also provides a set operations query language with which the user specifies just what to retrieve and not how to do it: no navigation through the database is necessary.

On the other hand, relational databases have some deficiencies that become more apparent when handling objects.
Other than
handling only simple data types, such as integer, real and string, the relational model does not support complex nested data; there is a limit to one data value per table cell, and the cells cannot be navigated via memory pointers. Additionally, the relational database management systems are intended to handle short transactions. Managing long transactions is beyond the scope of these systems, as is handling temporal data, history, data versions and data semantics as defined by object methods.

The extended relational DBMS provides a relational data model and a query language that has been extended to include extended types, procedures, object identity and a type hierarchy. These databases use a model that subsumes the relational model, providing compatibility with the relational database systems. The following figure shows the coverage of the requirements of object oriented programming languages by extended relational databases. Many of the requirements, such as the storing of objects and the handling of extended types and methods can be achieved. Other requirements, such as pointer navigation are not supported easily by this technology.

�

Evolution of Database Management Systems

An Architecture for Object Database Management Systems (ODBMS)

Generally, object database management systems consist of three necessary components: object managers, object servers and object stores. Applications interact with object managers, which work through object servers to gain access to object stores.

The object manager manages a local cache of objects for an individual application. The local object cache, usually implemented in virtual memory, acts as a temporary workspace where applications can check out objects from the database. The creation of new objects and the modification of existing objects are performed in the cache first and committed to the database when completed. Additionally, the object manager, with the help of the object server, performs the required translation between the formats of the program objects and the formats of the database objects.

Data transfers between the database memory and the program memory are automatic and transparent to the user. The database detects any reference in a program in execution to the persistent data and automatically transfers the page containing the referenced data.

The object server manages a separate cache of objects that can be shared by many applications. Through this cache, the object server coordinates access to the object store through locking mechanisms. Since there is no initial limitation on what an object can be, some objects may require longer checkout times than others. Hence, transactions on an ODBMS can have different meaning and duration from those on business oriented RDBMS. The locking mechanism should be able to handle short as well as long transactions.

The object store is the physical storage system, the actual database that resides on a disk.

On Storing Methods in Databases

Most OODBMS (mainly those based on C++) only store the structure of objects, i.e., the attributes or data members, in the database. The corresponding methods are not treated by the DBMS and are stored in regular files (i.e., source files created by the user, object and executable files created by the compiler and linker respectively) outside the database. Methods have to be linked conventionally to the application program. Again, for a number of applications this may be sufficient, but it requires additional organisational mechanisms. The user has to ensure that all programs link in the correct methods corresponding to the current schema. Consistency and security issues arise that might otherwise have been handled by the DBMS. Data management facilities like recovery, versioning and querying are not applicable for methods. The original idea of the OODBMS as a central repository of abstract data types has not been fulfilled.

�

Methods Outside Vs Methods Inside the Database

In a system that allows the storage of methods, it is sufficient for a user to just open a database. No additional linking of the application programs is necessary. This also has an advantage related to the openness of the language. The language in which the stored methods are written is irrelevant for the application programs because only a formalised method call is passed to the DBMS. The different principles of the two approaches are contrasted in the figure shown above.

Disk File IO With Streams in C++

A stream is a general term for a data flow, which may be to and from a file, or to and from screen and keyboard
 or to and from other sinks and sources of data. An object oriented stream library contains a number of classes, each of which is appropriate for a different kind of stream.

In C++, the stream classes are arranged in a rather complex hierarchy, a part of which is shown in the following figure. Classes istream and ostream are derived from the class ios. These classes have the extraction (>>) and the insertion (<<) operators as their members. The cout object, representing the standard output stream
(
which is usually directed to the video display
)
, is a predefined object of the ostream_withassign class which is derived from the ostream class. Similarly, cin is an object of the istream_withassign class which is derived from the istream class.

�

Stream Class Hierarchy

The classes used for input from the keyboard and output to the video display are declared in the header file IOSTREAM.H. The classes used specifically for disk file I/O are declared in the file FSTREAM.H header file. This file includes the IOSTREAM.H header file, so there is no need to include it in programs where FSTREAM.H has been included.

To work with disk files in C++, ifstream, fstream and ofstream need to be used. ifstream class is used for input, fstream is used for both input and output, and ofstream is used for output. ifstream is derived from istream, fstream is derived from iostream and ofstream is derived from ostream. These parent classes are in turn derived from ios. Thus the file oriented classes derive many of their member functions from more general classes. The file oriented classes are also derived, by multiple inheritance, from the fstreambase class.

Formatted Text File I/O

In formatted I/O, numbers are stored on disk as a series of characters, Thus 6.02 is stored as characters ‘6’, ‘.’, ‘0’ and ‘2’ rather than being stored as a 4 byte float type or an 8 byte double type. This can be inefficient for numbers with many digits but is appropriate in many situations and is easy to implement.

Consider the following program,

//	Program to append personnel information as formatted text lines in a file

//	fdatarit.cpp

#include <fstream.h>

int main(void)

{

	char Name[25];

	char PNo[25];

	char Designation[12];

	int YearOfBirth;

	float Salary;

	ofstream OutDataFile("pdb.dat",ios::app,filebuf::openprot);

	if (OutDataFile.good())

	{

		cout << "NAME : ";

		cin >> Name;

		cout << "PERSONAL NUMBER : ";

		cin >> PNo;

		cout << "DESIGNATION : ";

		cin >> Designation;

		cout << "YEAR OF BIRTH : ";

		cin >> YearOfBirth;

		cout << "PAY : ";

		cin >> Salary;

		OutDataFile << Name << " " << PNo << " " << Designation << " ";

		OutDataFile << YearOfBirth << " " << Salary << endl;

		OutDataFile.close();

	}

	else

	{

		cout << "Error opening file" << endl;

	}

	return(0);

}

The statement ofstream OutDataFile("pdb.dat",ios::app,filebuf::openprot); creates an object OutDataFile of the ofstream class. The constructor opens the file pdb.dat. The ios::app is a flag defined in ios which specifies that the file is being opened for appending data at the end. If the file does not exist, it is created so that the program can write data into it. Flags used to specify the mode in which the files are to be opened are listed below

Mode Flag�Result��in�Open file for reading��out�Open file for writing (Any existing file is overwritten)��ate�Start reading or writing at the end of the file��app�Start writing at the end of the file��trunc�Truncate file to 0 length if it exists��nocreate�Error when opening if the file does not exist��noreplace�Error when opening for output if the file already exists, unless ate or app is set��binary�Open file in binary mode��

The method call OutDataFile.good() returns a true if the specified file was opened for th
e required mode successfully. It
 is necessary to check that no errors resulted while opening the file otherwise the subsequent read/write operations may be unsuccessful. Here the OutDataFile object acts somewhat like the cout object. Thus the insertion operation (<<) can be used to output variables of any basic type to the file. This is because the insertion operator is appropriately overloaded in ostream class from which the ofstream class is derived. OutDataFile.close() method call closes the file.

Finally, data entered for every variable must be separated with whitespace characters. As the data in formatted text files is not stored in fixed length fields, this is the only way the extraction operator will know, when the data is read back from the file, where the data for one variable ends and the next one begins.

To read data from a file, an object of the ifstream class has to be instantiated. This object allows reading data from a file, the name of which was passed as an initialisation parameter to its constructor. The constructor automatically opens the file upon instantiation. Data can be read from a formatted text file using the extraction (>>) operator.

Consider the following program. This program is used to find a specific record from those entered using the program written above.

//	Program to read the file written by fdatarit.cpp and find the specified

//	record

//	fdatard.cpp

#include <fstream.h>

#include <string.h>

#include <conio.h>

int main(void)

{

	char Name[25];

	char PNo[15];

	char Designation[25];

	int YearOfBirth;

	char Query[15];

	int Found;

	float Pay;

	ifstream DataFile("Pdb.dat",ios::in,filebuf::openprot);

	if (DataFile.good())

	{

		do

		{

			cout << "Enter Personal Number to search : ";

			cin >> Query;

			Found = 0;

			DataFile.seekg(0,ios::beg);

			DataFile.clear();

			if (strcmp(Query,"END") != 0)

			{

				while((!(DataFile.eof())) && (!Found))

				{

					DataFile >> Name ;

					if (! DataFile.eof())

					{

						DataFile >> PNo >> Designation >> YearOfBirth >> Pay;

						if (strcmp(PNo,Query) == 0)

						{

							Found = 1;

						}

					}

				}

				if (!Found)

				{

					cout << "No such record" << endl;

				}

				else

				{

					cout << "NAME : " << Name << endl;

					cout << "DESIGNATION : " << Designation << endl;

					cout << "PERSONAL NUMBER : " << PNo << endl;

					cout << "YEAR OF BIRTH : " << YearOfBirth << endl;

					cout << "PAY : " << Pay << endl;

				}

			}

		}

		while(strcmp(Query,"END") != 0);

		DataFile.close();

	}

	else

	{

		cout << "ERROR" << endl;

	}

	return(0);

}

The ifstream DataFile("Pdb.dat",ios::in,filebuf::openprot); statement opens the file in read mode (ios::in). If the file has opened properly, the system asks the user to enter the personal number to search the file. Once the user enters a personal number, the program reads the file, from the beginning, either till the end of file or when the requested record has been read. After the requested record has been displayed to the user, the program asks the user to enter another personal number to search. To end the execution of the program, the user needs to type END here.

When the program reads past the end of file, the end of file condition is detected which can then be determined by the method call DataFile.eof(). This method call returns true when the end of file condition is detected.

As the program iterates, asking the user for a new query at each iteration, the data file needs to be read from the beginning to locate the requested data. Therefore, at the start of processing of each query, the file pointer needs to be repositioned to the beginning of the file. This positioning of the file pointer is performed by the DataFile.seekg(0,ios::beg); method call. This method moves the get pointer of the file object to the desired position. The get pointer is also known as the current get pointer. This pointer specifies the position (in number of bytes) in the file where reading will take place. As it can be seen, this function requires two parameters. The first is the offset from a particular location in the file and the second specifies the location from which the offset is measured. There are three possibilities for the second argument. ios::beg specifies the beginning of the file, ios::cur specifies the current pointer position and ios::end is the end of the file. Thus the DataFile.seekg(0,ios::beg); method call sets the get pointer to 0 bytes from the beginning of the file, i.e., at the first byte of the file.

If the program is executing an iteration after the first one, it is likely that it may have encountered the end of file condition earlier. The previously generated end of file signal needs to be cleared by the program before entering the while loop. Failure to do so will cause the program not to execute the code inside the while loop. The DataFile.clear(); method call clears the previously generated error signal a
ssociated with the file, including
 the end of file signal.

The following program is a simple database for managing the inventory of electronic components. It allows the users to enter data into the database file, retrieve a particular record and list all the records in the database file. The program uses a simple formatted text file to store the inventory records.

//	A database for electronic components

//	compdb.cpp

#include <fstream.h>

#include <string.h>

#include <iomanip.h>

#include <conio.h>

typedef struct

{

	char ICNumber[15];

	char Description[15];

	int Quantity;

} Component;

void list(fstream *);

void keyInData(Component *);

void printComponent(Component *);

void addRecord(Component *, fstream *);

int getRecord(Component *,fstream *);

int main(void)

{

	Component AComponent;

	fstream DataFile;

	char ch;

	DataFile.open("store.db",ios::in|ios::out,filebuf::openprot);

	if(DataFile.good())

	{

		do

		{

			cout << "Enter 'a' to add data" << endl;

			cout << "Enter 'r' to retrieve data " << endl;

			cout << "Enter 'l' to list the complete data " << endl;

			cout << "Enter 'x' to exit " << endl;

			cin >> ch;

			if (ch == 'a')

			{

				keyInData(&AComponent);

				addRecord(&AComponent,&DataFile);

			}

			if (ch == 'r')

			{

				if (getRecord(&AComponent,&DataFile))

				{

					printComponent(&AComponent);

				}

			}

			if (ch == 'l')

			{

				list(&DataFile);

			}

		}

		while (ch != 'x');

		DataFile.close();

	}

	else

	{

		cout << "Error opening database file\n";

	}

	return(0);

}

void list(fstream *DataFile)

{

	Component AComponent;

	int Counter = 0;

	DataFile->seekg(0,ios::beg);

	while(! DataFile->eof())

	{

		*(DataFile) >> AComponent.ICNumber;

		if (!DataFile->eof())

		{

			*(DataFile) >> AComponent.Description;

			*(DataFile) >> AComponent.Quantity;

			printComponent(&AComponent);

			Counter++;

			if ((Counter % 4) == 0)

			{

				cout << endl << "Press any key to contine..." << endl;

				getch();

			}

		}

	}

	DataFile->clear();

}

int getRecord(Component *AComponent,fstream *DataFile)

{

	char Query[15];

	int Found = 0;

	DataFile->seekg(0);

	cout << "Enter IC Number to Search :: ";

	cin >> Query;

	while((!Found) && (!DataFile->eof()))

	{

		(*DataFile) >> AComponent->ICNumber;

		if (!DataFile->eof())

		{

			(*DataFile) >> AComponent->Description;

			(*DataFile) >> AComponent->Quantity;

			if (strcmp(AComponent->ICNumber,Query) == 0)

			{

				Found = 1;

			}

		}

	}

	DataFile->clear();

	if (!Found)

	{

		cout << "Requested record not found in database " << endl;

	}

	return(Found);

}

void printComponent(Component *AComponent)

{

	cout << "IC NUMBER : " << AComponent->ICNumber << endl;

	cout << "DESCRIPTION : " << AComponent->Description << endl;

	cout << "QUANTITY : " << AComponent->Quantity << endl;

	cout << endl << endl;

}

void addRecord(Component *AComp,fstream *DataFile)

{

	DataFile->seekp(0,ios::end);

	*(DataFile) << setw(15) << AComp->ICNumber << " ";

	*(DataFile) << setw(30) << AComp->Description << " ";

	*(DataFile) << setw(15) << AComp->Quantity << endl;

}

void keyInData(Component *AComponent)

{

	cout << "IC Number : ";

	cin >> AComponent->ICNumber;

	cout << "Description : ";

	cin >> AComponent->Description;

	cout << "Quantity Held : ";

	cin >> AComponent->Quantity;

}

As the program needs to read from the database file as well as write to it in the same session, it uses an object of the fstream class. The statement fstream DataFile; instantiates an object of the fstream class but does not open any file. If the required parameters would have been passed, the constructor would have opened the specified file. However, here the file is opened by the DataFile.open("store.db",ios::in|ios::out,filebuf::openprot); method call. Using this method is beneficial when a file stream object needs to open several different files (but only one at a time) during a program execution cycle. The program can instantiate the file stream object once and then open the required data files as specified by the program logic. This reduces the overhead of creating a new file stream object for every file that needs to be manipulated. The ios::in|ios::out parameter specifies that the file should be opened for input as well as output.

When the user wishes to enter data into the file, that data should be appended to the end of the exiting file contents. To write data to a specific location within the file, the put pointer should be positioned to that specific location. In this case the put pointer should be positioned to the end of the file. This is accomplished by the DataFile->seekp(0,ios::end); method call.

Unformatted Text I/O

Unformatted text files contain information that does not have any structure. One simple method of reading these files is to read them one complete line of text at a time. However, as these lines contain embedded blanks, the extraction operator cannot be used to read them.

get method is generally used to read a string with embedded blanks. Its prototype is given below,

	get(char *p,int n,char = ‘\n’)

The first parameter is a pointer to a character. This is the location where the string data will be saved. The second parameter specifies the number of characters that need to be read. The last parameter is the terminating character. The default value for this character is the newline (‘\n’). This can, however, be overridden to accept multiline input if required.

When get is used to read a string of characters from the input stream, it will always leave a ‘\0’ character at the next stream position. This can lead to problems when the next character or a string is to be read from the stream, as the ‘\0’ character will automatically terminate the next attempt to read from the stream. Therefore, it is often required to read past this terminating character with the help of the version of get method that reads a single character from the stream.

The following program shows the application of the get method to read lines of text with embedded spaces from a text file.

//	Program to read unformatted text data from files

// ufread.cpp

#include <fstream.h>

int main(void)

{

	char FileName[50];

	char InLine[256];

	ifstream InFile;

	cout << "Enter file name to read data : ";

	cin >> FileName;

	InFile.open(FileName,ios::in,filebuf::openprot);

	if (InFile.good())

	{

		while (! InFile.eof())

		{

			InFile.get(InLine,255,'\n');

			if (! InFile.eof())

			{

				InFile.get();

				cout << InLine << endl;

			}

		}

		InFile.close();

	}

	else

	{

		cout << "Error opening " << FileName << endl;

	}

	return(0);

}

The InFile.get(InLine,255,'\n') method call reads a line of text from the file. If the file has not been read past its end, the InFile.get() method is called which reads the ‘\0’ character from the stream. The text read is then displayed on standard output.

The following program demonstrates the use of get method to read text with embedded white spaces from standard input and write these into a text file.

//	Program to write lines of unformatted text into a file

//	ufwrite.cpp

#include <fstream.h>

#include <string.h>

int main(void)

{

	char ALine[256];

	ofstream OutFile("TextData.txt",ios::out,filebuf::openprot);

	if (OutFile.good())

	{

		do // Loop until the user enters *END*

		{

			cin.get(ALine,255,'\n');

			cin.get();	//To take out the \0 character from the stream

			if (strcmp(ALine,"*END*") != 0)

			{

				OutFile << ALine << endl;

			}

		}

		while (strcmp(ALine,"*END*") != 0);

	}

	else

	{

		cout << "Error opening data file " << endl;

	}

	return(0);

}

The cin.get(ALine,255,'\n') method call allows the user to enter text with embedded white space characters in it. The method returns when the user presses the ENTER key. The cin.get() method is then called which reads the ‘\0’ character from the standard input stream. The OutFile << ALine << endl statement writes this text into the file and appends a line feed to it. This process is repeated until the user enters *END*. This string is not written into the file. Once this string has been entered, the program exits the loop and terminates execution.

Binary File IO

Binary files are considered to be more efficient in storing numerical data than formatted text files. In binary IO, data is stored in files as they are stored in a computer’s memory. For instance, an integer number 5617 is not stored as a string of four characters but as a two byte value. Similarly, a floating point number will always be stored as a four byte value while the size of a formatted text version will depend upon the actual floating point value.

To open a binary data file, the binary flag of ios class needs to be ORed with the in or out flags used to open files with objects of ifstream or ofstream classes respectively. If a binary file needs to be opened for reading as well as writing, all the three flags, ios::binary, ios::in and ios::out need to be ORed in the constructor or open method of objects of fstream class.

To write data into a binary file, ofstream’s write method is used. To read data from a binary file, ifstream’s read method is used. These functions write data to files and read data from them as arrays of bytes (type char). The prototypes of both these functions are written below,

	ofstream::write(char *buffer,int len)

	ifstream::read(char *buffer,int len)

Thus these functions manage the data as IO buffers of bytes, irrespective of their original format. The parameters to these functions are the address of the data buffer and the length of the buffer. Thus the pointer to the actual data being input to these functions should be casted to type char*. The length is the size in bytes and not the number of data items in the buffer.

The following program appends records of a structure Employee into a binary data file.

//	Program to append records in a binary file

//	wrtbin.cpp

#include <fstream.h>

typedef struct

{

	char FirstName[15];

	char LastName[15];

	char Designation[15];

	int YearOfBirth;

	float Pay;

} Employee;

int main(void)

{

	char UserChoice;

	Employee APerson;

	ofstream OutputStream("BinData.dat",ios::binary|ios::app,filebuf::openprot);

	if(OutputStream.good())

	{

		do

		{

			cout << "Enter First Name : ";

			cin >> APerson.FirstName;

			cout << "Enter Last Name : ";

			cin >> APerson.LastName;

			cout << "Enter Designation : ";

			cin >> APerson.Designation;

			cout << "Enter YearOfBirth : ";

			cin >> APerson.YearOfBirth;

			cout << "Enter Pay : ";

			cin >> APerson.Pay;

			OutputStream.write((char*) &APerson,sizeof(Employee));

			cout << "Enter 'x' to exit ";

			cin >> UserChoice;

		}

		while (UserChoice != 'x');

		OutputStream.close();

	}

	else

	{

		cout << "Error opening data file" << endl;

	}

	return(0);

}

The statement ofstream OutputStream("BinData.dat",ios::binary|ios::app,filebuf::openprot) opens a binary file to append data into. The OutputStream.write((char*) &APerson,sizeof(Employee)) method call writes the data pointed to by &APerson as a buffer of characters. sizeof(Employee) provides the length of the structure in bytes.

The size of the structure is 51 bytes. Thus it may be noticed that when one record is stored in the file, its size is 51 bytes. If the second record is appended to the file, its size increases to 102, an so on.

The following program reads the binary file written by the program shown above and prints these records on the display.

//	Progrom to list the contents of a binary file containing employee

//	records.

//	readbin.cpp

#include <fstream.h>

#include <conio.h>

typedef struct

{

	char FirstName[15];

	char LastName[15];

	char Designation[15];

	int YearOfBirth;

	float Pay;

} Employee;

void printData(Employee *);

int main(void)

{

	Employee APerson;

	ifstream InputStream("Bindata.dat",ios::binary|ios::in,filebuf::openprot);

	int DataCount = 0;

	if (InputStream.good())

	{

		while(! InputStream.eof())

		{

			InputStream.read((char*) &APerson,sizeof(Employee));

			if (!InputStream.eof())

			{

				printData(&APerson);

				DataCount++;

				if ((DataCount % 4) == 0)

				{

					cout << "Press any key to continue... " << endl;

					getch();

				}

			}

		}

		InputStream.close();

	}

	else

	{

		cout << "Error opening file\n";

	}

	return(0);

}

void printData(Employee *APerson)

{

	cout << "NAME : " << APerson->FirstName;

	cout << " " << APerson->LastName << endl;

	cout << "Designation : " << APerson->Designation << endl;

	cout << "Year of Birth : " << APerson->YearOfBirth << endl;

	cout << "Pay : " << APerson->Pay << endl << endl;

}

The ifstream InputStream("Bindata.dat",ios::binary|ios::in,filebuf::openprot) statement opens a binary file for reading data from. The InputStream.read((char*) &APerson,sizeof(Employee)) method call reads a buffer of characters of the size specified by sizeof(Employee) and saves the data in the location pointed to by &Aperson.

As the binary files allow storing data as fixed length records, it is relatively easier to move the file pointer to the beginning of a record at a specified location, without having to read each preceding record in the file, and then read the complete record. The following program is a modified version of the previous program and it allows the user to retrieve specific records by entering their location in the file.

//	Read a specified record from the binary data file of employees

//	readbin2.cpp

#include <fstream.h>

#include <conio.h>

typedef struct

{

	char FirstName[15];

	char LastName[15];

	char Designation[15];

	int YearOfBirth;

	float Pay;

} Employee;

void printData(Employee *);

int main(void)

{

	long NumberOfRecords;

	long Position;

	Employee APerson;

	char UserChoice;

	ifstream InFile("BinData.dat",ios::binary|ios::in,filebuf::openprot);

	if (InFile.good())

	{

		InFile.seekg(0,ios::end);	//	Goto the end of file

		Position = InFile.tellg();//	Location of file pointer (in bytes)

		cout << "Size of File = " << Position << endl;

		NumberOfRecords = (Position)/(sizeof(Employee));

		cout << NumberOfRecords << " records in the file" << endl;

		do

		{

			cout << "Enter the record number (0 - " << NumberOfRecords-1 << ") ";

			cin >> Position;

			if ((Position < 0) || (Position > (NumberOfRecords-1)))

			{

				cout << "Invalid entry" << endl;

			}

			else

			{

				Position = (Position) * sizeof(Employee);

				InFile.seekg(Position,ios::beg);

				InFile.read((char*) &APerson,sizeof(Employee));

				printData(&APerson);

			}

			cout << "Enter 'x' to exit ";

			cin >> UserChoice;

		}

		while(UserChoice != 'x');

	}

	else

	{

		cout << "Error opening file" << endl;

	}

	return(0);

}

void printData(Employee *APerson)

{

	cout << "NAME : " << APerson->FirstName;

	cout << " " << APerson->LastName << endl;

	cout << "Designation : " << APerson->Designation << endl;

	cout << "Year of Birth : " << APerson->YearOfBirth << endl;

	cout << "Pay : " << APerson->Pay << endl << endl;

}

The InFile.seekg(0,ios::end) method call moves the file’s get pointer to the end of the file. The program uses the InFile.tellg() method call to determine the current position of the get pointer. As the get pointer has been positioned at the end of the file, this method call returns the length of the file in bytes. The NumberOfRecords = (Position)/(sizeof(Employee)) statement determines the number of records in the file. The user is then requested to enter the record number (i.e., the position of the record in the file) for the record to be retrieved. Once the user has entered a valid value in the variable Position, the statement Position = (Position) * sizeof(Employee) determines the position of the starting byte of the record in the file. The InFile.seekg(Position,ios::beg) method is then called to move the get pointer
to that
position. The specified record is then read with the help of InFile.read((char*) &APerson,sizeof(Employee)) method call.

Object I/O

read and write methods of ifstream, ofstream and
fstream
classes can be used to store object attributes directly in binary files on disk. In the following example, attributes of objects of class Person are stored in a file using the write method. Class Person is described below,

class Person

{

	private:

		char Name[25];

		int Age;

		char NIDNumber[25];

	public:

		Person(void){};

		Person(char *InName,int InAge,char *InNID)

		{

			strcpy(Name,InName);

			Age = InAge;

			strcpy(NIDNumber,InNID);

		}

		int getAge(void)

		{

			return(Age);

		}

		char* getName(void)

		{

			return(Name);

		}

		char* getNIDNumber(void)

		{

			return(NIDNumber);

		}

};

The program that writes attributes of objects of this class in a binary data file is shown below,

//	RITEOBJ1.Cpp

#include <fstream.h>

#include "riteobj1.h"

void getParameters(char *AName,int *AnAge,char* ANID);

void printPerson(Person *APerson);

int main(void)

{

	ofstream OutFile;

	char FileName[25];

	char Choice;

	char AName[25];

	int AnAge;

	char ANID[25];

	cout << "Enter file name to save data" << endl;

	cin >> FileName;

	OutFile.open(FileName,ios::binary|ios::app);

	if (OutFile.good())

	{

		do

		{

			getParameters(AName,&AnAge,ANID);

			Person APerson(AName,AnAge,ANID);

			printPerson(&APerson);

			OutFile.write((char*) &APerson,sizeof(Person));

			cout << "Enter 'n' to exit to OS ";

			cin >> Choice;

		}

		while(Choice != 'n');

		OutFile.close();

	}

	else

	{

		cout << "Error opening " << FileName << endl;

	}

	return(0);

}

void getParameters(char *AName,int *AnAge,char *ANID)

{

	cout << "Enter Name ";

	cin >> AName;

	cout << "Enter Age ";

	cin >> *AnAge;

	cout << "Enter National ID Number ";

	cin >> ANID;

}

void printPerson(Person *APerson)

{

	cout << "NAME : " << APerson->getName() << endl;

	cout << "AGE : " << APerson->getAge() << endl;

	cout << "NATIONAL ID NUMBER : " << APerson->getNIDNumber() << endl;

}

The statement OutFile.open(FileName,ios::binary|ios::app); opens a binary file of the name specified in the string FileName such that data can be appended at the end. OutFile is an
object
of the class ofstream. The function call getParameters(AName,&AnAge,ANID); prompts the user to enter specific details of the object that needs to be saved on disk. These values are returned via respective pointers to the function main where the statement

Person APerson(AName,AnAge,ANID); instantiates an object of the class Person with the attributes returned by the previous statement. The function call

OutFile.write((char*) &APerson,sizeof(Person)); takes the pointer to that object type casted as a pointer to a character, and an integer value specifying the total size of all attributes of an object of class Person. This method then writes these attributes to the file associated with the object OutFile.

The following program reads the file created by the previous program and assigns the attributes stored by the previous program to objects of class Person.

#include <fstream.h>

#include <conio.h>

#include "riteobj1.h"

void printPerson(Person *APerson);

int main(void)

{

	ifstream InFile;

	char FileName[25];

	cout << "Enter file name to read data from" << endl;

	cin >> FileName;

	InFile.open(FileName,ios::binary|ios::in);

	if (InFile.good())

	{

		Person APerson;

		while(! InFile.eof())

		{

			InFile.read((char*) &APerson,sizeof(Person));

			if(! InFile.eof())

			{

				printPerson(&APerson);

				cout << "Press any key to continue... "<< endl;

				getch();

			}

		}

		InFile.close();

	}

	else

	{

		cout << "Error opening " << FileName << endl;

	}

	return(0);

}

void printPerson(Person *APerson)

{

	cout << "NAME : " << APerson->getName() << endl;

	cout << "AGE : " << APerson->getAge() << endl;

	cout << "NATIONAL ID NUMBER : " << APerson->getNIDNumber() << endl;

}

Here, the while(! InFile.eof()) loop iterates till the end of file condition is true for the InFile object. The method call InFile.read((char*) &APerson,sizeof(Person)); reads, from the file, the number of bytes specified by the expression sizeof(Person) and assigns these as attributes of the object APerson.

It is possible that two classes have same type and number of attributes specified in exactly the same manner. For instance, a class Aircraft may have integer attributes as PositionX, PositionY, and Altitude. Another class Submarine may have integer attributes as PositionX, PositionY, and Depth. As the facilities to store object attributes preserve no information regarding the class of objects to which these attributes belong, an application designed to read attributes of an object of class Aircraft can read attributes of an object of class Submarine. Thus to work correctly, programs that read and write objects to files must refer to the same class of objects.

This approach works well for simple objects, objects of classes with simple inheritance hierarchies and composite objects when any of these objects do not contains pointers to other structures or objects as their attributes. If the object attributes have pointers to other structures or objects, then instead of storing the attributes of object pointed to by these pointers, write method only stores the address specified by that pointer. This address may not be a valid address at a later time as it may not contain the referenced object.

For complex objects, it may be more appropriate to incorporate methods in the classes of these object that would allow the objects to write their attributes to a file and subsequently read those attributes from that file. For instance, consider a class Person, whose attributes include a pointer to object of the class Company. These classes are shown below,

// Header file for selfrite.cpp and selfread.cpp

// selfrdrt.h

#include <string.h>

class Company

{

	private:

		char Name[50];

		char Domicile[30];

	public:

		Company(void){}

		Company(char *InName,char *InDomicile)

		{

			strcpy(Name,InName);

			strcpy(Domicile,InDomicile);

		}

		char* getTitle(void)

		{

			return(Name);

		}

		char* getDomicile(void)

		{

			return(Domicile);

		}

};

class Person

{

	private:

		char Name[25];

		int Age;

		char NIDNumber[25];

		Company *EmployedBy;

	public:

		Person(Company *Employer)

		{

			EmployedBy = Employer;

		};

		Person(char *InName,int InAge,char *InNID,Company *Employer)

		{

			strcpy(Name,InName);

			Age = InAge;

			strcpy(NIDNumber,InNID);

			EmployedBy = Employer;

		}

		int read(ifstream *InFile)

		{

			int Success = 0;

			InFile->read(Name,sizeof(Name));

			InFile->read((char*) &Age,sizeof(int));

			InFile->read(NIDNumber,sizeof(NIDNumber));

			InFile->read((char*)EmployedBy,sizeof(Company));

			if (! InFile->eof())

			{

				Success = 1;

			}

			return(Success);

		}

		void write(ofstream *OutFile)

		{

			OutFile->write(Name,sizeof(Name));

			OutFile->write((char*) &Age,sizeof(int));

			OutFile->write(NIDNumber,sizeof(NIDNumber));

			OutFile->write((char*) EmployedBy,sizeof(Company));

		}

		Company* getEmployer(void)

		{

			return(EmployedBy);

		}

		int getAge(void)

		{

			return(Age);

		}

		char* getName(void)

		{

			return(Name);

		}

		char* getNIDNumber(void)

		{

			return(NIDNumber);

		}

};

If an object of class Person is saved using the write method of the ofstream class, the address specified by the pointer variable EmployedBy is saved, rather than the attributes of the object at that address. When this data is retrieved later, that address may not contain an object of the class Company. Thus, the class Person contains methods write and read which an object of this class may use to save its attributes (and those of the object pointed to by the pointer variable EmployedBy) to a file and then subsequently retrieve them.

For the write method to execute, it must be passed a pointer to an object of the class ofstream. This object must have associated
with it an open file on disk in
to
which it
writes the respective object’s attributes. For the read method to execute, it must be passed a pointer to an object of the class ifstream. This object must have associated with it an open file on disk from which it reads data and assigns it to the respective attributes of that object.

Consider the following program,

#include <fstream.h>

#include "selfrdrt.h"

#include <conio.h>

void getParameters(char *InName,int *InAge,char *InNID,

			 char *Title,char *Domicile);

void print(Person *APerson);

int main(void)

{

	char Name[25];

	int Age;

	char NID[25];

	char Title[50];

	char Domicile[30];

	char Choice;

	ofstream OutFile("selfio.dat",ios::binary|ios::app);

	if (OutFile.good())

	{

		do

		{

			getParameters(Name,&Age,NID,Title,Domicile);

			Company WorkPlace(Title,Domicile);

			Person APerson(Name,Age,NID,&WorkPlace);

			APerson.write(&OutFile);

			cout << "More y/n? ";

			Choice = getche();

			cout << endl;

		}

		while(Choice != 'n');

		OutFile.close();

	}

	else

	{

		cout << "Error opening datafile\n";

	}

	return(0);

}

void getParameters(char *InName,int *InAge,char *InNID,char *Title,

			char *Domicile)

{

	cout << "NAME ? ";

	cin >> InName;

	cout << "AGE ? ";

	cin >> *InAge;

	cout << "NATIONAL ID No. ? ";

	cin >> InNID;

	cout << "COMPANY TITLE ? ";

	cin >> Title;

	cout << "DOMICILE ? ";

	cin >> Domicile;

}

void print(Person *APerson)

{

	Company *ACoy;

	cout << "NAME : " << APerson->getName() << endl;

	cout << "AGE : " << APerson->getAge() << endl;

	cout << "NATIONAL ID No.: " << APerson->getNIDNumber() << endl;

	ACoy = APerson->getEmployer();

	cout << "EMPLOYER : " << ACoy->getTitle() << endl;

	cout << "DOMICILE : " << ACoy->getDomicile() << endl;

}

The statement ofstream OutFile("selfio.dat",ios::binary|ios::app); creates an object OutFile of the class ofstream and opens a binary file on disk for appending data into it. The function call getParameters(Name,&Age,NID,Title,Domicile); allows the user to enter data from the keyboard which are returned to the main function. Statements

Company WorkPlace(Title,Domicile); and Person APerson(Name,Age,NID,&WorkPlace); create the objects of classes Company and Person. Note that the constructor of class Person also takes a pointer to an object of Company class. The statement APerson.write(&OutFile); is a call to the method write of the object APerson. This method uses the OutFile object and stores the attributes of APerson object in the file.

Consider the following program,

#include <fstream.h>

#include "selfrdrt.h"

#include <conio.h>

void print(Person *APerson);

int main(void)

{

	ifstream InFile("selfio.dat",ios::binary|ios::in);

	if (InFile.good())

	{

		while(!InFile.eof())

		{

			Company WorkPlace;

			Person APerson(&WorkPlace);

			APerson.read(&InFile);

			if (! InFile.eof())

			{

				print(&APerson);

				cout << "Press any key to continue..." << endl;

				getch();

			}

		}

		InFile.close();

	}

	else

	{

		cout << "Error opening datafile\n";

	}

	return(0);

}

void print(Person *APerson)

{

	Company *ACoy;

	cout << "NAME : " << APerson->getName() << endl;

	cout << "AGE : " << APerson->getAge() << endl;

	cout << "NATIONAL ID No.: " << APerson->getNIDNumber() << endl;

	ACoy = APerson->getEmployer();

	cout << "EMPLOYER : " << ACoy->getTitle() << endl;

	cout << "DOMICILE : " << ACoy->getDomicile() << endl;

}

The statement ifstream InFile("selfio.dat",ios::binary|ios::in); creates an object InFile of the ifstream class and opens a binary file for reading data. Statements

Company WorkPlace; and Person APerson(&WorkPlace); create objects of the classes Company and Person. The statement APerson.read(&InFile); is a call to the method read of the object APerson which uses the InFile object to read data from the file and assign it to the respective attributes of the object APerson.

